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Abstract-Impact responses of composite laminates are investigated with C” finite elements. A nim- 
node isoparametric quadrilateral element based on a higher-order theory and the von Kirman large 
deflection assumptions is developed. An experimentally established contact law which accounts for 
the permanent indentation is incorporated into the finite element program to evaluate the impact 
force. In the time integration, the explicit central difference technique is used in conjunction with the 
special mass matrix diagonalixation scheme. Numerical results, including the contact force historics. 
deflections and strains in the plate, are presented. 

1. INTRODUCTION 

In many engineering applications, laminated fibre-reinforced composite structures are 
subjected to central impact loading of a smaI1 cylindrically shaped blunt-ended projectile. 
An understanding of the transient behaviour of composite laminates under this type of 
loading is therefore essential. Most of the impact problems have been formulated using the 
small deflection theory [l] which is adquate if the impact load is small. Shivakumar et al. 
[Z] have developed a stress analysis method to include the effects of geometric non-linearity 
under quasi-static conditions. The linear [3,4] and non-linear [S-9] transient analysis of 
composite plates has not received much attention as evidenced by the few publications. 

A generalization of the von Kannin [lo] non-linear plate theory for isotropic plates to 
include the effects of transverse shear and rotary inertia in the theory of orthotropic plates is 
due to Medwadowski [ 11 J and that for anisotropic plates is due to Ebcioglu [123. Recently, 
Reddy et al. [13-161 and the present authors [17-20) emphasized the credibility of high- 
order shear deformable theories for dynamics of anisotropic laminates. In this paper, 
dynamic large deflection response of laminated composite plates impacted by a hard object 
is investigated using a refined theory with Co element. In order to calculate the contact 
force, an experimentally established contact law which accounts for the permanent inden- 
tation is employed. 

2. NON-LINEAR THEORY OF ANISOTROPIC LAMINATES 

Consider a composite laminate consisting of thin homogeneous orthotropic layers, 
oriented arbitrarily and having a total thickness h. Let the x-y plane coincide with the 
middle plane of the laminate with the z-axis oriented in the thickness direction. In the 
present theory, the displacement components of a generic point in the laminate are assumed 
to be of the form [7,13]. 

u(x, y. 21 c) = u&, y, r) + z&(x, y, r) + z3e:(x, y, t) 

u(x, Y, z, t) = q&T Y, a + zqx, Y, 0 + z3qx, A 0 

w(x, Y, z, 0 = WC&, y, t) (1) 

where t denotes time; u,,, uo, and w. are mid-plane displacements of a generic point having 
displacements U, u, and w in the x. y, and z directions respectively; 0, and 6, are rotations of 
the transverse normal cross-sections in the xz and yz planes, respectively; 6: and 0: are the 
corresponding higher-order terms in the Taylor’s series expansion. A Lagrangian approach 
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is adopted and the stress and strain descriptions used are those due to Piola-Kirchhoff, and 
Green, respectively. For geometric non-linearity alone (large elastic displacements and 
rotations but subject to small strain assumptions) considered here, the stress-strain rela- 
tionship is in terms of the total values. Both isotropic and anisotropic situations can be 
accommodated. By invoking the von KBrmhn large deflection assumptions, we have the 
following Green-Lagrange strain-displacement relations: 

au av aw aw 
Y w=ay+z+yg;i;; 

au aw 
Yyz = z + ay 

au aw 
Yzx =z+z 

To develop the finite element equations of motion of a composite 
mass, we consider a system consisting of the plate and the impactor. 

(2) 

plate impacted by a 
We assume that the 

equilibrium configurations of the system from time 0 to time t have been obtained. Under 
the assumptions of small strain and conservative loading, the virtual equation for the 
system at time t + At is written in a Lagrangian coordinate system as follows: 

s 
6dr Mii dA + 

I 
6k~dA+6w,m,ti,+FGa=O @a) 

A0 A0 

where; A, is the undeformed plate area; dT are the generalized displacements uO, u,,, wO, 8,, 
8,. a:, 6:; M is the laminate mass matrix; E are the laminate mid-plane strains [18-20); 5 
are the laminate mid-plane stress-resultants [18-201; 6 denotes variation; m,, w, and Gii, are 
the mass, displacement and acceleration of the impactor, respectively; F is the contact force 
between the plate and the impactor; and a is the indentation given by 

a = ws(t + At) - wO(x,,, y,,t + At) (3b) 

in which w. is the plate deflection at the impact point (x0, yo). It should be noted that the 
quantities d, 2, ii, w,, F and a in equation (3) are presented at time t + At. 

