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Abstract

The ground state geometries of some small clusters have been obtained

via ab initio molecular dynamical simulations by employing density based en-

ergy functionals. The approximate kinetic energy functionals that have been

employed are the standard Thomas-Fermi (TTF ) along with the Weizsacker

correction TW and a combination F (Ne)TTF + TW . It is shown that the

functional involving F (Ne) gives superior charge densities and bondlengths

over the standard functional. Apart from dimers and trimers of Na, Mg, Al,

Li, Si, equilibrium geometries for LinAl, n = 1, 8 and Al13 clusters have also

been reported. For all the clusters investigated, the method yields the ground

state geometries with the correct symmetries with bondlengths within 5%

when compared with the corresponding results obtained via full orbital based

Kohn-Sham method. The method is fast and a promising one to study the

ground state geometries of large clusters.

PACS Numbers : 71.10, 31.20G, 02.70N, 36.40
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I. INTRODUCTION

During the last few years the technique of first principles molecular dynamics (MD),

initiated by Car and Parrinello (CP) [1,2], has emerged as a powerful tool for investigations

of structural, electronic and thermodynamic properties of large scale systems. The standard

implementation of this method which is based on density functional theory is via Kohn-Sham

(KS) orbitals. Such orbital based algorithms scale as N3

a , Na being the number of atoms in

the system. Quite clearly, such methods turn out to be computationally expensive for system

sizes over about 100 atoms [3]. Recently, approaches based on total energy functionals, which

depend on charge density only or orbital free density functionals have been proposed [4–6].

These methods are based on approximate representation of kinetic energy (KE) functionals

and offer an attractive alternative for investigating large scale systems. Since the method is

orbital free i.e there are no wavefunctions to handle, there is no computationally expensive

orthogonality constraint and the methods scale linearly with system size. In addition, these

methods are shown to yield stable dynamics even with large timesteps, a highly desirable

feature for molecular dynamics simulations.

It is clear that the utility of these methods is critically dependent on their ability to

investigate the systems of interest with acceptable accuracy, at least for a class of physical

properties. Madden and coworkers have investigated structural and thermodynamic prop-

erties of some simple metals with considerable success. For example, the dynamic structure

factor of liquid Sodium and static structure factor, vacancy formation energy, free energies

of point defects as well as phonon dispersion curves of Sodium [4,7] are well described by

this method. The method has also been applied for ground state configurations of c-Si and

H/Si (1 0 0) surface [6] and for geometries of some silicon clusters [8] and a good agreement

has been found with experiments as well as with other calculations. However majority of

the calculations reported so far have been performed on extended systems.

In the present work, we focus our attention on studying the ground state and ener-

getically low lying structures of clusters, a field of current interest. Obviously, due to the
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approximate nature of the KE functionals the bondlengths and binding energies will not

be obtained with the same level of accuracy as the KS orbital based methods. However,

it is of considerable interest to examine whether such a method is capable of yielding the

correct shapes (i.e the right symmetries) of clusters by employing Car-Parrinello simulated

annealing methods. If desired the KS method can then be used to search the local minimum

around structures obtained by Orbital Free Method (OFM) in ‘quenching’ mode. This can

be a computationally tractable way to avoid the long and costly simulated annealing runs

of the orbital based KS molecular dynamics.

Towards this end we have carried out a number of calculations on a variety of represen-

tative small clusters of simple metals. Specifically, we have investigated dimers and trimers

of Na, Mg, Al, Li, Si, small clusters of Nan, (n = 6, 8), LinAl, (n = 1, 8) and Al13. These

systems are representative of the small metal atom clusters of current interest and more

accurate KS based results have been reported. Hence, it is possible to make an assessment

of the present method by comparing the bondlengths and geometries with the reported ones.

The question of appropriate choice of kinetic energy functionals has been addressed by

Smargiassi and Madden [9]. They have investigated a family of kinetic energy functionals

which incorporate exact linear response properties. All such KE functionals are based on

the Thomas Fermi (TF) and the Weizsacker correction term. Since our interest is in finite

size systems, we have chosen to use simple KE functionals. These functionals have been

previously used in the study of atoms and molecules. However, it must be mentioned

that significant progress has been made towards improving the KE functionals notably by

DePristo and Kress, Wang and Teter [10,11].

In the next section we briefly discuss the method, the KE functionals used and give the

relevant numerical details. This is then followed by the results and discussion.

