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Abstract-Higher-order shear-deformable refined theories, based on isoparametric elements, are adopted 
for transient dynamic analysis of symmetric and unsymmetric sandwich and composite beam 
constructions. These shear-correction coefficient free theories model cross sectional warping using 
nonlinear variation of inplane displacements across the depth. They also incorporate transverse shear 
stress in the formulation. A special lumping scheme is employed for the evaluation of diagonal mass 
matrix, and a central difference scheme is used for carrying out the integration of the equation of motion, 
to obtain the response history. Through numerical experiments, the efficacy of higher-order models in 
predicting displacements and stress, resultants over from the first-order theory, with respect to time, is 
clearly brought out in this paper. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

1.1. The need for rejned theories 

The study of laminated composite and sandwich 
material constructions is a fertile area of research 
among aero-industries and space research establish- 
ments. This is due to the ease and advantage of such 
materials: with a choice of different fibre materials, 
orientation and stacking sequences, the behaviour 
pattern of either isotropic or orthotropic or 
anisotropic material could be achieved. The resultant 
laminate could then be made with the required 
stiffness, strength to weight ratios and damage 
tolerance as well. as superior fatigue response 
characteristics. 

These materials, on the other hand, are not devoid 
of problems, such as delamination at free edges due 
to interlaminar normal stresses and low lamina 
strength, cross sectional warping including the core, 
transverse shear eff’ects etc. Thus, any analysis of such 
constructions would only be realistic and accurate 
when the models employed are capable of addressing 
these issues and providing solutions to these 
problems. 

1.2. Classical theory 

In addition to the above, the literature on beam 
formulations reveals that the Euler-Bernoulli theory 
has been the most prevalent for the transient dynamic 
analysis of beams and arches [l] and frames [2-6]. 
The major handicap with this theory is that it neglects 
the transverse shear strain completely and hence gets 
restricted to sections with high aspect ratios only. 

1.3. First-order theory 

The incorporation of transverse shear deformation 
into the governing equation by Timoshenko [7], was 
the first step towards the first-order shear defor- 
mation theory. Early versions of beam finite elements 
with the inclusion of rotary inertia and shear effects 
were reported by McCallay [8] and Archer [9]. 
Kapur [lo] proposed a Timoshenko element with 
independent cubic polynomials for transverse dis- 
placements due to bending and shear. Two versions 
of the Timoshenko element were published, with 
cubic variation of transverse displacement and 
rotation of neutral axis [l 1, 121. 

Different orders of interpolation for w and 0 were 
employed in the development of shear deformable 
elements [13, 141. Both w and 0 and their respective 
spatial derivatives were considered as nodal degrees 
of freedom by Thomas and Abbas [IS] for their 
version of the Timoshenko element. This theory was 
employed for transient dynamic analysis of elastic 
and elastoplastic beams and frames using Co elements 
for comparison with that of Euler-Bernoulli theory 
using C’ elements by Kant and Marur [16]. The 
shortcomings in this theory are the assumption that 
the shear strain remains constant across the 
thickness, and the need for a problem-dependent 
shear-correction coefficient. 

1.4. Second-, third- and fourth-order theories 

A second-order theory with two constants, one 
depending on the cross sectional warping and the 
other on the transverse direct stress, was proposed by 
Stephen and Levinson [ 171. Heyliger and Reddy [18] 
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proposed a third-order theory and its refined version, 
with transverse normal stress components, was 
reported later [19]. An attempt towards a fourth- 
order beam theory with the inclusion of transverse 
shear strain and warping of cross section was made 
by Levinson [20] and an improved version of the 
same was subsequently proposed by Rychter [21]. 

