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Two refined higher order theories, one that neglects and the other that takes into
account the effect of transverse normal deformation, are used to develop two discrete
finite element models for the thermal buckling analysis of composite laminates and
sandwiches. The two models, one with nine degrees of freedom per node and the other
with eleven degrees of freedom, are based on a nine-node Lagrangian isoparametric
element. The geometric stiffness matrices are developed by taking into consideration the
effects of the higher order terms on the initial in-plane and transverse shear stresses. The
accuracy of the present formulations is first evaluated by analyzing sample problems for
which analytical three-dimensional solutions exist in the literature. Numerical results are
presented for the first time for sandwich plates, demonstrating the importance and
accuracy of the higher order theory in comparison to first-order theory. Some new
results are also given for sandwich plates with angle-ply composite face sheets, showing
the effects of various boundary conditions and of variations in geometric and lamina-
tion parameters on critical temperature.

Fiber-reinforced composite laminates due to their high specific strength and

stiffness are increasingly used in weight-sensitive applications such as aircraft and
space vehicles. Most of these vehicles have to operate in hostile thermal environ-

ments; as a result, the structural components of these vehicles are subjected to

thermal loads. In certain cases, the thermal load turns out to be the primary load,

and the thermal stability of composite laminates is one of the factors governing

their design.

Various laminated plate theories, depending upon the through-thickness dis-
placement pattern considered, have been used to determine buckling loads of

( )composite plates. The classical lamination plate theory CLPT , which is based on

Kirchhoff’s hypothesis, overestimates the buckling load when applied to even

moderately thick plates. This is particularly true for fiber-reinforced composite

plates in which transverse shear moduli are small in comparison to the in-plane

Young’s moduli. In such cases, it becomes necessary to take into account shear
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deformation effects. Thus, various improved plate theories such as first-order shear
( ) ( )deformation FSDT and higher order shear deformation HSDT theories have been

(developed to predict the behavior of plates with thickness shear deformation see

w x w x w xexcellent survey articles by Tauchert 1 , Noor and Burton 2 , and Thornton 3
)that include thermal buckling of shear deformable composite plates .

Probably the first analyse s of thermal buckling of shear deformable laminated

w xplates are included in the work of Tauchert 4 . He used FSDT to analyze simply

supported plates of antisymmetric angle-ply construction subjected to a uniform

w xtemperature rise. Yang and Sheih 5 employed the Galerkin method to investigate

w xthermal buckling of initially stressed antisymmetric cross-ply plates. Chen et al. 6

considered both uniform and nonuniform temperature distributions using the finite

w xelement method. Noor and Burton 7 used predictor-corrector procedures for

w xthermal buckling analysis. Prabhu and Dhanaraj 8 considered symmetrically

laminated plates with different boundary conditions and used the finite element
method in the analysis. The FSDT used in these studies predict buckling loads

fairly accurately, provided proper values are selected for composite shear correc-

tion factors that are problem dependent. On the other hand, the higher order

shear deformation theories that are based on the realistic through-the-thickness

distribution of displacement components do not require shear correction coeffi-

cients and, in addition, incorporate the effects of transverse normal deformation.
The first work on thermal buckling of composite laminates using HSDT was

w xthe work of Chang 9 . The HSDT takes into account the thickness normal

deformation effect, but the terms that represent the second-order variation of

in-plane displacements through the thickness are not considered. Chang and Leu

w x10 used a theory that considers the transverse normal deformation and obtained

analytical solutions for antisymmetric laminates using full stress rstrain relations.
The numerical results showed surprising discrepancies, almost independent of the

w xslenderness, when compared with FSDT and Reddy’s 11 third-order theory. The

stress resultants corresponding to the transverse normal stress are not included in

the thermally induced fundamental state of stress, which has lead to large differ-

w xences. Later Rohwer 12 corrected this by using a reduced stress rstrain relation-

w xship. Shu and Sun 13 obtained a classical analytical solution for simply supported
symmetric cross-ply laminates using a higher order formulation that accounts for

the parabolic variation of transverse shear strains and shear stress continuity across

each layer interface. All of the investigators in these studies, based on HSDT,

w xobtained classical analytical solutions except in 9 where the finite element method

was adopted.

