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Abstract-A Co finite element formulation for flexure-membrane coupling behavior of symmetric and 
asymmetric laminated cylindrical shells based on a higher-order displacement model is presented. This 
theory incorporates a realistic nonlinear variation of displacements through the shell thickness, and 
eliminates the use of shear correction coefficient/s. The discrete element chosen is a nine-noded 
quadrilateral with nine degrees of freedom per node. 

The solutions are obtained through two formulations: (1) the geometrically thin shell formulation, based 
on the assumption that the ratio of thickness to radius of the shell is very much less than unity, and (2) the 
geometrically thick shell formulation, in which (h/R)* 4 1. In these formulations, the in-plane stresses are 
obtained via constitutive relations. Reliable estimates of interlaminar stresses from equilibrium equations 
are obtained. A finite difference scheme maintaining the continuity of interlaminar stresses across the shell 
thickness is developed and used. The results obtained are compared with available elasticity, closed-form 
and other finite element solutions. 

INTRODUCTION 

Multilayered fibre reinforced composite shells of rev- 
olution have found increasing applications in aero- 
space industries, as they offer high strength-to-weight 
and stiffness-to-weight ratios. The increased use of 
these materials has been the moving force for much 
research activity in recent years. One subject of such 
studies, failure due to delamination, is of considerable 
importance. This involves separation of individual 
laminae, especially at the free edges, caused by low 
strength along the ply interfaces and high local 
interlaminar stresses. This results in structural and 
functional failure as a result of the destruction of 
the load-transferring mechanism. The initiation and 
growth of this failure is related to the interlaminar 
stresses acting through the shell thickness. Further, 
the in-plane lamina stresses are necessary to ensure 
that the strength requirements of the lamina are 
fulfilled. Thus a theory which can predict all these 
stresses accurately becomes necessary for under- 
standing the failure mechanism of fiber reinforced 
composite shells. 

The finite element method is most convenient for 
finding a solution for general laminated composite 
shells which have complex geometries, arbitrary 
loadings and boundary conditions. 

In a shell theory, a three-dimensional system is 
reduced to a two-dimensional one by incorporating 
simplifying assumptions. In the classical Love’s thin 
shell theory, based on Kirchhoffs hypothesis [l], the 
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laminae are assumed to be in a state of plane stress 
and the effects of transverse shear and normal 
strains in the thickness direction are not considered. 
Klosner and Levine [2] have investigated different 
shell theories and have compared them with the 
three-dimensional elasticity solution for an isotropic 
infinite circular cylindrical shell subjected to period- 
ically spaced band loads. Ambartsumyan [3] appears 
to have been the first to observe the coupling between 
stretching and bending inherent in laminated 
anisotropic shells. 

It has been observed in the literature that many of 
the theories for analysing the laminated shell have 
been based on classical laminate theory, incorporat- 
ing the Love-Kirchhoff hypothesis. These theories 
have been reviewed in [4-61. Dong and Taylor [7] 
have extended Donnell’s shallow shell theory and 
formulated a theory for a thin laminated anisotropic 
shell. A first approximation theory by Widera and 
Chung [8] has been derived for asymmetric defor- 
mations of a nonhomogeneous anisotropic cylindri- 
cal shell, using the asymptotic integration of the 
elasticity equations. Reuter [9] has used Donnell’s 
shallow shell theory, in obtaining closed-form 
solutions for unbalanced symmetric and balanced 
asymmetric angle-ply cylindrical shells. Balaraman 
et al. [lo] have obtained closed-form solutions for 
an asymmetrically laminated cylindrical shell of 
orthotropic as well as anisotropic layers under uni- 
form pressure. A closed-form solution for an arbi- 
trary laminated anisotropic cylindrical shell based 
on the classical laminate theory has been given 
by Chaudhuri [l 11. Most of the above analyses are 
based on the assumption that the transverse shear 
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strains are negligible, and thus hold good for thin 
shells. 

