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New theories for symmetric/unsymmetric 
composite and sandwich beams with C 0 finite 

elements 

B. S. Manjunatha & T. Kant* 
Department of Civil Engineering, Indian Institute of Technology, Powai, Bombay-400 076, India 

In this paper, a new set of higher order theories for the analysis of composite 
and sandwich beams by using C 0 finite elements is presented. These theories 
incorporate the more realistic non-linear variation of displacements through 
the beam thickness, thus eliminating the use of shear correction coefficients. 
Discrete Lagrangian four-noded cubic element models having five, six and 
seven degrees of freedom per node are used. The computer program developed 
incorporates the realistic prediction of interlaminar stresses from equilibrium 
equations. By comparing the results obtained with the elasticity solution and 
the classical plate theory, it is shown that the present higher order theories give 
a much better approximation to the behaviour of thick to thin laminated 
composite beams. Numerical results for unsymmetric sandwich beams are also 
presented for future reference. 

1 INTRODUCTION 

Fibre-reinforced composite materials are 
continuing to replace the conventional metals in 
primary and secondary aerospace structural ele- 
ments owing to their high strength-to-weight and 
stiffness-to-weight ratios. Their structural 
response is, however, rendered complex by the 
many planes of weakness, where local failure can 
initiate and grow until structural failure occurs. 
The interface between adjacent layers in a lami- 
nate presents one such plane of weakness where an 
interlaminar delamination can initiate and grow. 
The delamination occurring near the free edges is 
mostly due to the interlaminar stresses present at 
the interface of the beam. In this paper, a set of 
theories is developed which can evaluate accu- 
rately the interlaminar stresses for composite and 
sandwich beams. 

Euler-Bernoulli (see Ref. 1) and Timoshenko 2 
theories have been used in the past for the analysis 
of beams. The former assumes that the transverse 
normals to the reference middle plane remain so 
and undergo no changes in length during defor- 
mation. Thus, transverse shear strain becomes 
zero, transverse normal rotation becomes a first 
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derivative of transverse displacement w and trans- 
verse displacement field becomes C 1 continuous. 
Compatible and incompatible complicated higher 
order C 1 elements have been derived in the past. 1 
But this theory leads to serious discrepancies for 
thick beams, as shear effects cannot be neglected. 
Further, it is established beyond doubt that this 
theory is computationally inefficient from the 
point of view of simple C 0 finite element formu- 
lations? 

Timoshenko 2 has improved the Euler-Ber- 
noulli theory by incorporating the effect of trans- 
verse shear strain into the governing equations. 
The resulting transverse shear strain was constant 
through the thickness and thus a shear correction 
coefficient which was somewhat arbitrary, was 
used to correct the strain energy of shear defor- 
mation. Many investigators have improved the 
Timoshenko t h e o r y  4-6 by giving new expressions 
for shear correction coefficient for different cross- 
sections of the beam. But even after refining the 
values of shear correction coefficients, the discre- 
pancies between the results of this theory and the 
elasticity theory is seen to be large for built-up 
beams. 

Cowper 7 has defined the displacement w and 
the rotation 0 which appear in Timoshenko's 
beam equation in two different ways. The tradi- 
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tional definition takes w as the displacement of 
the centroid of the cross-section and 0 as the rota- 
tion of the normal to the cross-section through the 
centroid. Alternatively, w may be defined as the 
mean value of the transverse displacement of all 
points of the cross-section and 0 as the first 
moment of the normal displacement of points of 
the cross-section divided by the moment of iner- 
tia. He has demonstrated by examples that far 
superior accuracy may be achieved by adopting 
this latter definition in preference to the former. 

Stephen and Levinson s have given a second- 
order beam theory which is similar to the Timo- 
shenko theory, but this theory contains two 
coefficients: one of which depends on cross- 
sectional warping and the other on the transverse 
direct stresses. Levinson 9-t~ has given a new 
fourth-order beam theory which requires two 
boundary conditions at each end of the beam. 
Here, transverse shear deformation and cross- 
sectional warping are taken into account and thus 
no shear correction coefficients are used. But this 
theory is too poor to adequately describe the two- 
dimensional displacement pattern. 