The laminate constitutive relations are obtained as, 

or symbolically, 

6 = D(I, f EL) = DE 

(4) 

(5) 

In equations (4) and (5), N,, (M,, Mr) and (Qi, Q:) are the in-plane stress resultants, stress 
moments, and transverse shear forces, respectively. The coefficients D,,,,,, Dcri, Db,, and D,,, 
are the respective in-plane, bending in-plane (coupling), bending, and transverse shear 
stiffnesses, and Z. and 4 are the generalized linear and non-linear strains, respectively [7]. 

3. Co FINITE ELEMENT FORMULATION 

The finite element used here is a nine-node isoparametric quadrilateral element. The 
laminate displacement field in the element can be expressed in terms of the nodal variables 
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as 

where NN is .the number of nodes in an element, Ni(S, v) contains the interpolation 
functions associated with node i in terms of the normalized coordinates 4 and q, d,(t) is the 
generalized displacement vector corresponding to ith node of an element. The generalized 
Green strain vector I given by equation (5) in terms of nodal displacements a, displacement 
gradients A,, Cartesian derivatives of shape function matrix N and their variations & are 
written in the form, 

I=(Bo+iBL)a (W 

&=(B,+B,)6a (W 

where B,, is the strain matrix giving the linear strains, BL, which is linearly dependent upon 
a, gives the non-linear strain. Consequently the non-linear strains are quadratically depend- 
ent upon the nodal displacements a, where 

a = Cd:, d:, . . . , df,,lT. 

Substituting equations (6) and (7) into (3a) and considering 
equation (3a) can be partitioned into two sets of equations 

and 
m,*, + F = 0 (8) 

Mii + K,a + H(a)a = F (9) 

where M is the mass matrix, K, is the linear elastic stiffness matrix, F is the contact force 
vector, and H(a) is the generalized non-linear stiffness matrix which is given by 

(7c) 

6a and 6w, to be arbitrary, 

H(a) = 
f 

B&, dA + 
A0 f 

BzbdA. w3 
4 

In equation (lo), 5‘ are the stresses induced by the non-linear part of the strain. It should be 
noted that the contact force vector F must be calculated before the plate motion can be 
analysed using equation (9). 

In an initially stressed flat plate, equation (9) should be rewritten as [9], 

IMP f (K, + &)a + H(a)a = F 

in which K, is the so-called initial stress stiffness matrix. 

(11) 

4. SPECIAL MASS MATRIX DIAGONALIZATION SCHEME 

The inertia force vector requires the evaluation of the mass matrix M. This consistent 
mass matrix is not diagonal and it must therefore be diagonalized in some way if it is to be 
useful in the explicit marching scheme. For the quadratic isoparametric elements used here, 
several alternatives were investigated by Hinton et al. [21]. The most efficient scheme found 
to date can be summarized as follows: 

(i) Only the diagonal coefficients of the consistent mass matrix are computed. 

where 

M= 
s 

N’fiNdA 
A 

11 0 

11 
11 

12 

12 

13 

0 13 

UW 

VW 
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in which I,, i, and I3 are normal inertia, rotary inertia and higher-order inertia terms, 
respectively. These are given by 

(i, z2, P)p‘dz WC) 

and pL is the material density of the Lth layer. 
(ii) The total mass of the element is computed, 

h4, = 
I 

p d(vo1). (13) 
rol 

(iii) The diagonal coefficients Mii associated with translation (but not rotation) degrees of 
freedom, are summed such that 

SUM = C Mii (14) 

(iv) All the diagonal coefficients of the consistent mass matrix are scaled in the following 
manner. 

Mi = Mii&. (15) 

5. INDENTATION LAW 

When a composite laminate is impacted by a mass, contact force results. This contact 
force must be calculated before the plate motion can be analysed using equations (9) or (11). 
The evaluation of the contact force depends on a contact law which relates contact force 
with indentation. Recently, Yang and Sun [22] have proposed a power law based on static 
indentation tests using steel balls as indentors. This contact law accounts for permanent 
indentation after unloading cycles. The modified version which was obtained by Tan and 
Sun [23] is used in the present study. 

In ref. [23], a 20-plied (0”/45”/0”/ - 45°/00)21 graphite/epoxy laminate with a thickness of 
0.269 cm and two spherical steel indentors with diameters of 1.27 and 1.905 cm were used in 
the indentation test. 