Dong and Tso [ 121 were perhaps the first to present 
a first-order shear deformation theory, which in- 
cluded the effect of transverse shear deformation 
through the shell thickness; they then constructed 
a laminated orthotropic shell theory. This theory 
can be assumed as an extension of Love’s first 
approximation theory for homogeneous isotropic 
shell. However, only a cylindrical shell in which the 
orthotropic axes of each layer coincide with the 
reference axes of the shell can be analysed with this 
theory. 

A bending theory known as the moderately thick 
plate/shell theory or constant shear angle theory and 
based on the hypothesis of constant shear angle 
through its thickness, is an extension of Mindlin’s 
shear deformation theory [13] for a homogeneous 
isotropic plate. Series solutions of these equations 
for cross-ply cylindrical and doubly curved shells 
have been presented by Reddy [14]. However, Reddy 
concluded that these series solutions do not give 
good results for an antisymmetric angle-ply shallow 
shell. 

A layerwise constant shear angle assumption has 
been used to solve plate/shell problems by Seide and 
Chaudhuri [ 151, with quadratic triangular element 
formulation. Kamal [ 161 has obtained exact solutions 
for an arbitrarily laminated, anisotropic, axisymmet- 
rical cylindrical shell of finite length and subjected to 
internal pressure, based on the constant transverse 
shear deformation theory. In another refined theory, 
Whitney and Sun [17] derived a set of governing 
equations and boundary conditions which include 
both transverse shear deformation and transverse 
normal strain in a laminated anisotropic cylindrical 
shell. 

Second-order shear deformation effects have been 
included by Kant [18], who has developed governing 
equilibrium equations for a thick shell which are 
applicable to an orthotropic material with planes of 
symmetry which coincide with the orthogonal refer- 
ence plane. Bhimaraddi [19] has presented a refined 
theory for a cylindrical shell, assuming a displace- 
ment function which results in parabolic variation of 
transverse shear strains and also satisfies shear-free 
surface boundary conditions on the bounding sur- 
faces. Bhimaraddi achieved this by introducing a 
function t(z) in the displacement expression, whose 
first derivative vanishes at the extreme fibers. In 
another paper, Bhimaraddi and Stevens [20] have 
given other possible forms of <(x)-functions. Murty 
and Reddy [21] have proposed a higher-order theory 
for the analysis of a composite cylindrical shell. The 
formulation allows for arbitrary variation of in-plane 
displacement, and the formulation results in C’ 
continuity. 

In the theories which use a constant shear angle 
or a piecewise constant shear angle through the 
thickness, shear correction coefficient/s whose 

accurate prediction for anisotropic laminated shell 
is cumbersome and problem dependent is/are used. 
The effect of true cross-sectional warping, which 
must be considered in the case of sandwich shells, 
is not taken into account in these theories. Thus 
a refined theory which considers a realistic parabolic 
variation of transverse shear stresses through the 
thickness is essential. A Co finite element formulation 
based on a higher-order displacement model, incor- 
porating the effect of transverse shear deformation 
and suitable for the analysis of a thin as well as a 
moderately thick laminated anisotropic cylindrical 
shell, is developed here. In this paper, emphasis is 
placed on the evaluation of interlaminar stresses by 
finite difference methods, satisfying the equilibrium 
equations and thus maintaining the continuity 
of stresses at the interface of layers through the 
thickness. 

THEORY AND FORMULATION 

To approximate the three-dimensional elasticity 
problem as a two-dimensional problem, the displace- 
ment components U,(0, x, z), i = 1,3, at any point in 
the shell are expanded in a Taylor series in terms of 
the thickness coordinate. The elasticity sotution indi- 
cates that the transverse shear stress varies paraboli- 
cally through the shell thickness. This requires the use 
of a displacement field in which the in-plane displace- 
ments are expanded as a cubic function of the 
thickness coordinate. The displacement field which 
satisfies the above criteria may be assumed in the 
form 

u.=u.+ze.+z*u:+z3e+ 1 I I ,, i=l,2 

u3 = u3, (14 

where the displacements Ui(i = 1,3) are at any point 
at a distance z from the reference surface. The 
mid-surface of the shell is treated as this reference 
surface, and 

65=(U1,U2,u3,e,,e2,ur,u:,e:,e:) (lb) 

are the reference surface displacements and rotations. 
Equation (la) contains minimum numbers of 
terms to include the effect of transverse shear defor- 
mation with warping of the transverse normal cross- 
section. 