Compared with the literature on high-temperature multilayered composite
plates, very little is reported on thermal buckling analyses of sandwich plates with

w xcomposite face sheets. The exception is the work of Noor et al. 14 , who presented

three-dimensional solutions for the buckling of simply supported sandwiches sub-

jected to thermal and mechanical loads. The effect of temperature on the mechani-

w xcal buckling load was investigated by Ko and Jackson 15 using the Rayleigh ] Ritz

minimum energy method with classical sandwich plate theory. Various computa-
tional models used for the analysis of sandwiches were summarized in the recently

w xpublished review article of Noor et al. 16 , which includes thermal buckling. Most
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of the investigations for predicting the response characteristics of sandwich plates

use the classical sandwich plate theory in which the thickness shear deformation of
face sheets and the membrane and bending stiffnesses of core are neglected.

Increasing core stiffness can significantly contribute to the overall membrane and

bending stiffness, while using composite materials in relatively thick face layers

should be followed by incorporating transverse shear effects in the face layers.

These effects can be taken into account by HSDTs. Although several higher order

theories have been proposed for the thermal buckling analysis of composite
laminates, no serious effort has been made thus far to apply these theories to a

conventional sandwich plate that has a central soft core between two stiff face

layers. Here an attempt is made to fill the void.

In the present article, thermal buckling analyses of multilayered composite

plates and sandwiches using two discrete finite element models is presented. The

w xfinite element models are based on two refined higher order theories 17 ] 22 , one
that neglects the effect of transverse normal deformation and one that considers

that effect. Results obtained by these theories are first compared with three-di-

mensional solutions available in the literature, and the effect of the inclusion of

transverse normal deformation on the buckling load is discussed. Additional

numerical results are presented for sandwich plates that show the effects of

variations in the geometric and lamination parameters on their thermal buckling
response under different boundary conditions.

FORMULATION

Displacement Models

Two refined higher order theories, one that neglects the effect of transverse

normal deformation and one that considers this effect, that are considered in this

article are based on the assumption of the displacement fields in the following
( )forms Figure 1 :

( )i. Higher order shear deformation theory HOST9 , 9 dof rnode

( ) ( ) ( ) 2 U ( ) 3 U ( )u x, y, z s u x, y qzu x, y qz u x, y qz u x, y0 y 0 y

( ) ( ) ( ) 2 U ( ) 3 U ( )v x, y, z s v x, y y zu x, y qz v x, y y z u x, y0 x 0 x
( )1

( ) ( )w x, y, z s w x, y0

( )ii. Higher order shear deformation theory HOST11 , 11 dof rnode

( ) ( ) ( ) 2 U ( ) 3 U ( )u x, y, z s u x, y qzu x, y qz u x, y qz u x, y0 y 0 y

( ) ( ) ( ) 2 U ( ) 3 U ( )v x, y, z s v x, y y zu x, y qz v x, y y z u x, y0 x 0 x
( )2

( ) ( ) ( ) 2 U ( )w x, y, z s w x, y qzu x, y qz w x, y0 z 0
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Figure 1. Laminate geometry with positive set of lamina rlaminate reference axes, displacement

components, and fiber orientation.

( )where u, v, and w define the displacements of any generic point x, y, z in the
( )plate space; u , v , and w denote the displacements of a point x, y on the middle0 0 0

plane; and u and u are the rotations of the normal to middle-plane about the x-x y

and y-axes, respectively. The parameters u U, v U, w U, u U, u U, and u are higher0 0 0 x y z

order terms in the Taylor’s series expansion and are defined at midsurface. The
continuum displacement vector at the midplane can thus be defined as

TU U U Uv 4 ( )u s u , v , w , u , u , u , v , u , u for HOST9 30 0 0 x y 0 0 x y

TU U U U Uv 4 ( )u s u , v , w , u , u , u , u , v , w , u , u for HOST11 40 0 0 x y z 0 0 0 x y

It should be noted that the additional degrees of freedom such as u and w U inz 0

HOST11 account for the transverse normal deformation effect while HOST9 does

not.

Stress-Strain Relationship

w xThe stress-strain relations 23 for the Lth lamina in the laminate coordinates
( )x, y,z are written as

s e y a D TI K I KQ Q Q Q 0 0x x x11 12 13 14

s e y a D TQ Q Q Q 0 0y y y12 22 23 24

Q Q Q Q 0 0s e y a D T13 23 33 34z z zí ý í ý ( )s 5
Q Q Q Q 0 0t g y a D T14 24 34 44xy xy xy

0 0 0 0 Q Qt g55 56yz yz

J L J L0 0 0 0 Q Qt g56 66xz xz
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or in short form