The contact law is given as follows: 

loading: F= KG?.’ OcaIa, (16) 

P 

unloading: F = F, 

reloading: F = F, 

(17) 

(18) 

In the above equations, a,,, is the maximum indentation during loading, F, is the maximum 
contact force at the beginning of unloading, a0 denotes the permanent indentation in a 
loading-unloading cycle and is given by 

a0 = I fita, - aP) if a, > ap 

0 if a, c aP 

in which constants /I and aP were found to be 0.094 and 1.667 x lo-’ cm, respectively. For 
the indentor of 1.27 cm diameter, the contact coefficient K and power index of the 
unloading law were found to be 1.413 x lo6 N/cm’.’ and 2.5, respectively. 

The contact law given by equations (16)~(18) is incorporated into (8) and (11) to solve for 
the impact response. 

6. SOLUTION ALGORITHM 

It is well known that a considerable computational effort is needed in non-linear transient 
analysis of structures. In the present work, the very popular and easily implemented, explicit 
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central difference scheme is used which is discussed elsewhere [7,24f. During each time 
step, relatively little computational egort is required, since no stiffness and mass matrices of 
the complete element assemblage need to be formed, the solution can essentially be carried 
out on the element level and relatively little high-speed storage is required. Using this 
scheme, systems of very large order can be solved effectively. Unfortunately the method is 
conditionally stable and very small time steps are often needed. Therefore the com- 
putational advantages of the central difference scheme are counterbalanced by the very 
small size of time step necessary when some stiff and/or small elements are present. 

In the present investigation, after carrying out the extensive numerical computations [7], 
the empirical relation given by Tsui and Tong [25-j is rn~i~~. The following empirical 
relation is suggested to estimate the critical time step length for the transient response of 
anisotropic composite laminates. That is, 

PU - vZ) 
1 

112 

At s At,, 5: Ax 
E,R(2 + (1 - v)(n*/‘l2)(1 + 1.5(6x/@“)) (20) 

in which R = El/&, Ax is the smallest distance between adjacent nodes in any quadri- 
lateral element used. E, and E, are the Young’s modulii, where subscript 1 refers to the 
direction of fibres and 2 refers to the transverse direction. 

In the numerical evaluation for the stiffness and mass matrices, and the force vector, the 
so-called selective-reduced integration is employed. A 3 x 3 Gaussian rule is used to 
compute the inertia terms and in-plane, coupling between inplane and bending, bending 
deformations while a reduced 2 x 2 rule is used to evaluate the terms associated with 
transverse shear deformation. It should be noted that the contact force vector has to be 
computed before the next iteration is carried out. 

6. RESULTS AND DISCUSSION 

In order to demonstrate the versatility of the refined theory and Co finite element 
developed, several examples drawn from the literature are evaluated and discussed. Com- 
puter programs have been developed for the higher order shear-deformation theory 
(HOST) with five degrees of freedom (wO, OX, 8,, @, 0:) and seven degrees of freedom 
(ue+ uO, we, 6,, 8,, 8:, 8:) for linear (HOSTS) and non-linear (NLHOST?) analyses, respect- 
ively. In addition to the HOST, programs were developed for first order sheardefo~ation 
theory (FOST) with three degrees of freedom (we, OX, 8,) and five degrees of freedom 
fue, vgt wO, 6,. 0,) for linear (FOST3) and non-linear (NLFOSTS) analyses, respectively. All 
computations were carried out in single precision on CDC CYBER 18O/g4O computer at 
the Indian Institute of Technology, Bombay, India. 

Firstly, an example, which was solved by Akay [26] using a four-node isoparametric 
quadrilateral mixed finite elements with a 2 x 2 mesh in a quadrant of an isotropic square 
plate and a time increment of At = 0.005 s is considered here. In the present study, only one 
element in a quadrant is used. The boundary conditions are assumed to be simply 
supported and the plate is subjected to a uniform pulse load of magnitude 4. A thin plate 
with the following parameters [263 is considered: 

n = 243.8 cm, k = 0,635 cm, \r = 0.25 

E = 7.031 x 10f kg/cmf, p = 2.547 x 10-s kgs2/cm4 

4(x, y, t) = 4.882 x IV4 kg&m’, 0 s t < 60. 

The same plate with the same material properties was analysed also by Bayles er al. [27] 
who developed a finite difference scheme for dynamic von KBrman equations, and employ- 
ed an 8 x g mesh and a time increment of A? = 0.0005 s. A trigonometric solution of the 
same problem is due to Yamaki [28). 