By substituting these relations into the strain- 
displacement equations [ 1, 181 and specializing these 
for a cylindrical shell, the following relations are 
obtained. 

Geometrically thin shell: 

ej=(ei+zxi+z2e~+z3~~),(i=1,2) 

y;* = (612 + zxn + z%f* + z3x;“2) 

Yb=(~j+zllri+Z2~i*),(i=1,2), (2a) 
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where 

Geometrically thick shell: 

t; = (c, + zx, + I%: + z3x:)/(l + z/R) 

6; = (c* + zx2 + z*c: + 2%:) 

y;* = (cl2 + zx12 + z*c:, + z3x:2)/(1 + z/R) 

+ (62, + zx*, + Z26& + z3x:,) 

Yis = (92 + 42 + z2H) 

rf3 = (~,+z~,+z*~:+z’~:)/(~ +zlR), (W 

where 

kl,~t,X,1X:I= 
au, : u3 au : de , ae: 

Rae R’Rae’Rae’Rae 1 
J 

[ 

au2 au: ae2 ae: 
k29~:,X*rX:l= K’ax’ax’ax 1 
k 129 C:2? Xl29 x12 - 

*]_ au, au: 30, w 
[ Rae' Rae'Rae'Rae 1 
[ au, au: ae, ae: 

k2,,G,x2L,x:ll= dx’-jy’Yjy’T&- 1 
hh4:rc~= &-?+e,,zu:,$ 

[ 

+3e:,T 1 
w~~~ti~,4:1= 

[ 
z+e2,2u:,3e: . 1 (24 

The constitutive relations for a typical lamina L 
with reference to the fibre-matrix coordinate axes 
(l’, 2’, 3’) can be written as 

61’ 

02 

71.2 

72’3 

71.3 r = 

L 

where (a,., c2., t,.?, tT3., 7,,3s) are the stresses, and 
the linear strain components are given by 
(L,. , +, y,,?, yT3’, Y~,~). These are with reference to the 
lamina coordinates. C,s are the elastic constants of 
the Lth lamina given by the following relations 
between these and the engineering constants: 

G, = 
El, 

G2 = 
Vl,2’ 2 E 

1 - VI.7 Vz.,’ ; 1 - V,.~I+,’ ; 

c22 = 
~92 

1 - V,‘TV2.,. ; 
C,, = G,s7; C, = G,.?; 

The stress-strain relations for the L th lamina in the 
shell coordinates (1,2,3) can be written as 

a=Qt, (3b) 

where 

and 

are the stress and the strain vectors with respect to the 
shell coordinates, and, following the usual transform- 
ation rule of stresses/tensorial strains between the 
lamina (1’~2’-3’) and the laminate (l-2-3) coordinate 
systems, the elements of the Qij matrix are obtained 
(Fig. 1). This matrix is given by the following 
expression: 

Q = [Z--‘][C][T-‘I’ 

for the Lth lamina. 

