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A Novel Finite-Element–
Numerical-Integration Model for
Composite Laminates Supported
on Opposite Edges
An attempt is made here to devise a new methodology for an integrated stress analysis of
laminated composite plates wherein both in-plane and transverse stresses are evaluated
simultaneously. The method is based on the governing three-dimensional (3D) partial
differential equations (PDEs) of elasticity. A systematic procedure is developed for a case
when one of the two in-plane dimensions of the laminate is considered infinitely long (y
direction) with no changes in loading and boundary conditions in that direction. The
laminate could then be considered in a two-dimensional (2D) state of plane strain in x-z
plane. It is here that the governing 2D PDEs are transformed into a coupled system of
first-order ordinary differential equations (ODEs) in transverse z direction by introducing
partial discretization in the finite inplane direction x. The mathematical model thus re-
duces to solution of a boundary value problem (BVP) in the transverse z direction in
ODEs. This BVP is then transformed into a set of initial value problems (IVPs) so as to
use the available efficient and effective numerical integrators for them. Through thickness
displacement and stress fields at the finite element discrete nodes are observed to be in
excellent agreement with the elasticity solution. A few new results for cross-ply laminates
under clamped support conditions are also presented for future reference and also to
show the generality of the formulation. �DOI: 10.1115/1.2722770�

Keywords: plane-strain, partial discretization, laminate, boundary value problem, finite
element method, numerical integration method
Introduction

Composite materials possess ideal engineering properties and
herefore these materials are used in many engineering fields. A
hree-dimensional �3D� elasticity solution of laminated composite
eams or plates or shells is extremely complex. Pagano �1–3�,
rinivas and Rao �4�, and Srinivas et al. �5� have given flexure,
ibration, and buckling response of simply-supported rectangular
lates and laminates by analytically solving the governing bound-
ry value problem �BVP� defined by 3D partial differential equa-
ions �PDEs�. However, these solutions lack generality. Their so-
utions have been used, over the last three decades, as benchmark
olutions by researchers involved in developing general numerical
echniques and also by those concerned with the range of appli-
ability of the approximate two-dimensional �2D� plate/shell and
ne-dimensional �1D� beam/arch theories �6–23�. Accurate esti-
ation of interlaminar stresses is a major concern in the design of

aminated composites to avoid delamination. In the available ap-
roaches �24�, the in-plane stresses are first computed in the first
hase of any general laminate analysis. The transverse interlami-
ar stresses are then estimated by integrating the 3D elasticity
quilibrium equations in the second post-processing phase, but
erious computational and analytical problems are associated with
his second post-processing phase involving accuracy and incon-
istency of mathematical model itself.

Taking a cue from the foregoing development, an attempt is
ade here to extend the strategy of transforming the governing

ystem of PDEs to a system of ODEs for elastostatic problems

Contributed by the Applied Mechanics Division of ASME for publication in the
OURNAL OF APPLIED MECHANICS. Manuscript received May 3, 2006; final manuscript

eceived January 3, 2007. Review conducted by Sanjay Govindjee.

114 / Vol. 74, NOVEMBER 2007 Copyright ©

aded 11 Jul 2008 to 203.78.221.45. Redistribution subject to ASME
whose behavior is mathematically formulated as a two-point BVP
governed by a set of linear first-order ordinary differential equa-
tions �ODEs�

d

dz
y�z� = A�z�y�z� + p�z� �1�

in the domain z1�z�z2.
BVP in ODEs, not only describe one-dimensional �1D� elasto-

static problems exactly but also 2D and 3D problems approxi-
mately whose behavior is governed by a system of PDEs. Con-
ceptualizing a finite element �FE� discretization in the lamina
plane, a set of implicit first-order ODEs is obtained. The solution
vector y�z� of which consists of a set of primary dependent vari-
ables �stress components and the corresponding displacements on
the lamina plane� whose number equals the order of the PDE
system times the number of discrete FE mesh nodes. Availability
of efficient, accurate, and, above all, proven robust ODE numeri-
cal integrators for IVPs helps in obtaining the set of primary vari-
ables at all nodal points through the thickness. Ingenuity lies here
in transforming the BVP into a set of initial value problems �IVPs�
�25�. Furthermore, the secondary set of dependent variables over
the entire nodal set is simply computed by substitution of the
values of the primary variables on the right hand side of algebraic
expressions, node by node.