II. FORMALISM AND COMPUTATIONAL DETAILS
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A. Total Energy Calculation

The total energy of a system of Ne interacting electrons and Na atoms, according to the

Hohenberg-Kohn theorem [12,13], can be uniquely expressed as a functional of the electron

density ρ(r) under an external potential due to the nuclear charges at coordinates Rn,

E
[

ρ, {Rn}
]

= T [ρ] + Exc[ρ] + Ec[ρ] + Eext

[

ρ, {Rn}
]

+ Eii

(

{Rn}
)

, (1)

where Exc is the exchange-correlation energy, Ec is the electron-electron Coulomb interaction

energy. The electron-ion interaction energy Eext is given by

Eext

[

ρ, {Rn}
]

=
∫

V (r)ρ(r)d3r (2)

where V (r) is the external potential, usually taken to be a convenient pseudopotential [14].

The last term in Eq. (1), Eii, denotes the ion-ion interaction energy. The first term in Eq.

(1), the KE functional, is usually approximated as

T [ρ] = TTF [ρ] + TW [ρ] (3)

where TTF [ρ] is the Thomas-Fermi term, exact in the limit of homogeneous density, and has

the form

TTF [ρ] =
3

10
(3π2)

2

3

∫

ρ(r)5/3d3r (4)

and TW [ρ] is the gradient correction due to Weizsacker, given as

TW [ρ] =
λ

8

∫

∇ρ(r) · ∇ρ(r)d3r

ρ(r)
(5)

which is believed to be the correct asymptotic behavior of T[ρ] for rapidly varying densities.

Instead of λ = 1, the original Weizsacker value, λ = 1

9
and λ = 1

5
[15] are also commonly

used. It has been argued that for rapidly varying densities, which is the case for finite size

clusters a more appropriate kinetic energy functional would be a following combination of

these two terms [16]
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T [ρ] = F (Ne)TTF [ρ] + TW [ρ] (6)

where the factor F (Ne) [17] is

F (Ne) =
((
(

1 −
2

Ne

))
)

((
(

1 −
A1

N
1

3
e

+
A2

N
2

3
e

))
)

(7)

with optimized parameter values A1 = 1.314 and A2 = 0.0021 [18]. This functional which

includes the full contribution of the Weizsacker correction describes the response properties

of the electron gas well. This functional has been used for investigating atoms and molecules

with reasonable success.

We briefly describe our procedure, details of which can be found in [5]. The total energy

of the system (Eq. (1)), is minimized for fixed ionic positions using the conjugate gradient

method [19] which forms the starting point for molecular dynamics. The trajectories of

ions and the fictitious electron dynamics are then simulated using Lagrange’s equations of

motion which are solved by Verlet algorithm [1]. The stability of CP dynamics has been

discussed in [4] in the context of density based methods and timesteps of the order to 50

a.u. have been successfully used. We have verified that by appropriate adjustment of the

fictitious electron mass the CP dynamics remains very stable for over 10000 iterations with

a timestep of 40 a.u. in the present calculations of clusters. Typically, for free dynamics the

grand total energy which is the sum of the kinetic energy of ions, kinetic energy of electrons

and the potential energy of the system remains constant to within 10−5 a.u.

For the calculations of the ground state structures for dimers and trimers of Na, Mg,

Al, Li and Si a periodically repeated unit cell of length 26 a.u. with a 54 × 54 × 54

mesh and timestep ∆t ∼ 10 to 20 a.u. was used. For the rest of the small clusters the

calculations were done on a unit cell of length of 30 a.u with a 54 × 54 × 54 mesh. We

have chosen to use the plane wave expansion on the entire fast fourier transform mesh

without any truncation yielding the energy cutoff of 95 Rydberg. It must be mentioned

that, due to the orbital free calculations the number of fast fourier transforms per iteration

are constant irrespective of the number of electrons in the system. For clusters, the ground

state configurations are obtained either by starting with different initial configurations and
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then quenching the structures or by dynamical simulated annealing where the cluster is

heated to 300− 350◦K and then cooled very slowly. In all the cases the stability of the final

ground state configurations has been tested by reheating the clusters and allowing them to

span the configuration space for a few thousand iterations and then cooling them to get the

low energy configurations.

III. RESULTS AND DISCUSSION

In this section, we first discuss the results for the equilibrium bondlengths and binding

energies of dimers and trimers of Na, Mg, Al, Li, Si along with their KS results. All the

results presented here are obtained with energy convergence up to 10−13 for total energy

minimization.