(3c) 

The total potential energy lI of the system with a 
middle surface area A enclosing a space of volume V 
and loaded with an equivalent load vector q corre- 
sponding to the nine degrees of freedom of a point on 
the middle surface can be written as 

where 

bJ=(U,,U2,Uj,e,,e,,u:,u:,e:,e:). (4b) 

By substituting the expression for the strain com- 
ponents given by eqn (2) in the above expression for 

G2 

G2 

ci2 

G3 
G3 

G3 

Ct4 
Gi 

61, 

c2 

Y1.2. , 

Y2'3 

1 
Yw L 

(34 
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IL’, 2’,3’) - Lamlna reference axes 

1 I ,2,3) Laminate reference axes 

Fig. 1. Laminate geometry with positive set of laminaflaminate axis, displacement components and fibre 
orientation. 

potential energy, the function given by eqn (4a) is 
then minimized while carrying out explicit integration 
through the shell thickness. This leads to the follow- 
ing 18 and 23 components of stress-resultant vector 

[ ;i ~~ =!,j;” [;] [z,z3]dz 

a: for geometrically thin and geometrically thick shell 
theories respectively. - 

2 : 
Geometrically thin shell (h/R Q 1): 

[; ; ] =!,{;;+’ [‘.I ]t,z’]dz ’ ;i: 

Geometrically thick shell [(h/R)’ 4 11: 

[z, z ‘1 dz 
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Fig. 2. A typical cross-section of shell showing unequal 
spacing of pivot points. 

S,= 1 --‘T,,Azdz 
J L=I hL 

[S,S:] = f 
s 

hL+‘t,3[z,z3]dz, Gb) 
L=l hL. 

where A = (1 + z/R) and NL is the number of layers. 
Upon integration, these expressions are rewritten 

in matrix form as 

Y 

m Lfflll a=I.O 

X 

a-1.0 

60 
c* 
X0 

X* 

4O 
4* 

(64 

Fig. 3a. Fixed, two-layered square laminated plate under 
uniform transverse pressure. 

or 

in which 

d=DZ, 

N=W,,N,,N,,)‘; 
N* = (Nf, N;, Nf,)' 

M=(M,,M2rM,2Y; 

M* = (MT, M;, MT2)’ 

Q = (Q27 Q,,‘; 

Q*=(Q:,Q:,s,,S,) 

(6b) 

for the geometrically thin shell theory, and 

N=W,,N,N,z,Nx)I; 
N" = (N;, N;, Nf,, N;,)' 

M=P,,Mz,M,z,M2,)1; 
M* = (M:, M;, MT2, M;,)’ 

Q = (Q2, Q,)‘; 
Q* = (Q:, Q:, S2, S,, W 

e 

Fig. 3c. Simply supported cylindrical shell subjected to 
uniform internal pressure. 

h=3f 

i 

1 
IX 

ttttttttt ttttttttf 
a,= IO, 

1’ 1 - - - -.-.-.-- > Pa=1 I 24-0.8 

ttttttttt 1 tttt tt tt 
I 

LE2.0 

Fig. 3b. Long circular cylindrical shell subjected to periodically spaced band loads. 
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Fig. 4a. Variation of U, along the length at Y = a/2. 
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Fig. 4b. Distribution of a u, across the thickness at X = 0, 
Y = a/2. 

for the geometrically thick shell theory. The individ- 
ual sub-matrices of the rigidity matrix D are 

D-membrane rigidity matrix; 

DC-membrane-flexure coupling matrix; 

D,-flexure rigidity matrix; and 

D,--shear rigidity matrix. 

The elements in each of these sub-matrices are defined 
in Appendix A and Appendix B for the geometrically 
thin and thick shell theories respectively. 

Having obtained the displacements, strains are 
determined by eqn (2) and the stresses via the consti- 
tutive equation [eqn (3b)]. The interlaminar stresses 
(rz3, T,~) cannot be accurately estimated by eqn (3b). 
This is mainly because the interlaminar stresses have 

Fig. 4c. Distribution of 0, across the thickness at the centre. 
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Fig. 4d. Variation of r,3 across the thickness at X = 0, 
Y = a/2. 

to maintain continuity across the interfaces whereas 
they are discontinuous when evaluated by constitu- 
tive law. A three-dimensional analysis becomes very 
complex. Even three-dimensional displacement-based 
finite element schemes will suffer from the same defect 
of interlaminar stress discontinuity across the inter- 
faces. For these reasons, a better accuracy for inter- 
laminar stresses between layers L and L + 1 at 
z = h L+, may be attained by integrating the equi- 
librium equation of elasticity for each layer over the 
lamina thickness and summing over layers 1 to L in 
the transverse directions. 