Rychter ~2 has used Levinson's theory, and 
improved it by embedding in it the two-dimen- 
sional linear theory of elasticity. He has proved 
that the corresponding relative mean square error 
is proportional to the square of the beam depth 
and the shear contribution to the error is propor- 
tional to the cube of beam depth. Bickford ~3 used 
Hamilton's principle to derive a consistent higher 
order theory of the elastodynamics of a beam 
based upon the kinematic and stress assumptions 
previously used by Levinson. 9-~j 

Pagano ~4 has given an elasticity solution for 
composite laminates in cylindrical bending. The 
elasticity solution given by Schile ~5 is more 
general compared to Gerstner. ~6 In the former, the 
solution is valid for a beam with variable Young's 
modulus (E) and Poisson's ratio (v) in the trans- 
verse direction and in addition, is not restrictive in 
terms of assumed interfacial boundary conditions. 
Using the theory of Gerstner, ~6 Sierakowski and 
Ebcioglu ~7 have obtained a solution for the case 
of a multilayered cantilever sandwich beam under 
end load with symmetric distribution of material 
properties. They have used piecewise constant 
transverse properties. Goran ~8 has given an ana- 
lytical solution for simple fiber reinforced curved 
laminated beams. 

A review of the literature indicates that no 
work on finite element analysis of composite 
beams is available. ~9'2° Thus, recognising the need 

for a more refined theoretical model, in the 
present paper, a set of simple but efficient and 
accurate higher order theories is developed which 
includes all the secondary effects such as warping 
of the transverse cross-section, the transverse 
shear stress, shear strain and their variation across 
the beam thickness. Our models use four-noded 
cubic C 0 finite elements in the numerical study. 

2 THEORY AND FORMULATIONS 

The development of the present higher order 
shear deformation theories begins with the 
assumption of the displacement fields in the 
following form (Fig. 1 ), 

HOT1 

u(x, z)= u,,(x) + zO,(x) 

w(x, Z) = wo(x)+z~(x)+zew*(x) (1) 

HOT2 

u(x, z)= u,,(x)+ zO,(x) + z2u~,(x) 

w(x,z)= w,,(x) + zO:(x)+ z-w,,(x) (2) 

HOT3 

-3 ~*/  X ) .(x, z)= uo(x)+ zOxCx)+ ~ ~ 

w(x,z) = w,,(x)+ zO=(x)+ z-w,,(x) (3) 

dwo 

P F 
i 7  ' ? 

I.  ; N  / ' 

I X ÷ ,A,X "7 MIODLE PLANE 

Fig. 1. Laminate geometry with positwe set of lamina/ 
laminate reference axes and displacement components. 



Composite and sandwich beams 63 

HOT4 

u(x, z)= Uo(X) + ZOx(X) + z3O*x(X) 

w(x, Z) = Wo(X ) + zOz(x ) + Z2W*(X) (4) 

Here u and w are the displacements at any point 
(x, z) in the beam domain in the x and z directions, 
respectively. The parameters Uo, Wo, Ox, Oz, 
u], w~' and 0* are the appropriate one-dimen- 
sional terms in the Taylor series and are defined 
along the x axis at z = 0. In the case of pure bend- 
ing of a beam with no axial deformation of the 
reference x axis, the parameters u0 and u~' will 
vanish. In these expressions u0, w0 and Ox are the 
axial x-displacement of a point on the reference x 
axis, the transverse z-displacement of a point on 
the reference x axis and the rotation of the trans- 
verse normal to the reference x axis in the x - z  
plane, respectively. While these parameters are 
physical quantities, the parameters 0~, u*, w~0 and 
0x* are the higher order terms in the Taylor series 
expansion and their physical interpretation is 
difficult indeed, except that they represent higher 
order transverse cross-sectional deformation 
modes. 