1.5. Higher-order theory 

A higher-order model, as a further development of 
fourth-order theory and based on Hamilton’s 
principle, was reported by Bickford [22] for the 
dynamic analysis of elastic beams. Reddy [23] also 
formulated a higher-order model, incorporating the 
transverse shear stress with C’ elements. Kant and 
Gupta [24] proposed a refined higher-order model, 
with the inclusion of transverse shear and normal 
stress components with simple Co elements, for the 
static and free vibration analysis of isotropic beams. 
Later, the higher order models were extended to the 
static analysis of composite and sandwich beams, 
both without [25], and with [26], the transverse 
normal strain components. 

1.6. Higher-order theory for transient dynamics 

While the Euler-Bernoulli theory is very much 
restricted to thin sections, the first-order theory 
always requires a problem-dependent factor. More- 
over, this theory cannot model the cross sectional 
warping, an important element in modelling com- 
posites. The second-order theory [17] needs two 
factors, making this theory a problem-dependent one 
also. The third-order theory [18] has the basic 
disadvantage of C’ continuity, while the fourth-order 
theory [20] has been formulated exclusively for beams 
with narrow rectangular cross sections and, hence, 
cannot be directly applied to other beams with 
arbitrary cross sections. The higher-order theory [23] 
also retains the C’ continuity. 

The higher-order models of Kant and his 
co-workers [24-261, however, are free of all these 
shortcomings and are based on isoparametric 
elements. Moreover, they assume cubic axial strain, 
quadratic transverse shear strain and linear trans- 
verse normal strain components in order to capture 
the behaviour of composite and sandwich construc- 
tions. 

While the analysis of such structures requires a tool 
like higher-order theory, the picture that emerges 
from the study of the literature clearly indicates the 
wider usage of Euler-Bernoulli and first-order shear 
deformation theories. In addition, the untapped 
potential of higher-order models for the exploration 
of transient dynamic behaviour of composites and 
sandwiches is indicated. 

Hence, three higher-order models are proposed in 
this paper, in order to investigate the mechanics of 
composite and sandwich beams, undergoing transient 
dynamic deformations. 

2. HIGHER-ORDER THEORIES AND FORMULATIONS 

2.1. Higher-order models 

The higher-order displacement model, based on the 
Taylor’s series expansion [27] of the displacement 
components, is given by 

u(x, 2, t) = uo(x, t) + z&(x, t) 

+ zW(x, I) + z%,*(x, t), (I) 

w(x, z, t) = wo(x, t), (2) 

where u0 and w0 are axial and transverse displace- 
ments, in the x-z plane at time t, 8, is the rotation 
of cross section about the y-axis, and uo* and t?,+ are 
higher-order terms arising out of Taylor series 
expansion and defined at the neutral axis. 

The possible variations of axial displacement given 
by eqn (1) are 

U(X, z, 1) = U&4, t) + z&(x, 1) + z*uiyx, t), (3) 

and 

u(~, z, t) = u~(x, t) + 26(x, t) + 2e,:(x, t). (4) 

The models given by eqns (3), (4) and (1) can be 
designated as Higher Order Beam Theory 4a, 
HOBT4b and HOBTS, respectively, with the 
transverse displacement remaining the same for all 
the three models, as given by eqn (2). The following 
presentation is based on HOBTS, as the other two 
models are the special cases of HOBTS itself. 

2.2. Total energy 

The total energy of a system can be given by 

L=T-l-I, (5) 

and 

l-I = u, - w, (6) 

where US is the internal strain energy, W, is the work 
done by the external forces, and T is the kinetic 
energy. 

Equation (6) can be rewritten as 

L = $‘pi dv - [+‘cr dv - jurP dx], 

where 

(7) 
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2.3. Internal strain energy The internal strain energy, after carrying out the 

Now the displacements can be written as integration across the cross section, becomes 

u = &d (8) 
b 

u =2 
s 

s I rbdx 
(13) 

where 
where 

u = [WV] 

d = [uowo&uWl 

(8a) B = DE - (13a) 

(8b) 
The stress resultants are given by 

and 
6 = [N.xN:M,M,* lQQ*S] (14) 

and 
(8~) 

D= [GDz,dz 
J: 

The strains are written as 

where 

L x = ~.tif + z2& + zK I + z’K* II (9) =LE, [_, ZZ%dz 

y.y: == 4 + z*4* + zKxz, (10) 

which appears in a matrix form as, 

(15) 

and can be expressed in the matrix form as 

where 

z2 I z3 0 0 0’ 
0 0 0 1 z2 z 

where NL stands for the (total) number of layers of 
the cross section, 

HI H, H2 
L Hs 4 

sym. Hr 

The constitutive relation of a typical lamina is 
given by and 

where 

u = Dc - (12) H,=(h::-h:_,)/k, k=1...7. 

