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Abstract

The question of spin-charge separation in two-dimensional lattices has been

addressed by numerical simulations of the motion of one hole in a half-filled

band. The calculations have been performed on finite clusters with Hubbard

and t-J models. By comparing the time evolution of spin and charge polar-

isation currents in one and two dimensions, evidence in favor of spin-charge

separation in two dimensions is presented. In contrast with this, spin-charge

separation is absent in a highly doped, metallic, system.
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The crucial issue in understanding the physics of strongly-correlated systems is the nature

of the ground state and low-lying excitation the normal state of doped high-Tc materials.

In particular, intense attention has been focused on the question of spin-charge separation

and non-Fermi (or Luttinger) liquid behaviour of Hubbard and related models in 2D. It has

been forcefully argued by Anderson [1] that the breakdown of Fermi liquid behaviour and

the phenomenon of spin-charge separation, well established in 1D, is carried over to 2D sys-

tems and weakly coupled chains and planes as well. These arguments are substantiated by

physically motivated scattering theory and anomalous fermionic backflow [2] calculations.

The interlayer tunneling mechanism proposed by Wheatley, Hsu, and Anderson [3,4] cru-

cially depends on the existence of spin-charge decoupled layers coupled via a weak interlayer

hopping term. However, in spite of extensive investigations, both analytical and numerical,

so far there is no clear, convincing signature of non-Fermi liquid behaviour in 2D.

The situation in 1D is clearer due to the exact solutions of Hubbard [5] and Tomonaga-

Luttinger models and other calculations. [6] The physics in 1D, in the absence of a magnetic

field, is characterized by three parameters, which are uρ (charge velocity), uσ (spin velocity),

and Kρ (coefficient that determines the long range decay of correlation functions). uρ and

uσ, in the large-U limit, are, respectively, given by 2t sin πn and 2πt2

U
(1 − sin 2πn

2πn
) where t, U

are the Hubbard model parameters and n is the particle density (n ≤ 1). This physics

is described in terms of spinons (excitations carrying spin-1/2 but no charge) and holons

(excitations carrying unit charge but no spin), and implies that the two kinds of excitations

have altogether different dynamics. This is called spin-charge separation.

Thus in the case of 1D, the non-Fermi liquid behaviour typically manifests itself as (i) the

power-law behaviour of correlation functions; in particular, of the momentum distribution

around kF , and (ii) spin-charge separation. Away from 1D, the only exact results available

are due to Fabrizio and Parola [7] on coupled chains with a modified Tomonaga-Luttinger

model, in which case spin-charge separation is shown to exist. On the other hand, calcula-

tions which do not observe spin-charge separation in coupled chains, are quite numerous. [8]

Numerical attempts, in 2D, as regards the power-law behaviour of the momentum distribu-

2



tion are inconclusive. [9] In this work, we prefer to focus our attention on the possibility of

observing spin-charge separation by simulating the motion of one hole in a half-filled band.

Indeed, we do demonstrate spin-charge separation in 1D, and by comparing the behaviour

seen in 2D with that in 1D, present a favourable evidence for such a separation in 2D.

Now we describe the simulation procedure. We introduce a Gaussian hole, at time t = 0,

into the ground state |G〉 of a cluster, Hubbard or t-J , at half-filling, obtained by exact

diagonalization. [4,10] The resulting state can be written as

|ψ(0)〉 =
∑

i

eiK0.(ri−R0)−β|ri−R0|2ciσ|G〉. (1)

The charge distribution at t = 0 is centered around K0 in momentum space with spread

∼ √
β and R0 in real space with spread ∼ 1√

β
. This state is then subjected to (second-order)

time evolution

|ψ(t+ ∆t)〉 = (1 − i∆tH − 1

2
(∆tH)2)|ψ(t)〉, (2)

during which various quantities pertaining to charge and spin are computed. It is well known

that the finite time step (and the approximate form for the time evolution operator) tends to

make the evolution nonconservative. This error can only be reduced by using a small enough

time step and by including higher-order terms in the time evolution operator, which is the

reason for using the second-order form rather than the (numerically less costly) first-order

one. Further, the time step is chosen to ensure that the energy expectation value in the state

|ψ(t)〉 always remains within a few percents of its initial value. This procedure is indeed the

same as that of Jagla et al., [11] except that we are using the second-order approximation

to the time evolution operator. They demonstrated that spin-charge separation can readily

be observed on small 1D clusters by numerical means. They failed to see it in 2D because

of very high doping. This point will be discussed later. The “visual” results of their paper

in 1D have been confirmed by us.

In order to find an appropriate quantity that would reflect spin-charge separation, let

us recall that spin-charge separation results from the dynamical independence of spin and
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charge degrees of freedom, which should be reflected in the dynamical behaviour of charge

(+) and spin (−) densities:

ρ±(i, t) =
〈ψ(t)|(ni↑ ± ni↓)|ψ(t)〉 −B±∑
i(〈ψ(0)|(ni↑ ± ni↓)|ψ(0)〉 − B±)

. (3)

Here B+ is the average background charge (number of electrons per site, = 1 for the half-filled

ground state) and B− is the average background spin (= 0 for the half-filled ground state

belonging to the Sz = 0 subspace). These are thus the densities associated with the doped

particle, and are normalized to unity. In the non-initeracting (U = 0) case, we expect ρ+(i, t)

to vary in time identically as ρ−(i, t), whereas in the spin-charge decoupled case, these two

quantities should show a non-trivially different behaviour in time. It is more convenient to

define site-independent aggregate quantities from these, which are polarisations [12]

P±(t) =
∑

i

riρ±(i, t). (4)