Here, derivations for the model HOT4 given in 
eqn (4) only are presented. Other theoretical 
models become special cases of HOT4. The varia- 
tions in the case of HOT1, 2 and 3 are given 
concisely in the Appendix. Under these assump- 
tions, the strain displacement relations of three- 
dimensional elasticity 21 for a point at a distance z 
from the middle surface of the laminate are given 
by 

2 * ex = e.xo + Z~r+ Z exo + Z3~¢ * 

Cz = g'zO + Zl¢* 

Y,z = O+ zr= +z20 * (5) 

where 

( e~o, r x, * * r.*) ExO, Kx, gzO, 

_ (a.oOOx O¢x ) 
O x 0-7' O--x ' ig---x " Oz , 2 w* 

(¢,k=,¢,)=[Ox+i)Wo ~ _ _  Ox,2Uo +OOzi~x, 30~ . ...t__~x ) Ow*l 

cal lamina L can be written as follows: 

OZ ~" 12 C22 Ez 

rx 0 Yx 

(7) 

Here ax, az, rxz are the stress and ex, ez, Yxz are the 
strain components referred to the lamina/lami- 
nate coordinates (x-z). The coefficients, Cij are 
the reduced elastic constants. The following rela- 
tions hold between these and the physical engi- 
neering elastic constants: 

E1 u21E1 
C l l -  ,C12 = 

1 - v12v21 1 - vlzV21 ' 

E2 
C =  = , (8) 

1 -/.)12/)21 

The total potential energy, I-I, of the beam is given 
by, 

I - I = l l z f  e ' a d x d Z - f z f  (U) 'pdxdz (9) 

where 

a=(ax, Oz, xz)' 

u=(u,w)' p=(px, pz)' (lO) 

The superscript t denotes the transpose of a 
vector/matrix. The expressions for strain compo- 
nents given by eqn (5) are substituted in eqn (9). 
The following relation is obtained when an expli- 
cit integration is carried out through the beam 
thickness. 

1 f 
J l ex°N x ez°Nz + ~cx Mx + l--I=-~ (exoNx + * *+ r x M  ~ 

- J[(d)'po dx ( 1 1 ) 

(6) 

Each lamina in the laminate is orthotropic and 
is assumed to be in a two-dimensional state of 
plane stress. The stress-strain relation for a typi- 

Or, this can be written in a compact form as 

'f f, 1-/= ~ ~'Odx- (d)'po d x  (12) 
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in which 

a =  * Nx,Nz, Mx, * Mx,Mz,  O,Q*,S) '  

e = ( q 0 ,  * ~ ,  * * exO, ezo, rx, rz,  ~, ~,~*, r ~z )' 

d= ( Uo, Wo, Ox, Oz,u(~;, W*o, 0")' 
• * * t Po = (Pxo, Pzo, mxo, mzo, Pxo, Pzo, mxo) (13) 

The stress resultants in eqn (11) are defined as 
follows: 

i, 1 ions o: 

x ( 1 , z ,  ze, z3) d z  

= a z 
L = 1 d h  L 

r~z 

(14) 
After integration, these relations are written in a 
matrix form which define the stress 
resultant-strain relations of the laminate and is 
given by 

o r  

dr=D~ 

where 

N=(Nx ,  N*Nz) ' 

Q=(Qx,  Q*x,S)' 
* * t  

~(, = ( l(. x , TC~ x ~ z ) 

M=(Mx,  M*,Mz)'  
* t 

e o = ( exO, exo, ezo) 

NL 

Y, 
L = I  

Cllh~ C l l h 3  C l 2 h l  

Calh5 C12h3 

symm C22h I 

(16) 

(17) 

(18) 

I symm 

h i 

Gh3 

Ghs 

 h2] 
Gh4 

Gh 3 

i= 1,2,...,5 

(19) 

(20) 

The coefficients of the D c matrix can be obtained 
by replacing ha, h3, h 5 by h2, h4, h6, respectively, 
in the DM matrix. Similarly, the coefficients of D8 
matrix can be obtained by replacing h ~, h> h5 by 
h3, hs, h7, respectively, in the DM matrix. 

The transverse shear stress rxz and transverse 
normal stress o z cannot be accurately given by eqn 
(7) as the continuity condition at the interface of 
any two layers is not satisfied for laminates. The 
three- or two-dimensional analysis becomes very 
complex due to thickness variation of constitutive 
laws and continuity requirements across the inter- 
face. For this reason, the interlaminar shear and 
normal stress at any layer L at z is obtained by 
integrating the two equilibrium equations of elas- 
ticity of each layer over the lamina thickness and 
summing over layers 1 to L as shown below. 