2.4. Kinetic energy 

E 0 
p= 0 G’ 

[ 1 

I (164 

(16b) 

The kinetic energy can be expressed using eqn (8) 
as 

(12a) 

u = [~.,7,1’ Wb) 
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where where B is the strain displacement matrix. 
The non-zero elements of B corresponding to a 

particular node i can be given as 
&I = b g$&, dz 

B,, = Bj4 = B,, = Bqs = Bg = Nj,,; 

=b f 
h, s Bs, = N,; Bss = 3Ni; B,4 = 2Ni. (23) 

&IL.& dz. (17a) 
I_=! h,_, With eqns (21) and (22), total energy can be written 

as 
Here, pL is the mass density of a particular layer. 

The diagonal elements of the matrix given by the 
above equation, corresponding to any node i, can be L=f& 

expressed by I 
~~dxL-[~~~~ddx-~~~Pdx] 

z2z4z6]p, dz. (18) 

2.5. Work potential 

Similarly, the external work done is modified using 
eqn (8) as 

-a: 
i 1 N’Pdx . (24) 

Applying Hamilton’s principle on L, we get the 
W, = d’p dx (19) equation of motion as 

&i + &d = f(t), (25) 
where 

P=&P 
where 

(194 

or (25a) 

P = [p.tipdvtiP.%%Y. (19b) 

Now, the total energy reappears with eqns (13) 
(17) and (19) as 

K=b Emdx 
J: 

f(r) = r BP dx. 

(25b) 

(254 

The consistent mass matrix is evaluated as 

3. FINITE ELEMENT MODELLING 

In isoparametric formulations, the displacements 
within an element can be expressed in terms of its 
nodal displacements as 

M, = F W,N’IilN]J] (26) 
g= I 

d = Na,, 
where NG is the (total) number of gauss points (four 

(21) in this case), W, is the weighing coefficient and (J] is 
the determinant of Jacobian. 

where a, is a vector containing nodal displacement 
vectors of an element, and is given by 

If the total mass of an element can be given by 

ac = [didid: . . . d:] (2W m, = p do, 
s II 

(27) 

and N is the shape function matrix. 
Sit&arly, the strain within an element can be and the sum of the diagonal coefficients of the 

written as consistent mass matrix given by eqn (26), correspond- 
ing to any translational degree of freedom alone, is 

E=Ba, (22) termed as Zmtrr then the specially lumped mass 
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matrix can be obtamed [28] by scaling all the diagonal 
elements of the consistent mass matrix as 

fRi, = tiii*m,/Zm,, (28) 

and making all the off-diagonal terms of the 
consistent mass m.atrix zero. 

3.2. St@ness matrix evaluation 

The stiffness matrix can be evaluated as 

where total numbler of Gauss points are four for 
bending and three for shear terms evaluation. 

3.3. Load vector evaluation 

The consistent load vector, due to a uniformly 
distributed transverse load ~0, is given by 

where 

p=[O p. 0 0 O] and NG=3. (30a) 

3.4. Solution of equation of motion 

The governing equation of motion is solved using 
the central difference predictor technique [29] to 
obtain the response history at different time steps. 

4. NIJMERICAL EXAMPLES 

In order to test the proposed higher-order models, 
beams with both sandwich and composite construc- 
tions, subjected to transverse dynamic loadings, are 
considered in this study. Isoparametric cubic 
elements are employed to discretize the beams. All the 
experiments are carried out on an IBM compatible 
486 computer on DOS in double precision. 