The vibration of eentre transverse deflection with respect to time for different load 
magnitudes q, Sq and lOq, is shown in Fig. l(a). The variation of maximum (peak) centre 
d&e&ion and bending moment with respect to different load magnitudes is shown in 
Fig l(b). The results obtained by using NLFOSTS, HOST3 and HOSTS are also presented 
in Fig Ifa) and (b) for comparison purposes. The effect of load magnitude on non-linear 
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(a) W 

2.0 t 
- NLMOST 7 

0 0 0 NLFOST 5 
---- AKAY= 

- NLHOST 7 
00 oNLFOST5 

---- AKAY= . . . . . . . . . . AKAy= 

lime(s) Deflection, wg (cm),and bending moment 

Fig. 1. Non-linear transient response of istropic square plate under suddenly applied uniformly 
distributed pulse loading (a = b = 243.8 cm, h = 0.635 cm, q = 4.882 x 10m4 kg/cm*, At = 0.1 
x 10ms s, quarter plate with one element). (a) Variation of transverse deflection with time. 

(b) Variation of maximum centre deflection and bending moment with different load magnitudes. 

--- IAIear 
- Nonlinear 

Time (p rl 

Fig. 2. Comparison of contact forces using the linear and non-linear plate theories. 

response is clearly seen in these plates. It is observed that the nine-noded quadrilateral 
isopa~et~c element is capable of rendering good accuracy with relatively coarse mesh. 
The decrease in magnitude of the peak deflection and moment as predicted by the non- 
linear theory are of interest. The effect of the non-linearity (von K&rmBn type) is to decrease 
the amplitude and period of the centre deflection. and the stress-resultants. 

Next, the parametric effects of time step, mesh size, aspect ratio, side-to-thickness ratio, 
lamination scheme and material anisotropy on dynamic response of the laminated com- 
posites have been studied [73. In view of this finding, the 8 x 8 mesh is used to model the 
whole plate in the following analysis. The laminated composite plate considered is a 20- 
plied [O”/45”/O”/ - 45”/0” J2$ laminate with dimension 15.24 x 10.16 x 0.269 cm. The plate 
is assumed to be impacted at the centre by a steel impactor with a contacting spherical cap 
of diameter 1.27 cm. The boundary conditions are simply supported and immovable in the 
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Fig. 3. Motions of the plate and the impactor using the linear plate theory. 

Fig. 4. Motions of the plate and the impactor using the non-linear plate theory. 
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300 600 so0 1200 
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planes of the plates along all the edges. The elastic properties of a graphite/epoxy lamina are 
assumed to be, 

E, = 120 GPa,- E2 = 7.9 GPa 

v12 = 0.3, G,, = G23 = GIa = 5.5 GPa 

P = 1.58 x 1O-5 Ns2/cm*. 

The motion of the impactor is along the positive z-direction. The laminate is impacted by an 
impactor of mass 8.537 x lo-’ Ns2/cm with an initial impact velocity of 30 m/s. Figure 2 
presents the comparison of the contact force histories using the small deflection theory and 
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Fig. 5. Comparison of the extreme strain sXr using linear and non-linear plate theories. 

the Iarge deflection theory. The time increments chosen are 0.25 ps for the latter and OS JS 
for the former. It is seen that there does not exist significant differences between the contact 
forces in the first contact duration. However, there are four contacts according to the large 
deflection theory. It is also of interest to note that the maximum value of the contact force in 
the second contact for the small deflection theory is larger than any of the secondary 
contacts for the large deflection theory. 

Figures 3 and 4 show the relative motions of the plate and the impactor for both the 
theories. A reduction of the peak deflection is noted. The histories of the strains E, at the 
Gaussian point (0.2147,0.1431 cm) on the surface which is opposite to the impact surface 
are presented in Fig. 5. It should be noted that the m~mum strains do not occur at the 
same time as do the maximum deflections. Also there exists insignifi~nt difference among 
these extreme strains during the first contact. This can be explained by the fact that the 
deflection during this period is very small and the effect of geometrical non-linearity is 
negligible. 

From Fig 5, we also note that the bending strain according to the large deflection theory 
is smaller than that of the linear theory. However, the total strain {bending plus membrane 
strain) is larger than that in the linear case. It should be noted that the opposite conclusion 
is obtained for the strains at the opposite surface. 

7. CONCLUSfON 

A refined shear fIexible finite element including the effect of geometric non-linearity is 
employed in the impact analysis of laminated composite plates. Comparisons of the contact 
force histories, deflections and strains in the plate using both the small deflection theory and 
the large-deflection theory are presented. The numerical results clearly show that the large 
deflection theory predicts smaller deflections. The advantage in the use of a higher-order 
theory presented here over the Mindlin theory hitherto used is not quite evident for the 
isotropic plates. But such an usage is very effective in the analysis of nonhomogeneous, 
anisotropic, composite-sandwich structures, and relatively thicker plates as the mathemat- 
ical model on which this theory based is far superior to the Reissner/Mindlin theory. 
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