2 Partial Discretization Formulation
A laminate supported on two opposite edges x=0, a, and loaded

transversely by distributed load, which is independent of y is con-
sidered. The dimension of the laminate in the y direction is infi-
nite. The thickness h is composed of a number of isotropic and/or

orthotropic layers bonded together and whose principal material

2007 by ASME Transactions of the ASME
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irections are coincident with the geometrical coordinate axis.
nder such a condition, the laminate is in a 2D state of plane

train in x-z plane �Fig. 1�.
The 2D differential equations of equilibrium are

��x

�x
+

��zx

�z
+ Bx = 0

��xz

�x
+

��z

�z
+ Bz = 0 �2�

here Bx and Bz are the body forces per unit volume in x and z
irections, respectively.

The material constitute relations for each layer can be written as

Fig. 1 Laminate subjected to transverse loading
Fig. 3 Linear elements „conce
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��x

�z

�zx
� = �C11 C12 0

C21 C22 0

0 0 C33
�� �x

�z

�zx
� �3�

The stiffness coefficients Cij are the elastic constants derived by
setting �y =�xy =�yz=0 in the 3D material stiffness matrix and are
given in the Appendix. The general linear strain-displacement re-
lations in 2D can be written as,

�x =
�u

�x
, �z =

�w

�z
, and �zx =

�u

�z
+

�w

�x
�4�

Equations �2�–�4� have eight unknowns, u, w, �x, �z, �zx, �x, �z,
and �zx. It is to be noted that continuity of transverse stresses and
the displacement fields �Fig. 2� are the essential requirements for
the accurate analysis of layered components �1–3�. These condi-
tions are naturally enforced in the present formulation. Through a
simple algebraic manipulation of the above three sets of Eqs.
�2�–�4�, a system of PDEs involving four dependent variables
u ,w ,�zx ,�z are obtained as follows:

�u

�z
=

�zx

C33
−

�w

�x

�w

�z
=

1

C22
	�z − C21

�u

�x



��zx

�z
= 	− C11 + �C12C21

C22
�
 �2u

�x2 −
C12

C22

��z

�x
− Bx

��z

�z
= −

��zx

�x
− Bz �5�

This set of dependent variables is called a “primary set,” which is
naturally defined at a plane z=a constant, and the secondary de-

Fig. 2 Linear finite element with dependent variables
pt of partial discritization…
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endent variable �x can simply be expressed as a function of the
rimary set of variables as follows:

�x = �C11 −
C12C21

C22
� �u

�x
+

C12

C22
�z �6�

t is noted that the primary set of variables �u ,w ,�zx ,�z� is a
unction of independent coordinates x and z. It is proposed to
arry out FE discretization in only the x direction such that the
iscrete dependent vector y�z� will be a only function of indepen-
ent coordinate z, and a system of coupled discrete first-order
DEs connecting all FE nodes results. This new formulation is
escribed below, first with reference to a two-noded linear ele-
ent in the x direction with mixed set of primary variables as

odal degrees of freedom �Fig. 2�.
The approximate variation of displacements field over the ele-
ent domain along the longitudinal axis x can be written as

u 
 û�x,z� = u1�z�N1�x� + u2�z�N2�x�

w 
 ŵ�x,z� = w1�z�N1�x� + w2�z�N2�x� �7�

nd from the basic relations of theory of elasticity it can be shown
hat

�zx 
 �̂zx�x,z� = �zx1�z�N1�x� + �zx2�z�N2�x�

�z 
 �̂z�x,z� = �z1�z�N1�x� + �z2�z�N2�x� �8�

here N1=1− �x / le� and N1=x / le.
Substituting Eqs. �7� and �8� into Eq. �5�, the domain residuals

re obtained as

�û�x,z�
�z

+
�ŵ�x,z�

�x
−

�̂zx�x,z�
C33

= R1D�x�

�ŵ�x,z�
�z

+
C21

C22

�û�x,z�
�x

−
�̂z�x,z�

C22
= R2D�x�

��̂zx�x,z�
�z

+ �C11 −
C12C21

C22
� �2û�x,z�

�x2 +
C12

C22

��̂z�x,z�
�x

+ B̂x�x,z�

= R3D�x�

��̂z�x,z�
�z

+
��̂zx�x,z�

�x
+ B̂z�x,z� = R4D�x� �9�

he strong Bubnov-Galerkin weighted residual statements �26�
an then be written with the help of Eq. �9� as follows:

�
0

le

Ni�x�� �û�x,z�
�z

+
�ŵ�x,z�

�x
−

�̂zx�x,z�
C33

�dx = 0 �10�

�le

Ni�x�� �ŵ�x,z�
�z

+
C21

C22

�û�x,z�
�x

−
�̂z�x,z�

C22
�dx = 0 �11�

Table 1 Boundary conditions „BCs…

roup Edge
BCs on

displacement field BCs on stress field

A x=0 and a w=0 —
x=a /2 u=0 �zx=0
z=h /2 — �z= p�x�; �zx=0

z=−h /2 — �z=0; �zx=0
B x=0 and a w=0 and u=0 —

z=h /2 — �z= p�x�; �zx=0
z=−h /2 — �z=0; �zx=0
0
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�
0

le

Ni�x�	 ��̂zx�x,z�
�z

+ �C11 −
C12C21

C22
� �2û�x,z�

�x2 +
C12

C22

��̂z�x,z�
�x

+ B̂x�x,z�
dx = 0 �12�

�
0

le

Ni�x�� ��̂z�x,z�
�z

+
��̂zx�x,z�

�x
+ B̂z�x,z��dx = 0 �13�

Equation �12�, which contains a second-order derivative of û, is
replaced by its weak form with the help of integration by parts as
follows:

�
0

le

Ni�x�
��̂zx�x,z�

�z
dx −�

0

le dNi�x�
dx

�C11 −
C12C21

C22
� �û�x,z�

�x
dx

+�
0

le

Ni�x�
C12

C22

��̂z�x,z�
�x

dx + 	Ni�x��C11

−
C12C21

C22
� �û�x,z�

�x



0

le

+�
0

le

Ni�x�B̂x�x,z�dx = 0 �14�

On substitution for approximate functions from Eqs. �7� and �8�,
the following eight semi-discrete equations are obtained:

�
A11

e 0 0 0 A15
e 0 0 0

0 A22
e 0 0 0 A26

e 0 0

0 0 A33
e 0 0 0 A37

e 0

0 0 0 A44
e 0 0 0 A48

e

A51
e 0 0 0 A55

e 0 0 0

0 A62
e 0 0 0 A66

e 0 0

0 0 A73
e 0 0 0 A77

e 0

0 0 0 A84
e 0 0 0 A88

e

� d

dz�
u1

e�z�
w1

e�z�
�zx1

e �z�
�z1

e �z�
u2

e�z�
w2

e�z�
�zx2

e �z�
�z2

e �z�

�
= �

0 B12
e B13

e 0 0 B16
e B17

e 0

B21
e 0 0 B24

e B25
e 0 0 B28

e

B31
e 0 0 B34

e B35
e 0 0 B38

e

0 0 B43
e 0 0 0 B47

e 0

0 B52
e B53

e 0 0 B56
e B57

e 0

B61
e 0 0 B64

e B65
e 0 0 B68

e

B71
e 0 0 B74

e B75
e 0 0 B78

e

0 0 B83
e 0 0 0 B87

e 0

��
u1

e�z�
w1

e�z�
�zx1

e �z�
�z1

e �z�
u2

e�z�
w2

e�z�
�zx2

e �z�
�z2

e �z�

�
+�

0

0

p3
e

p4
e

0

0

p7
e

p8
e

�

which can be written in a compact form as
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Ae�x�
d

dz
ye�z� = Be�x,z�ye�z� + pe�x,z� �15�

he elements of matrices Ae�x�, Be�x ,z� and vector pe�x ,z� are
iven in the Appendix. When the total x dimension is discretized
ith n two-noded elements �Fig. 3�, then the semi-discrete system
f equation for the entire domain turns out to be