The equations of equilibrium representing the 
pointwise equilibrium can be written as 

rid=0, i , j = x , z  (21) 

The interlaminar shear stress can be found by 
substituting the lamina stresses in eqn (21) and 
integrating through the thickness of the laminate. 
The following equation results after integration: 

L [h~_,OO x 
Z. I z=hL+,= -- Z r*z 1 ~ dz+ Ca (22) 

i= Oh, 

The variation of o z is determined in terms of 
inplane stress after eliminating the interlaminar 
shear stress from the second equilibrium equation 
of elasticity given by eqn (21). A second-order 
differential equation results which can be written 
as follows: 

020. O2G 
3Z 2 -- 3X 2 (23) 

After integrating eqn (23) twice with respect to 
the thickness of the beam, the following equation 
for o z is obtained: 

Z = h L +  l 

i=1 Oh, 

a2G 
de/dz+ zC  2 + C~ 

0X 2 ] 

(24) 

Thus, interlaminar stresses can be obtained by 
using stress equilibrium equations. Inplane 
stresses and strains can be obtained by using 
constitutive relations. In this manner stresses in 
the laminate can be evaluated. But in the case of 
interlaminar shear stress, eqn (22), it is seen that 
the values obtained through the beam thickness 
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may not, in general, satisfy beam boundary condi- where 
tions at z = + hi2 ,  as only one constant of integra- 
tion is present. 

In the case of interlaminar normal stress this 
problem does not arise, as here two constants of 
integration obtained by integrating twice, can be 
determined by substituting two boundary condi- 
tions at z-- --- h/2.  Equation (22) is substituted in 
the second equilibrium equation to get the conti- 0N~ 
nuity of o z across the thickness. Equation (24) is = 
solved as a boundary value problem instead of an 0x 
initial value problem as in eqn (22). This requires 
the use of a cubic element, as third derivatives of 
displacements can be calculated. Thus, four- 
noded cubic elements are used in this numerical 
study. 

3 FINITE ELEMENT FORMULATION 

In the standard finite element technique, the total 
solution domain is subdivided into non-overlap- 
ping N E  subdomains (elements), such that 

NE 

I-I (a) = E t ~ e ( d )  (25) 
e = l  

where [-I and Fi e are the total potential energies of 
the system and the element, respectively. The 
potential energy for an element e can be 
expressed in terms of internal strain energy U e 
and the external work done W e , such that 

[--[e(d)= V e -  W e (26) 

in which d is the vector of unknown displacement 
variable at a point on the mid-surface in the 
problem and it is defined in eqn (13). In C 0 finite 
element theory, the continuum displacement 
vector within the element is discretised such that 

NN 

d = ~ N~d~ (27) 
i=1  

where N N  is the number of nodes in an element, 
Ni is the interpolating function associated with 
node i and d~ is the generalised displacement 
vector corresponding to the ith node of an ele- 
ment. 

Knowing the generalised displacement vector, 
d, at a general point x within the element, the 
generalised strain at any point, given by eqn (6), 
can be expressed in the matrix form as follows: ~ 

NN 

~= ~, B~ d~ (28) 
i=1  

65 

e=(ex,,, * * * #,#*,rxff (29) g ~  , CzO, K x, K x ,  K z , 

The Bi matrix has a dimension of 9 x 7 in which 
the non-zero elements are 

B t . l = B e . 5 = B 4 , 3 = B s . 7 = B 7 . 2 = B s . 6 = B g , 4  

B3, 4 = B7. 3 = g i ,  B t ,  6 = Bg. 5 = 2 N i, Bs,  7 = 3 N i (30) 

Upon evaluating the D and Bi matrices as given 
by eqns (15) and (30), respectively, the element 
stiffness matrix is computed by using the following 
standard relation: t 

f 
+ l  

K~i= B~DB/IJId~ (31) 
- 1  

The computation of element stiffness matrix K e is 
economised by explicit multiplication of B i, D and 
Bj matrices instead of carrying out the full matrix 
multiplication of the triple product. In addition, 
due to symmetry of the stiffness matrix, only the 
blocks Ki/lying on one side of the main diagonal 
are formed. The integral is evaluated by a selec- 
tive integration technique with four- and three- 
point Gauss quadrature rules for membrane 
flexure and shear parts, respectively, as follows: 

g 

K~= E Wa B~DBjlJ I (32) 
c t = l  

where W a is the weighting coefficient, g is the 
number of numerical quadrature points and I JI is 
the Jacobian conversion. 