( ) ( )s s Q e y e 6t

in which

Tv 4s s s s s t t tx y z xy yz xz

Tv 4e s e e e g g gx y z xy yz xz
( )7

Tv 4e s a a a a 0 0 D Tt x y z xy

are, respectively, the stress, the total strain, and the thermal strain vectors. Q ’si j

are the transformed stiffness coefficients. The transformation of the stresses rstrains
between the lamina and laminate coordinate systems follows the usual stress tensor

transformation rule. D T is the temperature rise. a , a , a , and a are defined asx y z xy

a s a cos2 u q a sin2 u a s a sin2 u q a cos2 ux 1 2 y 1 2

( )8
( )a s a a s 2 a y a sin u cos uz 3 xy 1 2

where a , a , and a are the thermal expansion coefficients in the principal1 2 3

directions of lamina and u is the angle between the lamina and laminate axes. If

the transverse normal stress and strain are neglected, the stress-strain relations for
( )the Lth lamina in the laminate coordinates x, y, z can be expressed as

X X Xs e y a D TI K I KQ Q Q 0 0x x x11 12 13
X X Xs e y a D TQ Q Q 0 0y y y12 22 23
X X X

í ý í ý ( )Q Q Q 0 0t g y a D Ts 913 23 33xy xy xy
X X

0 0 0 Q Qt g44 45yz yzX X
J L J L0 0 0 Q Qt g45 55xz xz

in which Q
X
s are the plane stress-reduced stiffness coefficients. This constitutivei j

relation, which does not take into account the transverse normal strain and
thermal expansion effect in the thickness direction, is used along with HOST9,

( )while the constitutive relation 5 , which takes account of these effects, is used with

HOST11. It will be noted that the formulation given in the rest of the article is
( )based on HOST9 and Eq. 9 .

Strain-Displacement Relationship

( ) w xSubstituting Eq. 1 into the Green’s strain tensor 24 , with e s 0, the generalizedz

strain vector components are obtained as

e s e 0 qz x 0 qz2e U qz3x U qz4e U U qz5x U U qz6e U U U
x x x x x x x x

( )10
e s e 0 qz x 0 qz2e U qz3x U qz4e U U qz5x U U qz6e U U U

y y y y y y y y
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g s e 0 qz x 0 qz2e U qz3x U qz4e U U qz5x U U qz6e U U U
xy xy xy xy xy xy xy xy

g s f 0 q z c 0 qz2f U qz3c U qz4f U U qz5c U U
yz y y y y y y

( )10

( )Cont.

g s f 0 q z c 0 qz2f U qz3c U qz4f U U qz5c U U
xz x x x x x x

Note that the five generalized strain components are expressed in terms of 33
( )strain components denoted by the vector, e Appendix . Each of the components of

e has both linear as well as nonlinear parts that can be expressed in terms of

midplane displacement components.

The potential energy, P , of the plate can be expressed as

1
T Tv 4 ( )P s e y e s dv y u p dv 11H Ht

2 v v

where p is the vector of in-plane mechanical loads.
( ) ( ) ( )Substituting for e from Eq. 10 and s from Eq. 9 in Eq. 11 and performing

an explicit integration through the laminate thickness give the expression

1 1
T T T ( ) ( )P s e s dA y e s dA y u p dA q f Q , a 12H H Ht i j i

2 2A A A

(in which f is a function of Q and a and the new vectors in concise form see thei j i

)Appendix for details are expressed as

T T TT T T T T T T T Tv 4 v 4 v 4 ( )s s N M Q s s N M O e s e x c 13t t t t 0

( )The stress resultants in Eq. 13 are defined as

0 0 0N N Nx y xy 1
U U U NL 2N N N Zx y xy zL q1

w x ( )s s s t dz 14p H x y xyU U U U U U 4zN N N Zx y xy LLs 1
6U U U U U U U U U zN N Nx y xy

0 0 0M M Mx y xy zNL
ZL q 1U U U 3 w x ( )M M M s s s t dz 15zp Hx y xy x y xy

Z 5LLs 1U U U U U U zM M Mx y xy
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0 0Q Qx y
1

0 0S Sx y z
U U NL 2Q Q Z zx y L q 1

w x ( )s t t dz 16p H 3 xz yzU U zS S ZLLs 1x y
4

U U U U z
Q Qx y 5zU U U US Sx y

After integration, these stress resultants are written in matrix form as

( )s s D e y s 17t

where

D D 0M C

T ( )D s 18D D 0C B

0 0 DS

in which D , D , D , and D are the membrane, flexural, membrane-flexuralM B C S

coupling, and shear rigidity matrices, respectively. The elements of these rigidity
( )matrices are given in the appendix. The vector, s , in Eq. 13 represents thet

( )thermal stress resultants see the Appendix .