�
k=1

n

Ae�x�
d

dz
ye�z� = �

k=1

n

Be�x,z�ye�z� + �
k=1

n

pe�x,z�

r

A�x�
d

dz
y�z� = B�x,z�y�z� + p�x,z� �16�

ultiplication of Eq. �16� by �A�x��−1 on both sides results in

d

dz
y�z� = C�x,z�y�z� + f�x,z� �17�

here C�x ,z�= �A�x��−1B�x ,z� and f�x ,z�= �A�x��−1p�x ,z�.
Equation �17� defines the governing equations of a two-point

VP in ODEs in the domain −�h /2��z� �h /2�. y�z� is an
-dimensional �m=number of nodes�4� vector of dependent

ariables, C�x ,z� is an m�m coefficient matrix �which is a func-

Fig. 4 Convergence of „a… maximum t
plane transverse displacement „w̄
0 deg/90 deg/0 deg laminate under cyli
ion of element geometry along x and material properties variation

ournal of Applied Mechanics
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both in the x and z directions�, and f�x ,z� is an m-dimensional
vector of nonhomogeneous �loading� terms. Any m /2 elements of
y�z� are prescribed at the two ends, z=−�h /2� and h /2 as bound-
ary conditions. It is clearly seen that mixed and/or nonhomoge-
neous boundary conditions are easily admitted in this formulation.
The basic approach to the numerical integration of the BVP de-
fined by Eq. �17� is to transform the given BVP into a set of
IVPs—one particular �nonhomogeneous� and m /2 complimentary
�homogeneous�. Clearly, the reason behind this is the availability
of a number of successful and well-tested algorithms for numeri-
cal solution of IVPs in ODEs. The solution of the original BVP
defined by Eq. �17� is obtained by forming a linear combination of
one nonhomogeneous and m /2 homogeneous solutions so as to
satisfy the boundary conditions at z=h /2. This gives rise to a
system of m /2 linear algebraic equations, the solution of which
determines the unknown m /2 components of the vector of initial
values y�z�. Then a final numerical integration of Eq. �17� with
completely known initial vector of dependent variables y�z� pro-
duces the desired results. It is intended here to extend the appli-
cability of this procedure, which is documented by Kant and
Ramesh �25�.

3 Numerical Studies
A two-noded linear element with mixed �displacements/

sverse shear stress „�zx… and „b… mid-
with number of elements for a
ical bending
ran
…

stresses� degrees of freedom is employed in the present numerical

NOVEMBER 2007, Vol. 74 / 1117
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tudy involving both validation and solution of new problems. A
omputer code incorporating the present methodology was devel-
ped in FORTRAN-90. The accuracy of the proposed new formula-
ion for layered composites is established by comparison of the
resent numerical results with that of elasticity solution �1� and
lso with others. In all the examples, the layer elastic coefficients
re those of a unidirectional graphite/epoxy composite

EL = 25 � 106 psi; ET = 106 psi; GLT = 0.5 � 106 psi

GTT = 0.2 � 106 psi; �LT = �TT = 0.25

here subscripts L and T refer to the fiber direction and trans-
erse direction perpendicular to fiber direction.

Table 2 Comparison of normalized transvers
and transverse shear stress „�zx… of two-layer
cylindrical bending

Aspect
ratio Source

�x

�a /2 ,h /2�

4 Partial FEM 0.2325
��3.0037�

Pagano �1�a 0.2397
Enhblom and

Ochoa �9�
0.1864

Lu and Liu �13� 0.2232
10 Partial FEM 0.1952

��1.5633�
Pagano �1�a 0.1983

Lu and Liu �13� 0.2000
20 Partial FEM 0.1890

��1.3570�
Pagano �1�a 0.1916

50 Partial FEM 0.1866
��1.6341�

Pagano �1�a 0.1897

aThe analytical solution given in this paper is programed by t
not available in the original paper are obtained and presented
N/A=results are not available.