The consistent load vector pg due to uniformly 
distributed transverse load q can be written as 

pi = N~/p01J] d~ (33) 
- 1  

The integral of eqn (33) is evaluated numerically 
using the four-point Gauss quadrature rule. The 
result is 

g 

pi = Z W,~N~(O,q,O, q h / 2 , 0 , q h Z / 4 , 0 ) l J I  (34) 
a = l  

In the consistent load vector, sinusoidal transverse 
load can be obtained by using the following sub- 
stitution in eqn (34). 
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q qo m(7) 
where 1 is the beam dimension, x is the Gauss 
point coordinate and m is the usual harmonic 
number. 

4 NUMERICAL RESULTS AND 
DISCUSSION 

A set of computer programs incorporating the 
present higher order theories is developed for the 
analysis of symmetric and unsymmetric laminated 
composite and sandwich beams. A four-noded 
Lagrangian cubic element with varying degrees of 
freedom per node is employed. All the computa- 
tions are carried out on a CYBER 180/840 com- 
puter in single precision with a word length of 16 
significant digits. Validity of these theories is esta- 
blished by comparing the results with available 
elasticity and classical plate theory (CPT) solu- 
tions. 14 The following properties which simulate a 
high modulus graphite/epoxy composite have 
been used. 

E L = 25 x 10 6 ET = 1 x 10 6 

GLT= 0"50 × 10 6 VLT=0"25 

where L signifies the direction parallel to the 
fibres, T is the transverse direction and vL r is the 
Poisson's ratio measuring strain in the transverse 
direction under uniaxial normal stress in the L 
direction. In all the problems that follow only 
sinusoidal loading is considered. The displace- 
ment, inplane and interlaminar stresses are pre- 
sented here in the non-dimensional form by using 
the following multipliers: 

o:,(l/2,z) o:(l/2,z) 

r~(O,z) 
qo 

t= 
ETu(O,z) lOOE.rh3w(l/2,0) 

, # =  (36) 
hqo qol 4 

Example 1 - -  A simply supported orthotropic 
beam with fibres orientated in the x-direction is 
considered for the comparison of displacement 
and stresses. The variation of displacement, 
inplane stresses and interlaminar shear stress for 

different values of l/h ratios are shown in Figs 
2-5. These plots show that the values obtained by 
models HOT3 and HOT4 are close to elasticity 
solution compared to HOT1 and HOT2. The 
CPT underestimates the values and gives very 
poor estimates for relatively low values of l/h. 

Example 2 -  A simply supported bidirectional 
laminate with the T and L directions aligned 
paralled to the x-axis in the top and bottom layers, 
respectively, is considered. The layers are of equal 
thickness. The variation of displacement with l/h 
ratios and the variation of o~, rx~ and o. through 
laminate thickness for l/h= 4 are shown in Figs 
6-9. These plots show that the values obtained by 

2 . 0 0  - -  

1.50 
;o 

1 . 0 0  

0.50 

0.00 

Fig. 2. 

" " " ELASTICITY 

- - -  C P T  
* HOT1 
" H O T 2  
x HOT3 ~ ~ HOT4 

m I i , | ~ 1 ' t  r [ , ' ,  r i l , , , , i T I , " I - -  I 
0 1 0  2 0  3 0  4 0  5 0  

L / H  RATIO 

V a r i a t i o n  o f  d e f l e c t i o n  w .  w i t h  I/h r a t i o .  

0.50 I 

z 
z 0.25 .v. 

/ 

L/H=4 

Fv, r, I, (, , I O,P~ 
-15 - 1 0  - 5  

/ 

, I i r 1 i i i i 1 i i i s" ] 
5 10 15 

I N P L A N E  STRESS 

Fig. 3. 