Table I shows the equilibrium bondlengths and binding energies for dimer and trimer

systems using different kinetic energy functionals. These results have been compared with

full nonlocal pseudopotential KS calculations. A few representative results using λ = 1

5
have

been given. It can be seen that for λ = 1

5
the trend is similar to the λ = 1

9
functional

and there is no significant improvement in the results. Clearly, the results involving F (Ne)

functional show significant improvement over λ = 1

9
(with the exception of Mg) and are

in reasonable agreement with the bondlengths obtained by the KS method. The error in

the bondlengths is around 10%. It is known that such methods based on approximate KE

functionals are not expected to give accurate binding energies. One notable feature of the

binding energy comparison is the considerable improvement by F (Ne) over λ = 1

9
(excepting

again the case of Mg). The results for the Na, Li, Si trimer binding energies are not given

because these are Jahn-Teller distorted isoscales triangles and the present method yields

equilateral triangle geometries. Clearly, such density based methods are unable to reach the

Jahn-Teller distorted geometries.

The quality of the charge densities obtained by this method can be gauged by comparing

them with the KS charge density. In Fig. 1 we have plotted the self-consistent charge
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densities obtained using the functionals involving F (Ne) (curve a) and λ = 1

9
(curve b) with

the KS charge density (curve c) for Al dimer along the axis joining the atoms. The ionic

positions are marked by arrows on the plot. The KS charge density has been obtained using

the identical pseudopotentials and the same cell size as in the case of OFM. Three prominent

features can be observed.

1. Overall the F (Ne) functional densities compare very well with the KS densities ex-

cept at the origin where both the F (Ne) and λ = 1

9
self-consistent densities show

overestimation.

2. At the atomic sites the F (Ne) and KS based densities are very close and nonzero,

whereas the λ = 1

9
shows a disturbing feature of almost zero density.

3. At the peaks on either side of the origin, the KS and F (Ne) charge densities again are

close, but the charge density by λ = 1

9
shows considerable overestimation.

In Fig. 2 we have plotted the superposed free atom charge density (0th iteration density)

represented by the curve b and the self-consistent charge density for the functional involving

λ = 1

9
by the curve c and F (Ne) by the curve a. The self consistent charge density obtained

using λ = 1

9
shows improvement only at the origin. Contrary to this the self consistent

charge density using F (Ne) shows a significant overall improvement, both at the origin and

at the peaks on either side of the peak at the origin. To get an idea of the nature of the

forces obtained by the OFM and KS dynamics, we have given the results for the vibrational

frequencies for Na, Mg and Li dimers in Table 2. It is gratifying to note that the vibrational

frequencies obtained by OFM method are in very good agreement with the KS ones.

To assess the utility and performance of this method, it has been applied to calculate

the ground state geometries of a range of small clusters. We report here our calculations

on heteronuclear clusters of LinAl, n = 1, 8 and a highly symmetric homonuclear cluster of

Al13 and clusters of Nan, n = 6, 8 using the F (Ne) functional. The results are compared

with the ones reported by KS method.
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The geometries of the heteronuclear LinAl clusters are shown in Fig. 3 and the

bondlengths and symmetries in Table III. along with the KS results. Evidently, the present

method not only reproduces the correct ground state geometry with bondlengths within 5%

but also reproduces the two key features observed in the more accurate KS calculation [20].

1. The LinAl clusters for n < 3 are two-dimensional whereas from n ≥ 3 the clusters

become three-dimensional.

2. The Al atom gets trapped inside the Li atoms at n = 6.

It can also be noted that as the number of atoms in the cluster increases, the accuracy

in the bondlengths appears to improve. However, for the case of Li3Al and Li8Al we get

the ground structure configurations to be ideally symmetric rather than slightly Jahn Teller

distorted geometries of the KS calculation.

We have also investigated the Al13 cluster since it shows an interesting icosahedral geom-

etry. The calculations were performed in two different ways. First we started with a highly

distorted icosahedron and applied the dynamical quenching to get the equilibrium geometry.