Qualitatively, the polarisations reflect the center-of-mass movement of the charge and spin

peaks. Since they are origin-dependent, we prefer to look at their rates of change, dP±(t)
dt

,

which are the average classical currents set up in the system due to the time evolution of

the hole packet, and are a measure of charge and spin group velocities. [13]

We have carried out extensive simulations on the following 1D and 2D clusters: (i) six-

site Hubbard ring, (ii) (4+4) site coupled Hubbard chains, (iii) 4×4 t-J plane, with one hole

doped in the half-filled ground state, and (iv) 4×4 Hubbard plane with one extra electron in

the two-electron (Sz = 0) ground state. Periodic boundary conditions have been used in all

the cases. Note that the t-J model has been used only in the case where it is impossible to

work with the Hubbard model due to the large-basis problem. This, we think, is acceptable,

since we believe that the essential physics of the large-U Hubbard model is contained in the

t− J model. Simulations are done by varying the width of the Gaussian, β, and for all K0

appropriate for a given cluster, as well as the model parameters U or J .

We first present the results on the 1D six-site ring, for which spin-charge separation is

known to exist. These will bring out the characteristic behaviour of currents dP±(t)
dt

in the
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spin-charge separated case as against the noninteracting, undecoupled case. For all these

runs, we choose β = 0.1 and Ko = −2π
3

. All energies and times are measured with respect

to the Hubbard parameter t = 1. Figure 1 shows the currents as a function of time (up

to 2000 steps, ∆t = 0.01) for values of U = 0 [Fig. 1(a)], U = 1 [Fig. 1(b)] and U = 20

[Fig. 1(c)]. As expected, for the noninteracting case [Fig. 1(a)], the two curves overlap for

all times, and show a periodic behaviour characteristic of the free motion of a hole packet

on a periodic lattice. This also means that ρ±(i, t), at each site i, oscillates with the same

frequency. As U increases [Fig. 1(b)], the charge and spin currents start “separating,”

indicating the response of the background, although the periodicity of the U = 0 case is still

evident, including the locations of the peaks. However, the behaviour of dP+

dt
and dP−

dt
are

dramatically different from each other for large U , beyond U ∼ 5, indicating the decoupling

of spin and charge dynamics [Fig. 1(c)]. The contrast between Fig. 1(b) and 1(c) can be

related to the “stiffening” of the antiferromagnetic background with increasing U . In order

to understand the highly oscillatory behaviour of the currents, let us note that by creating a

hole at t = 0 in the background (i.e., half-filled ground state), we have created a state that

is not an eigenstate of the system, and can be written as a linear combination of ground and

excited states. In 1D, these excited states can always be described [6] as spinon and holon

excitations, having different dynamics, and we believe that the observed behaviour of the

currents in Fig. 1(c) is a direct consequence of this.

Now we present the results for the 2D system (4 × 4 t-J cluster). For this case we

choose K0 = (−π
2
, −π

2
), β = 1, and J = 0.1. The initial Gaussian hole packet has been

placed symmetrically with respect to the entire lattice, because of which the y component

of the currents varies identically as the x component, for this K0. [14] We thus display,

in Fig. 2, only the x components of spin and charge currents. Clearly, the two currents

indicate different dynamics, in that, their magnitudes as well as directions (and phases) are

different from each other almost all the time. This feature is qualitatively similar to Fig.

1(c) for the 1D case, U = 20. We interpret this as a signature of spin-charge separation

in 2D. Qualitatively similar behaviour is seen for J as large as 0.8, which is not surprising,
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since the t-J model has strong correlations built-in because of the elimination of double

occupancy, throughout the parameter range.

It is to be noted that the above mentioned behaviour is observed for one hole doped

into the half-filled ground state of the 4 × 4 cluster. In order to show that this behaviour,

indicative of spin-charge separation, does not persist for high doping–the metallic case, we

examine the time evolution of one extra electron in the two-electron (Sz = 0) ground state

of the 4 × 4 Hubbard cluster as a function of U . We have β = 1.0, K0 = (−π
2
, 0) and the

gaussian packet is again placed symmetrically with respect to the lattice. There is no current

in the y direction because of this choice of K0 and R0 [14]. Fig. 3 (a) and (b) depict the

x currents for U = 0.1 and U = 10 respectively. Indeed, it is observed that the familiar

periodic behaviour (with more or less overlapping curves), indicative of a weakly interacting,

spin-charge undecoupled system, is observed even for U as high as 10. This is precisely the

reason why Jagla et al. [11] did not observe spin-charge separation in their study in 2D.

In conclusion, we have studied numerically the time evolution of one hole in a half-filled

band, and by comparing the behaviour of spin and charge currents in 2D with that in 1D,

we have presented evidence in favour of spin-charge separation in 2D lattices. We have also

demonstrated that this phenomenon is observed only in the low-doped systems (one hole in

the present case) and is absent in the high-doping limit (low electron densities). Finally, we

note that our calculations on 4+4 coupled chains (not presented here) also display a similar

behaviour which is indicative of spin-charge separation in coupled systems.
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Figure Captions

FIG. 1 Currents dP±(t)
dt

as functions of time for one hole in the half-filled ground state of

the six-site Hubbard ring for different values of U : (a) U = 0, (b) U = 1, (c) U = 20; solid

curve, charge current; dotted curve, spin current.

FIG. 2 x components of currents dP±(t)
dt

as functions of time for one hole in the half-filled

ground state of the (4 × 4)-site t-J cluster; solid curve, charge current; dotted curve, spin

current.

FIG. 3 x components of currents dP±(t)
dt

as functions of time for one extra electron in the

two-electron ground state of the (4 × 4)-site Hubbard cluster for different values of U : (a)

U = 0.1, (b) U = 10; solid curve, charge current; dotted curve, spin current.
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