Table 3 Comparison of normalized transvers
and transverse shear stress „�zx… of three-lay
under cylindrical bending

Aspect
ratio Source

�x

�a /2 ,h /2�

4 Partial FEM 1.1211
��4.6278�

Pagano �1�a 1.1755
Spilker �8� N/A

Enhblom and
Ochoa �9�

0.6256

10 Partial FEM 0.7216
��2.049�

Pagano �1�a 0.7367
Spilker �8� N/A

Enhblom and
Ochoa �9�

0.6373

20 Partial FEM 0.6439
��2.1280�

Pagano �1�a 0.6579
50 Partial FEM 0.6211

��2.1581�
Pagano �1�a 0.6348

aThe analytical solution given in this paper is programmed by
not available in the original paper are obtained and presented

N/A=results are not available.
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Two support conditions on opposite edges considered here are
tabulated in Table 1. All laminates are subjected to sinusoidal
transverse load on their top surface. The intensity of sinusoidal
loading can be expressed as

p�x� = p0 sin
�x

a
�18�

where p0 represents the peak intensity of load.
The dependent quantities are nondimensionalized in the follow-

ing manner:

isplacement „w̄…, in-plane normal stress „�x…,
„0 deg/90 deg… unsymmetric laminates under

Stresses/displacement

�x

�a /2 ,−h /2�
�zx

�0,max�
w̄

�a /2 ,0�

�1.8142
��3.3355�

0.6983
�2.6157�

4.6826
��0.2705�

�1.8768 0.6805 4.6953
�1.7371 N/A N/A

�1.8750 N/A 4.7773
�1.7403

��1.4162�
0.7343

�1.0319�
2.9503

��0.1185�
�1.7653 0.7268 2.9538
�1.7500 N/A 3.0000
�1.7241

��1.4405�
0.7432

�1.1432�
2.6980

��0.1739�
�1.7493 0.7348 2.7027
�1.7196

��1.4500�
0.7465

�1.2752�
2.6267

��0.2127�
�1.7449 0.7371 2.6323

resent authors and numerical results for various aspect ratios,
e.

isplacement „w̄…, in-plane normal stress „�x…,
d „0 deg/90 deg/0 deg… symmetric laminates

Stresses/displacement

�x

�a /2 ,−h /2�
�zx

�0,max�
w̄

�a /2 ,0�

�1.0782
��4.7105�

0.4149
�4.8522�

2.9134
�0.9074�

�1.1315 0.3957 2.8872
N/A 0.3909 2.8410

�0.6318 0.4434 N/A

�0.7211
��2.0644�

0.4285
�1.0851�

0.9308
��0.0859�

�0.7363 0.4239 0.9316
N/A 0.4529 0.9312

�0.6373 0.4459 N/A

�0.6440
��2.1425�

0.4431
�1.3031�

0.6152
��0.3240�

�0.6581 0.4374 0.6172
�0.6211

��2.1581�
0.4483

�1.5402�
0.5246

��0.4554�
�0.6348 0.4415 0.5270

resent authors and numerical results for various aspect ratios,
e.
e d
ed

he p
her
e d
ere

the p
her
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z̄ =
z

h
; ū =

E2u�0,z�
hp0

; w̄ =
100E2h3w�a/2,0�

p0a4

�x =
h2�x�a/2,0�

p0a2 ; �z =
�z�a/2,z�

p0
; �zx =

h�xz�0,z�
p0a

�19�

n which a bar over a variable defines its nondimensionalized
alue and the percentage error between present and elasticity so-
ution �1� is calculated as

% error =
Present analysis − Elasticity solution

Elasticity solution
� 100 �20�

nd these are presented in parentheses in Table 1.
A convergence study on number of elements along the x direc-

ion and number of steps required for numerical integration in
hickness direction is performed first. The method was found to
ield converged solution for a laminates in-plane strain with
2–16 elements in the x direction and with 16–20 steps in the
hickness, z direction. Convergence plot of midplane transverse
isplacement �w̄� and maximum transverse shear stress ��zx� with
he number of elements in the x direction are shown graphically
or the symmetric �0 deg/90 deg/0 deg� laminates in Fig. 4 for
/h ratio of 10.

Group A. The examples considered in this group are selected to
stablish the accuracy of stress predictions through the thickness
y the present method. A two-layer unsymmetric �0 deg/90 deg�
nd a three-layer symmetric �0 deg/90 deg/0 deg� cross-ply
quare laminates, simply supported on opposite edges in the x
irection are considered for this purpose. Boundary conditions are
pecified in Table 1. The results obtained through present analysis
re compared to the 3D elasticity solution given by Pagano �1�
nd also with available results in the literature �8,9,13� for cylin-
rical bending. Numerical results for a /h ratios of 4, 10, 20, and
0 are given in Tables 2 and 3 for both configurations. The varia-
ion of midplane transverse displacement w̄�a /2 ,0� with different
/h ratios is shown in Fig. 5. Through thickness variation of nor-
alized in-plane normal stress ��x�, inplane displacement �ū�,

ransverse shear stress ��xz� and transverse normal stress ��z� for
/h ratio of 4 are presented in Figs. 6 and 7 for 0 deg/90 deg
nsymmetric laminate and 0 deg/90 deg/0 deg symmetric lami-