FINITE ELEMENT FORMULATION

Let the region of the plate be divided into a finite number of quadrilateral

elements. The continuum displacement vector within the element is discretized

such that

NN

( )u s N u 19p i i

is 1

( )where N j , h is the shape function of node i, NN is the number of nodes in ani

element, and u is the generalized displacement vector corresponding to the ithi

node of an element. This relation is expressed in matrix form as

( )u s Nd 20

where N is the element shape function matrix and d is the element nodal

displacement vector. The components of the strain vector, e , can be expressed in
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terms of nodal displacement vector, d, as

1
( )e s B q B d 210 L

2

where B and B are linear and nonlinear strain-displacement matrices. Substitut-0 L

( ) ( )ing for e from Eqs. 21 in 12 and then minimizing potential energy give

n
e e ew x ( )K d qK d y R s 0 22p 0 g

is 1

where n is the number of elements, K e and K e are the linear and geometric0 g

element stiffness matrices, and Re is the element load vector. These matrices are

w xconstructed using the standard procedure 24 as

e T ( )K s B DB dA 23H0 0 0
A

e T ( )K d s B S dA 24Hg L
A

e T T ( )R s B s dA q N p dA 25H H0 t
A A

where S is the stress resultant matrix.

Following the usual procedure for assembling element stiffness matrices, the

equilibrium and stability conditions are expressed as

( )K d s R 260

w x ( )K q l K d d s 0 270 g

where K , K , and R are, respectively, the global stiffness matrix, the global0 g

geometric stiffness matrix, and the global load vectors and d is the nodal displace-

ment vector of the plate.

Thermal Buckling Analysis

Calculating the critical temperature of buckling due to thermal load is a two-stage
( )process. For a specified rise D T in temperature the thermal loads are computed

( ) ( )25 and a linear static analysis 26 is carried out to determine the thermal stress
resultants. These stress resultants are then used to compute the geometric stiffness

( )matrix, which is subsequently used in Eq. 27 , to determine the least eigenvalue, l ,

and the associated mode shape, d d. The critical temperature, T , of the plate iscr

calculated using

( )T s l D T 28cr
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NUMERICAL RESULTS AND DISCUSSION

Computer programs are developed based on the foregoing finite element models to

solve a number of examples on thermal buckling of composite and sandwich plates.

The programs can handle panels subjected to nonuniform temperature rise over

the surface and through the thickness. However, in all the examples solved here,

the temperature rise is assumed to be uniform. A nine-noded Lagrangian element

is used. The selective integration scheme } namely, the 3 = 3 Gauss ] Legendre for
membrane, flexure, and membrane-flexure and 2 = 2 for shear contributions of

energy } is used for plates that have a width-to-thickness ratio greater than 20; in
( )all other cases the full integration scheme 3 = 3 is used. A full plate model of 36

( )6 = 6 mesh elements is used in the analyses. This scheme is arrived at on the

basis of a convergence study in which the critical temperature converges monotoni-

cally from a higher value. The details of the convergence study is not presented for
the sake of brevity. The boundary conditions used in the analyse s are specified in

Table 1. A parallel formulation based on Reissner ] Mindlin first-order shear theory
( )FOST is also developed in order to compare its results with those of higher order

theories. A shear correction factor of 5 r6 is used with this theory.

Three numerical examples are presented here. The accuracy of the present

higher order finite element formulations is evaluated in Examples 1 and 2 for
composite laminates and sandwich panels, respectively. It is observed that except

for the three-dimensional elasticity solutions, no other numerical results are

reported in the literature on thermal buckling of sandwich panels with composite

face sheets. In view of this, parametric studies on sandwiches with angle-ply

composite face sheets are presented in Example 3.

Table 1 Details of boundary conditions for laminated plates and sandwiches

Simply supported Fixed

Boundary Model SS1 SS2 C1 C2

xs 0, a HOST9 v s w s 0 u s w s 0 v s w s 0 u s w s 00 0 0 0 0 0 0 0
U Uu s v s 0 u s u s 0 u s u s 0 u s u s 0x 0 x 0 x y x y

U U U U U Uu s 0 u s 0 v s u s 0 u s u s 0x x 0 x 0 x
U Uu s 0 u s 0y y

HOST11 v s w s 0 u s w s 0 v s w s 0 u s w s 00 0 0 0 0 0 0 0
U Uu s v s 0 u s u s 0 u s u s 0 u s u s 0x 0 x 0 x y x y