-0.50 
Variation of inplane stress through the thickness. 
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0.50 

z 0.00 | i ,  i i i ~ i i , i i i  i i ,  i rp ,-1 
-~- 0.~0 0.40 0.80 1.20 1.601 2.00 

'- t / / .  
-o.25 

Fig. 4. Variation of interlaminar shear stress through the 
thickness. 

tn 
(n 
Lu 
z v 

(D 

0.50 1 

0.25 L / H = I O  

- 7 0  - 5 0  - 3 0  -1~r-1 10 30 50 70 

INPLANE STRESS 

4.50 

4.00 

~3.50 

m~3.00 
2.50 

2.00 

Fig.  6 .  

0 
, l l l l = f l = l i , , , l W W = = l l l l l l  

1 0  2 0  3 0  4 0  5 0  

L/H 
Variation of deflection w 0 with l/h ratio. 

(/') 
01 
LIJ 
Z 
v 

0.50 

0.25 L / H = 4  

I I I I i I i I c I I v . ~ - ' v  l - I  t J I i t I l j l . - ~ ' r  i i I 
-3o -2o -lO 3o 

INPLANE STRESS ~ ~ "  

X ~ ~ 1 0 . 5 0  

Fig. 7. Variation of inplane stress through the thickness. 

m"g - 0 . 5 0  - -  

Fig. 5. Variation of inplane stress through the thickness. 

model HOT4 are close to the elasticity solution 
compared to other models. 

Example  3 -  A simply supported symmetric 
three-ply orthotropic beam with the L direction 
coinciding with the x in the outer layers while T is 
parallel to x in the central layer is considered with 
layers having equal thickness. The results of dis- 
placement, Ox, r~,z and a z are shown in Figs 10-18. 
These plots show that the values obtained by 
models HOT3 and HOT4 are close to the elasti- 
city solution compared to other models and the 

CPT. But the difference in result is more signifi- 
cant for ax, rxz and inplane displacement for thick 
beams ( l / h=4) .  In Figs 13 and 14, the distribu- 
tion of inplane stress and interlaminar shear stress 
through the thickness, respectively, for l / h  = 10 
and in Figs 17 and 18 the variation of inplane 
displacement for l / h - - 6  and 10, respectively, are 
shown. The same trend of results as obtained for 
thick beam ( l /h  = 4) is obtained here too. But the 
discrepancy with the elasticity results is not so 
significant. 

Example  4 -- A simply supported unsymmetric 
sandwich beam is considered next for comparison 
of displacement, inplane and interlaminar 
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-0.50 

( / )  
O3 
LIJ 
Z 

" i -  

0.50 

0.25 

0.00 

-0.25 

Fig. I0.  

L/H=4 

/ 

Variation of interlaminar shear stress through the 
thickness. 

Fig. 9. 

0.50 - 

O3 
O3 
ILl 
Z 
~C 
0 
-r" 
F -  

L/H=4 

I 

0.25 

/ 

0"000.t i~rl I I u I/L u I 
0 0.50 / /  1.00 
el G"~'/" 

-0.25 ~ y  6"/ 

-0.50 

Variation of interlaminar normal stress through the 
thickness. 

stresses. The  following material properties 22 are 
used: 

Stiff layers: 

E 1 =0-1308 x 108 , 

G = 0.6 x 10  6, 

E2 = 0-106 x 10 7, 

v = 0.28 

h c o , e  _ 7"0, hcore 
hstiffb hstifft 

= 3"5,(hs~ffo/hc0re/hstnf,) 

2.50 

2.00 ;o 
1.50 

1.00 

0.50 

0.00 
0 

i• 

Fig. 8. 

i i ; i I i i , i I I , i i I i i i i I I i I F -  l 

10 20 30  40 50 
L/H RA~0 

Variation of deflection w, with l/h ratio. 

03 
( / )  
LU 
Z 
v 

- l-  
I.-- 

Fig. 1 I. 

0.50 

L/H=4 

I 
I 

0 . 0 0  i i I i i i i i i i i i i l i i p  i i 

0. b0 0.50 1.00 50 • ~ 2.00 
"fxz I 

• , t  

-0.25 .= f )  / 
f 

-0.50 

Variation of interlaminar shear stress through the 
thickness. 