The equation of equilibrium representing the 
pointwise equilibrium can be written as 

atI2 ao2 aT2, 1 
-+-+-+--_r,,=o, 
AR80 ax az AR 

(7) 
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0 0 25 0.50 0 75 1.0 

X/L 

Fig. 5a. Variation of U, along the length. 

E Elasticity theory solution 
F Flugge shell theory solution 

- Geometrically thick shell solution 
----- Geometrically thin shell solution 
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Fig. 5b. Variation of U, across the thickness at x = 0.8. 

where A = 1 for the geometrically thin shell theory 
and A = (1 + z/R) for the geometrically thick shell 
theory. In the above equations, the body forces are 
assumed to be negligible. 

FINITE ELEMENT FORMULATION 

For the present study, a nine-noded quadrilateral 
(Lagrangian family) two-dimensional Co continuous 
isoparametric element with nine degrees of freedom 
per node is developed. The displacement vector 6” at 
any point on the reference surface is given by 

l5”= F N,(O,X)&, (8) 
i-l 

where 8: is the displacement vector corresponding to 
node i, IV, is the interpolating or shape function 
associated with node i, and NN is the total number 
of nodes per element (nine in this case). 

E Elasticity theory solution 
F Flugge shell theory solution 

- Geometrically thick shell solution 
----- Geometrically thin shell solution 

l.O- \ 
\ 

0.95 - 

0.90 - 

0 

\” 
z 0.85 - 

; 

0.80 - 

0.75 - 

0.70 I 
-0.04 -0.03 - 0.02 -0.01 0 

(E. u,/ P.0) 

Fig. SC. Variation of U, across the thickness at x = 1.6. 

E Elasticity theory solution 

F Flugge shell theory solution 
- Geometrlcolly thick shell solution 
---- - Geametrically thin sheU solution 

1.0 - 

0.95 - 

0.90 - 

0 

\” 
z 0.65 - 
+ 
oz 

0.80 - 

0.75 - 
I 

0.70 1,, 
-0.04 -0.0. 

-E 

I I I 

-0.02 -0.01 0 

Fig. Sd. Variation of U, across the thickness at x = 2.0. 

Knowing the generalized displacement vector S” at 
all points within the element, the generalized mid- 
surface strains at any point given by eqns (2b) and 
(2d) for a geometrically thin and a thick shell respect- 
ively can be expressed in terms of nodal displace- 
ments in matrix form as follows: 

where B, is a differential operator matrix [22] of shape 
functions. 

CM 38/2-s 
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E Elasticity Weary salution 
F Ftupge sheiltheory solution 

- GeometricalLy thick shell solution 
- - - - - Geometricolty thin sheil sobtion 
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Fig. 5e. Variation of u, across the thickness at x = 0.0. Fig. 5g. Variation of 5, across the thickness at x = 1.6. 
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04 05 

(0,/P) 

Fig. 5f. Variation of 6, across the thickness at x = 0.8. Fig. 5h. Variation of ul across the thickness at x = 2.0. 

Using the standard finite element technique, the 
total domain is discretized into NE sub-doma~s or 
elements such that 

R(S)= f r&P), (10) 
enI 

where l3 and II’ are the potential energies of the 
structure and the element respectively. We further 
have 

P(P) = U” - We, 

E ELasticity theory solution 

F Flume shell Weary solution 
- Geometricotly thick she\\ solution 
- --- * G~~ically thin shell solution 

1.0 

E Elasticity theory solution 

F Flugge shell theory soiution 
- Geometticalty thick shell solutii 
- - - -- GeometricaNy thin shell solution 

1.0 

0 
4 
;; 0.85 
+ 

n 

in which il’ and We are the internal strain energy and 
external work done respectively for an element. 