U U U U U U U U
w s u s 0 w s u s 0 v s w s 0 u s w s 00 x 0 x 0 0 0 0

U U U Uu s u s 0 u s u s 0x y x y

ys 0, b HOST9 u s w s 0 v s w s 0 u s w s 0 v s w s 00 0 0 0 0 0 0 0
U Uu s u s 0 u s v s 0 u s u s 0 u s u s 0y 0 y 0 x y x y

U U U U U Uu s 0 u s 0 u s u s 0 v s u s 0y y 0 x 0 x
U Uu s 0 u s 0y y

HOST11 u s w s 0 v s w s 0 u s w s 0 v s w s 00 0 0 0 0 0 0 0
U Uu s u s 0 u s v s 0 u s u s 0 u s u s 0y 0 y 0 x y x y

U U U U U U U U
w s u s 0 w s u s 0 u s w s 0 v s w s 00 y 0 y 0 0 0 0

U U U Uu s u s 0 u s u s 0x y x y
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Example 1: Simply supported, square, angle-ply composite plates for which analyti-

w xcal three-dimensional solutions 25 for thermal buckling exist are considered here.
The plates consist of 10 layers of equal thickness arranged antisymmetrically with

respect to the middle plane. It is appropriate to mention here that true bifurcation

type buckling cannot physically occur for antisymmetric laminates due to the

presence of bending-extension coupling. However, the coupling effect is small for

the 10-layered laminate considered here and this particular problem is solved for

the purpose of comparison. The material characteristics of individual layers of the
laminate are

E rE s 15, E s E G rE s G rE s 0.50 G rE s 0.33561 2 3 2 12 2 13 2 23 2

n s n s 0.3, n s 0.49 a r a s 0.015 a r a s a r a s 1.012 13 23 1 0 2 0 3 0

where a is a normalization factor for the coefficients of thermal expansion.0

Thermal buckling stability parameters, l s a T of the plates are determinedT 0 Cr

using the present higher order finite element formulations and first-order theory.

The results are compared with the three-dimensional elasticity solutions in Table 2.
(The simply supported boundary conditions considered are of type SS2 See Ta-

) ( ) ( )ble 1 . Both thin a rh s 100 as well as thick a rh s 5 and 10 plates are

considered with different fiber orientation angles.
The results of the present higher order models and FOST show very good

agreement with the three-dimensional elasticity solution both for thin and thick

laminates. In the case of thin plates, the results obtained with all the models are
( )identical to the elasticity solution; and in thick plates a rhF 10 , the differences

are less than 2% . It should be noted that though the differences in the values of

the present models are negligible, the results obtained with the HOST9 model are
closer to three-dimensional elasticity results. The results indicate that the inclusion

Table 2 Stability parameter for critical temperature, l s a T , of simplyT 0 cr

( )supported antisymmetric angle-ply laminates NL s 10 and a rrrrr b s 1

w xa rh u 3D 20 HOST9 HOST11 FOST

100 0 0.7463E-03 0.7470E-03 0.7471E-03 0.7470E-03

15 0.1115E-02 0.1116E-02 0.1116E-02 0.1116E-02

30 0.1502E-02 0.1502E-02 0.1502E-02 0.1502E-02

45 0.1674E-02 0.1675E-02 0.1675E-02 0.1675E-02

10 0 0.5782E-01 0.5778E-01 0.5817E-01 0.5771E-01

15 0.7904E-01 0.7920E-01 0.7972E-01 0.7941E-01

30 0.1100E-00 0.1108E-00 0.1111E-00 0.1114E-00

45 0.1194E-00 0.1208E-00 0.1211E-00 0.1215E-00

5 0 0.1436E-00 0.1417E-00 0.1441E-00 0.1409E-00

15 0.1753E-00 0.1746E-00 0.1773E-00 0.1747E-00

30 0.2377E-00 0.2421E-00 0.2449E-00 0.2424E-00

45 xxxxxxxxxx 0.2651E-00 0.2667E-00 0.2675E-00
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of higher order degrees of freedom in the thickness direction in HOST11 does not

improve the accuracy of the results.