Core layers: 

E l = E 2 = 0 ,  G =  0.1772 x105, v = 0 ,  

The  results of transverse displacement,  inplane 
stress and interlamimar shear stress for different 
l / h  ratios are presented in Table 1. The  variations 
of inplane displacement,  rxz and  o z through the 
beam thickness are shown in Figs 19-21 for l / h  
= 10. These  results show large differences in the 
values of displacement and stresses for H O T 4  
and H O T 3  compared  with other  models  and 
Timoshenko 's  theory for thick laminates ( l / h  << . 
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F 1 
-20  

Fig. 12. 

o~ 0.50 1 
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1 I i [ I I v . l ~ V l  I W I I J I I I I J 

- 1 0  10 20 

INPLANE .STRESS 

Variation of inplane stress through the thickness. 

o l  
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5( o_ 
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k- 

Fig. 14. 

0.50 

0.25 

0.00 
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-0.50 -~ 

I I I l l l l l i l i l l i l l i l l l :  

1 . 0  2 . 0  3 . 0  4 . 0  

"Fxz 

I 
. t  

1_ 

Variation of interlaminar shear stress through the 
thickness. 

0.50 

Oq 

z 0.25 
3 (  

r ,  ~ v i , ,  w i iw ,~ .~ .~  
-80 -60 -40 - 2 0  

-0 .50  

S 
/J" L/H= 1 / i k  0 

I J V l l l V l t l l l l l l l  
20 40 60 80 

INPLANE STRESS 

Fig. 13. Variation of inplane stress through the thickness. 

10). For relatively thin laminates (l/h >I 50) almost 
the same results are obtained for all the models. 

5 CONCLUSIONS 

A new set of higher order theories for computer 
analyses of composite and sandwich beams by 
using C O finite elements is presented. These 
theories do not require the usual shear correction 
coefficients which are generally associated with 
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the Timoshenko theory. By comparing results 
obtained with the elasticity solution and the CPT, 
it is shown that the present higher order theories 
give a much better approximation to the behav- 
iour of composite laminates. This is especially 
true in the case of relatively thick laminates where 
the effects of transverse components of stresses 
and strains cannot be neglected. While only sim- 
ply supported sinusoidally loaded beams are 
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considered here for comparison with elasticity 
solution, these theories are general and thus can 
be used to tackle any type of loading and bound- 
ary conditions. The aim here was to establish the 
credibility of the formulations to compute, espe- 
cially, the interlaminar shear and normal stresses. 
For this reason, this paper is limited to problems 
for which elasticity solutions were available. The 
numerical estimates of the interlaminar normal 
stress which is of paramount importance in the 
delamination studies of laminates are not avail- 

Table l .  Variation of Displacement and Stresses for 
Unsymmetric Sandwich Beams for Different Values of l/h 

ratios 

Models l/h ~ O, f',': 

HOT1 10 2'26121 127'70 3'712 
HOT2 10 2'31953 126"30 3'706 
HOT3 10 4"17540 143'10 3"647 
HOT4 10 4'45053 141"10 3'631 
TIMO 10 2'23956 95-55 4"836 

HOT 1 25 1"79060 798"00 9"279 
HOT2 25 1.79971 796'70 9"277 
HOT3 25 2"10171 813-7[) 9"253 
HOT4 25 2'14799 811'80 9"246 
TIMO 25 1"67689 597'20 12"090 

HOT1 50 1.72322 3 192"00 18'56 
HOT2 50 1-72549 3 191"00 18'56 
HOT3 50 1"80117 3208"00 18'55 
HOT4 50 1.81282 3206"00 18'54 
TIMO 50 1"59651 2389'00 24-18 

HOT1 100 1"70637 12770"00 37"12 
HOT2 100 1.70693 12770"00 37.12 
HOT3 100 1.72587 12780"00 37.11 
HOT4 100 1.72878 12 780'00 37'11 
TIMO 100 1.57642 9 555"00 48"36 

HOT 1 200 1'70216 51 080"00 74'23 
HOT2 200 1"70230 51 070"00 74"23 
HOT3 200 1'70703 51 090-00 74"23 
HOT4 200 1-70776 51 090-00 74-23 
TIMO 200 1-57139 38 220"00 96.72 

able to-date. The use of cubic elements seems to 
have given fairly accurate estimates of these 
stresses as third derivatives of displacements can 
be calculated by using this element. 
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In the symmetric case, the results of HOT 1 and 
HOT3 follow closely to the results of HOT2 and 
HOT4, respectively, with the model HOT3 solu- 
tion being close to elasticity solutions. This is due 
to the inplane displacements of the middle surface 
becoming negligibly small because of the sym- 
metry of material properties and loading. Thus, 
model HOT3 is recommended for symmetric 
composite and sandwich beams. 