Fig. 5 Variation of normalized transve
ratios of 0 deg/90 deg unsymmetric lam
ate, respectively. Moreover, through thickness variation of trans-

ournal of Applied Mechanics
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verse displacement �w̄� is depicted in Fig. 8. Excellent agreement
is seen between the present and the elasticity solution.

Group B. The examples considered under this group are an
extension of group A for clamped end conditions to show the
ability of the present formulation to handle problems with general
boundary conditions and high stress gradients. The lamination
schemes, material properties and geometrical details are kept
same as group A. Boundary conditions are specified in Table 1.
Numerical results for normal in-plane stress ��x� at top and bot-
tom, transverse shear stress ��xz�, and transverse displacement �w̄�
at midplane with different a /h ratios are presented in Table 4 for
both 0 deg/90 deg unsymmetric and 0 deg/90 deg/0 deg sym-
metric laminates. The normal in-plane stress ��x� and transverse
shear stress ��xz� variations through thickness of laminate with
a /h ratio of 4 are shown graphically in Figs. 9 and 10 for
0 deg/90 deg unsymmetric and 0 deg/90 deg/0 deg symmetric
laminates, respectively. These results should serve as benchmark
solutions for future investigation.

4 Concluding Remarks
A novel partial discretization method with mixed degrees of

freedom has been proposed in this paper. It ensures the fundamen-
tal elasticity relationship between stress, strain, and displacement
fields within the elastic continuum and implicitly maintains the
continuity of displacements and transverse stresses at the laminate
interface. It is first of its kind of a mixed partial FE model that is
based on the solution of a two-point BVP through the thickness of
laminates. Good agreement of the results with the elasticity solu-
tion suggests that the method is extremely accurate. Generality of
the method is proven by incorporation of clamped edge conditions
at x=0, a. The most significant advantage of the present formula-
tion lies in the fact that both displacement and transverse inter-
laminar stresses are simultaneously evaluated at the finite element
node with the same degree of accuracy through a numerical inte-
gration process and thus eliminating the post-processing module
that is required in other analytical models for calculation of trans-

displacement „w̄… with respect to a /h
tes under cylindrical bending
rse
ina
verse stresses from in-plane stresses.
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The stiffness coefficients Cij
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C33 = Gxz

were 
= �1−	12	21−	13	31−	23	32−2	12	31	23�, Ei=Young’s
moduli of lamina in the material principle direction �i=1,2 ,3�,
and 	ij =generalized Poisson’s ratios of lamina �i , j=1,2 ,3�.

Elements of matrix Ae�x� are
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able 4 Normalized transverse displacement „w̄…, in-plane no
nder clamped support condition in-plane strain condition

Aspect
ratio Source

0 deg/90 deg unsymmetric lam

�x

�a /2 ,h /2�
�x

�a /2 ,−h /2�
�zx

�0,max�

4 Partial FEM 0.1241 �0.8041 1.4232
10 Partial FEM 0.0909 �0.6697 2.8418
20 Partial FEM 0.0739 �0.5956 2.6678
50 Partial FEM 0.0649 �0.5746 2.3424

Fig. 8 Variation of normalized transverse
0 deg/90 deg unsymmetric and „b… 0 deg/90 d
bending
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al stress „�x…, and transverse shear stress „�zx… of laminates
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isplacement w̄ through thickness of „a…
/0 deg symmetric laminates under cylindrical
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Fig. 9 Variation of normalized „a… in-plane normal stress �x and „b… transverse shear stress �zx
through thickness of 0 deg/90 deg unsymmetric laminate for clamped supported boundary

conditions
Fig. 10 Variation of normalized „a… in-plane normal stress �x and „b… transverse shear stress
�zx through thickness of 0 deg/90 deg/0 deg symmetric laminate for clamped supported

boundary conditions
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