( )Example 2: Simply supported SS2 structural sandwiches for which three-dimen-

w xsional elasticity solutions 14, 16 for thermal buckling exist are considered in the

present example. The sandwiches are square in planform and made up of cross-ply

composite face sheets with NL s 10 and a honeycomb core. The fiber orientation

and thicknesses of face sheets are such that the entire sandwich is symmetric with
respect to the middle plane. The material characteristics of the face sheets are

E rE s 19 G rE s 0.52 G rE s 0.3381 2 12 2 23 2

n s 0.32 n s n s 0.49 a r a s 0.001, a r a s a r a s 1.012 13 23 1 0 2 0 3 0

and the material characteristics of the core are

E rE f s 3.2 = 0y5 E rE f s 2.9 = 0y5 E rE f s 0.41 2 2 2 3 2

f y 3 f y 2 f y 2G rE s 2.4 = 0 G rE s 7.9 = 0 G rE s 6.6 = 012 2 13 2 23 2

y 5n s 0.99 n s n s 3 = 0 a s a s a s 1.36 a12 13 23 1 2 3 0

where E f refers to E of face sheets. Stability parameters of thermal buckling are2 2

calculated using the present higher order models and first-order model. The results

are presented along with three-dimensional elasticity solutions in Table 3. Slight

reading errors may be involved in the given values of the elasticity solution because

they are taken from published graphs. Two parameters are varied, namely, the

slenderness ratio of the sandwich, a rh, and the thickness ratio of the face sheets,
h rh , where h is the thickness of each of the face sheets.f f

The results of the HOST9 model show good agreement with elasticity solution,

whereas the results of the FOST and HOST11 models do not. The HOST9 model

slightly overpredicts the critical temperature. The errors for sandwiches with a rh
ratios equal to 10 and above vary from 0 to 6% as the thickness ratios of face

( )sheets increase from 0.025 to 0.15. In the case of very thick sandwiches a rh s 5
the maximum error is about 10%. The results of FOST are accurate for sandwiches

( )with very thin face sheets h rh s 0.025 . However, the errors in the FOST resultsf

increase more rapidly as the thickness ratios of the face sheets increase. For

sandwiches with a rh s 5 and h rh s 0.15, the error is about 60% . HOST11f

underestimates the critical temperature with significant margin. In the case of
( )sandwiches with relatively thick core h rh F 0.075 , the errors are about 10 tof

12% for all values of a rh considered. It should be noted that as the depth of the

core decreases, the errors in results decrease. For sandwiches with h rh s 0.15, thef

results are much closer to the elasticity solution when compared to those obtained

using the HOST9 and FOST models.
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Table 3 Stability parameter for critical temperature, l s a T , of symmetricT 0 cr

( )sandwiches with composite cross-ply face sheets a rrrrr b s 1

a3D-Elas

w xh rh a rh 14, 16 HOST9 HOST11 FOSTf

0.025 20.00 0.0929 0.0930 0.0854 0.0928

10.00 0.3220 0.3231 0.2885 0.3211

6.66 0.5900 0.6020 0.5238 0.5952

5.00 0.8512 0.8696 0.7404 0.8556

0.050 20.00 0.0855 0.0860 0.0785 0.0868

10.00 0.2737 0.2764 0.2426 0.2843

6.66 0.4592 0.4727 0.4040 0.4964

5.00 0.6096 0.6330 0.5336 0.6758

0.075 20.00 0.0791 0.0794 0.0725 0.0815

10.00 0.2358 0.2397 0.2100 0.2592

6.66 0.3697 0.3860 0.3308 0.4383

5.00 0.4692 0.4932 0.4189 0.5813

0.100 20.00 0.0726 0.0735 0.0673 0.0768

10.00 0.2072 0.2113 0.1863 0.2402

6.66 0.3123 0.3262 0.2826 0.3993

5.00 0.3820 0.4047 0.3921 0.5224

0.150 20.00 0.0623 0.0639 0.0593 0.0686

10.00 0.1632 0.1732 0.1560 0.2119

6.66 0.2347 0.2556 0.2279 0.3479

5.00 0.2805 0.3087 0.2748 0.4504

a
Results shown in this column are obtained by interpolation of published graphs.

Example 3: Symmetric, square sandwich panels comprised of angle-ply composite

face sheets and a honeycomb central core are considered here for thermal buckling
analysis. Each of the face sheets has 10 layers of antisymmetric lamination

w( ) xu ry u . However, the face sheets are arranged in such a way to make the entire5

sandwich panel symmetric with respect to the middle plane. The material proper-

ties considered are the same as those used in the preceding example.

The HOST9 model which determines critical temperature more accurately and

almost comparable to the three-dimensional elasticity solution, is used here.