In the unsymmetric case, the results obtained 
by HOT4 match well with the elasticity solution. 

Fig. 21. 

- 0 . 5 0  :a~ 

Variation of interlaminar normal stress through 
the thickness. 

But for the sandwich plate, the results show a 
large variation for thick plate (a/h<~lO) com- 
pared to Timoshenko's theory. This is due to the 
simplifying assumptions made in the latter theory. 
However, the values are almost equal to the latter 
theory for thin plate (a/h>>, 50). Thus, this model 
is recommended for unsymmetric composite and 
sandwich beams. 

The displacement model HOT4 is the most 
general one. It contains two degrees of freedom 
for the axial deformation and another two degrees 
of freedom for the flexural deformation modes of 
the transverse normal beam cross-section in the 
definition of the axial displacement component 
u(x,z). Out of these four degrees of freedom, 
HOT 1 has only two degrees of freedom, one each 
for axial and flexural modes of deformation, 
HOT2 has three degrees of freedom, two for axial 
and one for flexural modes of deformation and 
HOT3 contains three degrees of freedom, one for 
axial and two for flexural modes of deformation. 
Thus, it is seen that HOT1 to HOT3 are subsets 
of HOT4. 
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APPENDIX 

HOT 1 

NL 

E 
L=I 

Cllhl C12hl Cllh2 Cl2h 

C22hl C12h2 C22h2 

symm. Cl lh  3 C12h 3 

C22h3 

(A2) 

T h e  D,  matr ix  is same as that  for  m o d e l  H O T 4 .  
T h e  non-ze ro  e lements  of  the B~ (7 x 5) matr ix  

can  be wri t ten  as follows: 

aN, 
BJ't =B3"3=Bs'2=B6"5=B7'4- OX 

B2, 4 = Bs, 3 = N i 

B4, 5 = 2 N i (A3) 

HOT 2 

d = (u0, Wo, Ox, 0_, u* o, w*,)' (A4) 

T h e  m e m b r a n e  f lexure and  coupl ing  matr ix  can  
be wri t ten as follows: 

,\'L 

E 
l.-I 

Cl lh l  Cl2hl Cjlh3 Cllh2 

C22hl Ci2h3 Ci2h2 

symm.  Cl lh  5 C11h4 

Cllh3 

Ci2h2 

Cz2he 

Cjzh4 

Cl:h~ 

C:2h3 

(A5) 

T h e  D,  matr ix  is the same as that  for  the m o d e l  
H O T 4 .  

T h e  Bi matr ix  has a d imens ion  of  8 x 6 in which 
the non -ze ro  e lements  are 

aN, 
Bl,1 =B3,5 =B4,3 =B6.2 =B7.6 =B8,4 - 0 x  

B2,4 = B6,3 = Ni 

B5, 6 = Bs, 5 = 2 N i (A6) 

HOT 3 

d = ( u o ,  wo, Ox, Oz, w~) t (A1) d = ( u 0 ,  w o, 0~, 0~, w,*, 0")' (A7) 
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The membrane flexure and coupling matrix can 
be written as follows: 

NL 

E 
L=I 

D 

Cllhl 

symm. 

C12hl Cllh2 C12h2 

C22hl C12h2 C22h2 

Cllh3 C12h3 

C22h3 

Cllh4 

C12h4 
Cllh5 

C12h5 

Cllh7 

(A8) 

The Ds matrix is the same as that for model 
HOT4.  

The non-zero elements of B i (8 × 6) can be 
written as follows: 

0N~ 
Bl'l =B3"3 = B5'6 = B6'2--B7'5 = B 8 ' 4 -  i )x 

B2,  4 = B6,  3 = N i 

B4,  5 = 2 N  i 

BT, 6 - -  3 N i (A9) 