In the second one, we started by placing the Al atoms at the fcc lattice points and heated

the cluster to 300◦K and let the system span the configuration space for a few thousand

iterations. This was then followed by a slow cooling schedule. It is very gratifying to note

that in both the calculations the correct icosahedron is obtained with a bondlength of 4.88

a.u. as compared to the KS bondlength of 5.03 a.u. The error in the bondlengths being

3%. This strengthens our confidence in the ability of the method to reproduce the correct

ground state geometries with acceptable bondlengths. In addition, we have also obtained

the ground state geometries for Na6, Na8 and Na20 and have verified that the geometries

obtained are identical to those reported in [21], with the bondlengths differing by about 5%.
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IV. CONCLUSION

In this work, we have presented the results obtained by using density based ab initio

MD for a variety of small clusters and demonstrated that the method using approximate

KE functionals is capable of yielding bondlengths within an accuracy of 5%. Our calcula-

tions indicate that the ground state geometries and symmetries of both homonuclear and

heteronuclear clusters can be obtained within a reasonable accuracy and timesteps of the

order of 40 a.u. can be used successfully for stable dynamics. The F (Ne) functional is shown

to give considerable improvement over standard λ = 1

9
functional both in terms of charge

densities and bondlengths and is thus recommended.

We believe the method to be a promising tool in the study of finite temperature and

dynamical properties of clusters. So far, all the reported OFM calculations have been

performed using local pseudopotentials only and it would be interesting to implement the

nonlocal pseudopotentials and study the effect of nonlocality on the bonding and binding

properties of such clusters. More work is required in this direction and the implementation

of nonlocality is under consideration. It may be possible to expand the applications of

OFM by incorporating the nonlocal pseudopotentials and by employing more accurate KE

functionals. It is hoped that the problems of current interest in the field of clusters like

fragmentation, dissociation, interaction between clusters, which may involve large number

of atoms as well as more than one atomic species will be amenable by the present technique.
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TABLE I. Comparison of the equilibrium bondlengths (in a.u) and binding energies (in

eV/atom) using the different kinetic energy functionals with the KS self consistent method.

System Bondlengths Binding energies

λ = 1

9
λ = 1

5
F (Ne) KS λ = 1

9
λ = 1

5
F (Ne) KS

Na2 5.67 - 5.69 5.66a -0.116 - -0.867 -0.71a

Na3 5.81 5.99 5.75 6.00b -0.207 -0.281 -1.286 -

Mg2 5.79 - 4.71 6.33c -0.195 - -1.432 -0.115c

Mg3 5.94 5.81 4.87 5.93c -0.355 -0.526 -2.096 -0.284c

Al2 5.74 - 4.14 4.66d -0.261 - -1.389 -1.06d

Al3 5.88 5.57 4.32 4.74d -0.483 -0.733 -2.074 -1.96d

Li2 5.87 - 5.51 5.15e -0.102 - -0.891 -

Li3 6.03 6.11 5.58 5.3b -0.182 -0.256 -1.311 -

Si2 5.35 - 3.74 4.29f -0.371 - -0.56 -0.6g

Si3 5.50 - 3.92 4.10f -0.651 - -0.938 -

aReference [21] eour own KS calculations

bReference [22] fReference [25]

cReference [23] gReference [26]

dReference [24]
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TABLE II. The vibrational frequencies (in cm−1) of Na, Mg, Li dimer using the OFM

and KS self consistent method.

dimers OFM KS

Na 167.4 168

Mg 107.3 108.6

Li 273.7 311

TABLE III. The bondlengths between Li-AL of LinAl, n = 1, 8 using OFM compared

with those obtained by KS method [20]. All the bondlengths are in a.u.

system OFM KS % error Symmetry

LiAl 4.77 5.35 10.8 C∞v

Li2Al 2 × 4.76 2 × 5.22 8.8 C2v

Li3Al 3 × 4.79 3 × 4.98 3.8 C3v

Li4Al 4 × 4.84 2 × 4.82 0.4 C3v

2 × 4.89 1

Li5Al 4 × 4.84 4 × 4.74 2 C4v

4.95 5.13 3.3

Li6Al 6 × 4.79 6 × 4.58 4.5 Oh

Li7Al 4.97 4.70 5.7 C1h

2 × 4.92 2 × 4.85 1.4

2 × 4.88 2 × 4.74 2.9

2 × 4.89 2 × 4.81 1.6

Li8Al 8 × 4.99 8 × 4.82 3.5 D4d
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Figure Captions

1. The self-consistent charge densities of Al dimer. Curve a represents the F (Ne) func-

tional charge density, curve b represents the λ = 1

9
charge density and curve c denotes

the charge density obtained using the KS method.

2. Comparison of self-consistent charge densities by the F (Ne) (curve a) and λ = 1

9

(curve c) functional for Al dimer with the superposed ( 0th iteration) free Al atom

charge density (curve b).

3. The ground state geometries of the LinAl clusters for n = 1, 8. The large sphere

represents the Li atom and small sphere represents the Al atom.
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Figure. 3 