Parametric studies are conducted to study the effect of boundary conditions and

variations in geometric and lamination parameters on critical temperature. Four

types of boundary conditions such as SS1, SS2, C1, and C2 given in Table 1 are

considered. The fiber orientation angle, u , is varied from 0 to 90 degrees; and the
( )thickness ratio of face sheets, h rh with total thickness h kept fixed , is variedf

from 0.025 to 0.1. Typical results are shown in Figures 2 to 5.
( )Figures 2 a, b show the variation of the thermal stability parameter, l , withT

( ) (fiber orientation for a thin a rh s 20 sandwich panel under SS1 and C1 movable
)edges boundary conditions, respectively, for different values of thickness ratio of



THERMAL BUCKLING OF COMPOSITE LAMINATES AND SANDWICHES 123

Figure 2. Effect of thickness ratio, h rh, and fiber orientation angle, u , on the thermal stabilityf

( ) ( ) ( )parameter, l s a T , of square sandwich panels a rh s 20 : a SS1, b C1.T 0 cr

( )face sheets. Figures 3 a, b show the variation of l for the same sandwich panelT

( )under SS2 and C2 immovable edges boundary conditions, respectively. It can be

observed that for given values of h rh and u , the critical temperature values off

( )plates with movable edges SS1 and C1 are greater than the corresponding values
( )of plates with immovable edges SS2 and C2 . Note that the pattern of variation of

critical temperature versus u for the two kinds of boundary conditions, movable

and immovable, are drastically different. It is well known that for angle-ply plates,
( )the stiffness increases thereby increasing critical temperature as u increases from

0 to 45 degrees and decreases thereafter as u increases. This is clearly seen in the
( )critical temperature values of plates with immovable edges SS2 and C2 . However,

( )in case of plates with movable edges SS1 and C1 , the variation of critical

temperature with u is completely different from that of plates with immovable

edges even though the stiffness quantities are the same for both the cases. Here,

the critical temperature decreases as u increases from 0 to approximately 20

degrees and thereafter increases as u increases until u s 45 degrees. The reason
for this different nature of variation of l between SS1 and SS2 or C1 and C2T

( 0 0)boundary conditions is the variation of initial stress resultants N , N with u . Inx y

case of plates with immovable edges, the stress resultants remain uniform through-

out the plate. But for plates with movable edges, the stress resultants exhibit a

nonuniform distribution. As u increases from 0 to 20 degrees, the stress resultants
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Figure 3. Effect of thickness ratio, h rh, and fiber orientation angle, u , on the thermal stabilityf

( ) ( ) ( )parameter, l s a T , of square sandwich panels a rh s 20 : a SS2, b C2.T 0 cr

Figure 4. Effect of thickness ratio, h rh, and fiber orientation angle, u , on the thermal stabilityf

( ) ( ) ( )parameter, l s a T , of square sandwich panels a rh s 10 : a SS1, b C1.T 0 cr
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Figure 5. Effect of thickness ratio, h rh, and fiber orientation angle, u , on the thermal stabilityf

( ) ( ) ( )parameter, l s a T , of square sandwich panels a rh s 10 : a SS2, b C2.T 0 cr

increase, and the increase is more pronounced than the increase in stiffness

quantities. Due to this, the critical temperature decreases as u increases from 0 to

20 degrees. Typical cases of distribution of stress resultants due to a unit change in
( )temperature with a s 1 for a plate under SS1 boundary conditions are shown in0

( )Figure 6. Figures 6 a ] c show the distribution of stress resultants along the center

line parallel to the x-axis for u s 0, 20 and 45 degrees, respectively. From these

figures it is understood that the stress resultants increase as u increases from 0 to

20 degrees, reaching a maximum at u s 20 degrees, and subsequently decrease as u
increases. Thus the nature of distribution of the stress resultants explains the cause

for reduction in l for plates with u s 20 degrees fiber orientation under SS1 andT

C1 boundary conditions.
( )Figures 4 and 5 show the variation of l with u for thick a rh s 10 sandwichT

plates under SS1, C1 and SS2, C2 boundary conditions, respectively. It should be

noted that for thin and thick plates the variation in l at around u s 45 degreeT

fiber orientation is sharp for SS1, C1 boundary conditions in comparison to a

relatively smooth change for SS2, C2 boundary conditions. Another important

observation is that for thick and thin panels, the critical temperature decreases as

h rh increases.f
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(Figure 6. Variation of stress resultants at ys b r2 with the x coordinate in a sandwich panel a rh s 20,
) ( ) ( ) ( ) 0 2 3h rh s 0.025, BC: SS1 : a u s 0 8 , b u s 20 8 , and c u s 45 8 for N s N b rE h and N sf x x 2 y

N 0 b2 rE h3.y 2

CONCLUSIONS

Two simple C 0 isoparametric finite element formulations based on higher order

shear deformation theories are presented for the thermal buckling analysis of

composite and sandwich laminates. The accuracy of the present models is evalu-

ated for composite and sandwich laminates by comparison with the available
three-dimensional elasticity solutions. The effects of various boundary conditions
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and geometric and lamination parameters on the critical temperature of sandwich

panels are presented. The general conclusions based on the presented numerical
results are summarized as follows.

v The present higher order theories have shown excellent agreement with the

three-dimensional elasticity solution for both thin and thick composite laminates.