A simply supported beam of 30 in long and unit 
width is discretize:d using four cubic elements. The 
length to depth ratio of the beam is five and is 
subjected to a transverse dynamic load of 300 lb in-‘. 
The boundary conditions used for the simply 
supported case are as follows: 

uo=wo=u~:=O at x=0 and x=L. 

The quantities like w(1/2,0), ~(0, z), Q(0) and 
M(1/2) are expressed with respect to time, in 
their own dimensions, with ~(0, z) being scaled by 

- 1, while the following are non-dimensionalized as 

rI(O, z) = u(0, z)EJ(-PO) 

6X(1/2, z) = t.J/2, z)bl(-PO) 

and expressed as the variation along the depth of 
cross section. 

Experiment 1 

First, a symmetric sandwich beam with O/SO/core/ 
90/O configuration is studied. 

Data 1 
Face sheets [30]: (top/hot) 

E, = 0.1742 x lo* psi 
E, = 0.1147 x 10’ psi 

G, = 0.7983 x lo6 psi 
p = 0.1433 x lo-’ lb s* ine4 
tf = 0.3 in. 

Core [31]: 
G,, = 0.2042 x lo5 psi 

p = 0.3098 x 10e5 lb s2 ine4 
t, = 4.8 in 

telt,= 8. 

The cross section is split into six layers; top and 
bottom faces into two layers each and the core into 
two parts. 

Figure 1 shows the transverse displacement 
response history. While HOBTS and HOBT4b give 
identical values, which are almost three times higher 
than that of Timoshenko, the period of the response 
due to first-order theory is almost half its higher- 
order counterparts. HOBT4a predicts results which 
are stiffer than Timoshenko both in amplitude and 
period. A similar pattern is observed in the inplane 
response history in Fig. 2. The shear force at the left 
support of the simply supported beam is presented in 
Fig. 3. While higher order models predict higher 
amplitude and period than the first order model, 
HOBT4a is stiffer than Timoshenko. The midspan 
peak bending moment due to HOBTS and HOBT4b 
is marginally less than Timoshenko while the 
higher-order period is nearly twice that of Timo- 
shenko. HOBT4a is stiffer than Timoshenko as 
shown in Fig. 4. 

The variation of inplane displacement along the 
depth is depicted in Fig. 5. While the first-order 
theory and HOBT4a predict the linear variation, 
HOBTS and HOBT4b bring out the warping of the 
cross section clearly. The inplane stress variation also 
illustrates the difference in the predictions of 
Timoshenko, HOBT4a and the rest, as shown in 
Fig. 6. 
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Fig. 17. Distribution of inplane displacement of symmetric composite beam at T = 0.9 x lo-’ s. 

Experiment 2 first-order theory. The variation of inplane displace- 
The same data used in Experiment 1 is considered ment, shear force and bending moment are given in 

here, but with an unsymmetric configuration of Figs 8-10. The magnitude of inplane displacement 
0/9O/core/O/90. The transverse displacement response and the period of shear and bending moment of 
is shown in Fig. 7. The magnitude and period of the higher order models are nearly double those 
response of HOBTS and HOBT4b are 3 x and 2 x computed by first-order model and HOBT4a. 
that of Timoshenko; HOBT4a is stiffer than Timoshenko and HOBT4a predict only a linear 
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Fig. 18. Inplane stress distribution of symmetric composite beam at T= 0.9 x lo-’ s. 
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Fig. 19. Transverse deflection history of unsymmetric composite beam. 

inplane displacement while higher-order models show 
the nonlinear variation in Fig. 11. Variation of b, is 
plotted in Fig. 12. The higher-order models compute 
stresses that are lesser than those predicted by the 
other two, mainly due to the fact that inplane 
displacement by HOBTS and HOBT4b at 
t = 0.18 x 1O-2 s, is much less than those predicted 
by HOBT4a and tlrst-order theory, as can be seen in 
Fig. 8. 