However, in the case of sandwiches, HOST9 predicts more accurate results when

compared to HOST11. Hence, transverse normal strain rdeformation and ther-

mal expansion in the thickness direction can be neglected in thermal buckling
analyses.

v In the case of composite laminates, the results of FOST matches well those of

present higher order models. For sandwiches, FOST overestimates the critical

temperature and the errors are significant when compared to those of HOST9.
v In symmetric sandwich panels with angle-ply composite face sheets subjected to

uniform temperature distribution, the internal thermal stress field is nonuniform

for SS1, C1 boundary conditions and uniform for SS2, C2 boundary conditions.
v The thermal buckling strength of symmetric, square sandwiches consisting of

angle-ply face sheets is maximum for u s 45 degrees fiber orientation. For thin

and thick sandwich panels, an increase in face sheet thickness results in a

decrease in critical temperature.
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APPENDIX

( ) ( )The components of the strain vector, e , in Eqs. 10 and 13 are

TT T Tv 4 ( )e s e x c A.10

where

TU U U U U U U U U U U U U U U U U U0 0 0e s e , e , e , e , e , e , e , e , e , e , e , ev 40 x y xy x y xy x y xy x y xy

TU U U U U U U U U0 0 0x s x , x , x , x , x , x , x , x , xv 4x y xy x y xy x y xy
( )A.2

TU U U U U U U U U U U U0 0 0 0C s f , f , c , c , f , f , c , c , f , f , c , cv 4x y x y x y x y x y x y

( )The components of the stress resultant vector, s , in Eq. 13 are

TT T Tv 4s s N M Q
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where

TU U U U U U U U U U U U U U U U U U0 0 0N s N , N , N , N , N , N , N , N , N , N , N , Nv 4x y xy x y xy x y xy x y xy

TU U U U U U U U U0 0 0M s M , M , M , M , M , M , M , M , Mv 4x y xy x y xy x y xy
( )A.3

TU U U U U U U U U U U U0 0 0 0Q s Q , Q , S , S , Q , Q , S , S , Q , Q , S , Sv 4x y x y x y x y x y x y

( )The components of thermal stress resultant vector, s in Eq. 13 aret

TT T Tv 4s s N M Ot t t t

where

TU U U U U U U U U U U U U U U U U U0 0 0N s N , N , N , N , N , N , N , N , N , N , N , Nv 4t t x t y t xy t x t y t xy t x t y t xy t x t y t xy

TU U U U U U U U U0 0 0M s M , M , M , M , M , M , M , M , Mv 4t t x t y t xy t x t y t xy t x t y t xy
( )A.4

Tv 4O s 0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0t

in which

Q Hi j 1
Q Ha aI K I Ki j 2x xNL NLQ Hi j 3

í ý í ýQ H ( )a aN s D T and M s D T A.5i j 4p py yt tQ Hi j 5

J L J L
Ls 1 Ls 1a aQ Hxy xyi j 6

Q Hi j 7

( )The rigidity matrices in Eq. 18 are

Q H Q H Q H Q Hi j 1 i j 3 i j 5 i j 7

NL Q H Q H Q Hi j 5 i j 7 i j 9
D s pm Q H Q Hi j 9 i j 11Ls 1

Sym Q Hi j 13

( )A.6

Q H Q H Q Hi j 2 i j 4 i j 6

NL Q H Q H Q Hi j 4 i j 6 i j 8
D s pc Q H Q H Q Hi j 6 i j 8 i j 10Ls 1

Q H Q H Q Hi j 8 i j 10 i j 12
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Q H Q H Q Hi j 3 i j 5 i j 7
NL

Q H Q HD s i j 7 i j 9pb

Ls 1 Sym Q Hi j 11

Q H Q H Q H Q H Q H Q Hm l 1 m l 2 m l 3 m l 4 m l 5 m l 6 ( )A.6
Q H Q H Q H Q H Q Hm l 3 m l 4 m l 5 m l 6 m l 7 ( )Cont.

NL Q H Q H Q H Q Hm l 5 m l 6 m l 7 m l 8
D s ps Q H Q H Q Hm l 7 m l 8 m l 9Ls 1

Sym Q H Q Hm l 9 m l 10

Q Hm l 11

where

( i i )z y zL q1 L
i , j s 1, 2, 3 l , m s 4, 5 H si

i