Experiment 3 

Next, a symmetric composite construction of 
O/O/90/90/0/0 combination with the following proper- 
ties is considered [32]. 

Data 2 
E, = 0.7620 x lo* psi 
E, = 0.3048 x 1O’psi 

G,, =. 0.1524 x 10’ psi 
p = 0.7257 x 1O-4 lb s2 in-’ 

tbWr = 1 in. 

The transverse displacement by Timoshenko is the 
highest in this case followed by HOBTS and 
HOBT4b, as shown in Fig. 13; HOBT4a is again the 
stiffest. In the case of inplane displacements, HOBTS 

and HOBT4b are the highest, followed by Timo- 
shenko and HOBT4a as in Fig. 14. This is due to the 
presence of various higher-order terms in the 
displacement function of a. From Figs 15 and 16, it 
can be observed that all higher-order models are 
marginally lesser than Timoshenko in their predic- 
tions of shear force and bending moment. 

The cross sectional warping clearly brought out by 
higher-order models is presented in Fig. 17. Similarly, 
the nonlinear variation of inplane stress by higher- 
order models is shown in Fig. 18. 

Experiment 4 

The unsymmetric contiguration of O/90/0/90/0/90 
with the properties given by Data 2, is considered in 
this case for time history response evaluation of the 
beam. From Fig. 19, it can be observed that HOBTS 
predicts a transverse displacement response, which is 
higher than those of HOBT4b and Timoshenko 
(which are quite close in this case), while HOBT4a 
computes the stiffest results of all. The inplane 
displacement history, as in Fig. 20, presents a 
different picture. HOBTS computes the highest, 
followed by HOBT4b, HOBT4a and Timoshenko in 
that order. In the case of shear force, HOBT4b and 
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Fig. 20. Inplane displacement history of unsymmetric composite beam. 

Timoshenko are much closer to HOBTS as in Fig. 21, 
while HOBT4a predicts slightly higher peak values 
with lesser period. The bending moment by 
Timoshenko, HOBT4a and HOBT4b closely follow 
the HOBTS moment with HOBT4a again having 
lesser period compared to others, as plotted in Fig. 22. 

The variation of ii and d, are plotted in Figs 23 and 
24, which clearly brings out the nonlinear inplane 
displacement and inplane stress variation due to 
higher-order models compared to the linear predic- 
tions by HOBT4a and Timoshenko. 

5. CONCLUSIONS 

In our study, three refined higher-order, shear 
correction coefficient free models have been analysed 
by employing them for transient dynamic analysis of 
sandwich and composite beams. From the exper- 
iments conducted, it becomes apparent that the very 
stiff performance of HOBT4a renders it almost 
unusable. 

The higher order models (HOBTS and HOBT4b) 
predict responses which are quite high compared to 
Timoshenko, for both symmetric and unsymmetric 

sandwich constructions. The warping of cross section 
and nonlinear inplane distributions is vividly brought 
out by these higher-order models. Another interesting 
feature in the case of sandwiches, is that both HOBTS 
and HOBT4b predict identical results. 

In the case of composites, the order of difference 
between the higher-order and the first-order models 
is less compared to sandwiches. Timoshenko predicts 
slightly higher values in comparison with these 
higher-order models for symmetric composites, 
except for inplane displacements. For the unsymmet- 
ric composites, HOBTS yields higher inplane and 
transverse displacements than those given by the rest. 
For both the symmetric and unsymmetric cases, the 
warping of the cross section and the nonlinear 
inplane stress distribution is brought out well by 
higher order models. 

For sandwiches and symmetric composites, as both 
HOBTS and HOBT4b are identically effective, and 
for unsymmetric composites as HOBTS is better than 
HOBT4b, HOBTS can well be employed as an 
efficient higher-order refined model for transient 
dynamic analysis of sandwich and composite 
constructions of beams. 
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