Eased on the principle of minimum potential 
energy for the structure and by evaluating the D and 
B, matrices as given by eqns @a) and (9) respectively, 
the element stiffness matrix can be obtained by using 
the standard relation 

I 1 

Kg= ss BfDB,[JI at dn. 
-I -1 

(12) 
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E Elasticity theory solution 
R-N Reissner- Naghdi shell solution 

- CR/F0 G~tri~ly thick shell selutii 
----- CR/FD Ge-emetriwlly thin shell solution 

1.0 

0.9 

4 
7-i 

lz 
0.9 

0.7 
0 0.04 O.C% 

T23’p 

Fig. 5. Variation of rr, across the thickness at x = 0.4. 

E Elasticity theory salutii 
R-N Reissner- Naghdi shell solutii 

- CR/ FD Geometrically thick shell sobtim 
---- - CR/FD Geometric&y thin shell solutbn 

Fig. Sj. Variation of zzS across the thickness at x = 1.6. 

r23’p 

E Ebticity theory solution 
R-N Reissnw- Naghdi shell solution 

- CR/FD Geometrically thiik sheU solution 
----- CR/FD Gec#strically thin shell sobtion 

‘23” 

Fig. Sk. Variation of rz3 across the thickness at x = 1.8. 

Similarly, the distributed pressure loading on an 
element is easily transformed into equivalent nodal 
loads using the virtual work principle. Thus the 
consistent load vector Pi due to a uniformly dis- 
tributed transverse load q can be written as 

NfqlJl a< ali, i = I, RN, (13) 

where lJ[ is the determinant of the standard Jacobian 
matrix. 

Knowing the element stiffness and the load 
matrix, they are assembled to represent a particular 
geometry with prescribed boundary conditions. The 
governing equations are then solved to obtain a 
discrete set of displacements. Having obtained a 
set of nodal displa~ments, strains within a particu- 
lar element are determined through eqn (2) and 
then the in-plane stresses are determined from 
eqn (3b) at the desired locations. The transverse shear 
stresses thus obtained from the constitutive relations 
are found to be discontinuous at the interfaces. Thus, 
as previously discussed, a better approach is to use 
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040 r 

Thick shell theory 
-_-___ Thin shelltheory 
-.-‘-.-- Reference [I61 

I I 
0 0.20 0 40 

X/L 

Fig. 6a. Variation of tr, along the length for (9W/O”/90”) lamination. 

the equilibrium equations for determination of the 
transverse shear stresses. Equation (7) is rewritten as 

Thus having obtained the in-plane stresses 
(a,, u2, z,~) in the laminae, the transverse shear 
stresses are determined on the basis of in-plane stress 
variations. 

0 IO r 
I - Thick shell theory 

3 - - - - Thin shell theorv 

-0 IO a Bottom surface 
\ 

\\ 
i 

Fig. 6b. Variation of U, along the length for (9W/O”/90”) 
lamination. 

1 A Top surface 
0 Middle surface 

As solution of the equilibrium equations is a vital 
component in the overall solution strategy, the 
numerical methodology used in solving these 
equations is discussed in detail. The solution pro- 
cedures are described. 

The in-plane stresses (a,, u2, z12) at different points 
in the thickness direction of a particular element are 
determined at all nine Gauss points, through solution 
of the constitutive equations. Having obtained the 
in-plane stresses acting on any surface of a particular 
element at all nine Gauss points, the variations of 
these stresses on the surface of the element are 
expressed using a polynomial in 8 and X: 

o,(z) = C; + C; Re + C;x + C;(Re)* f C:(Re)x 
+ c:x2 + c:(ReyX + C;(Re)x2 
+ C;(ReyX2. 

Q2(Z) = c: + c;Re + c:x + C:(Rey + CZ(RB)x 
+ C;X*+C:(Re)2x+C;(Re)X2 
+ C:(ReyX2. 

q*(z) = c: + c:Re + c:x + c:(Rey+ CZ(RB)x 
+ c;x2 + C:(Reyx + C;(Re)x2 
+ c;(ReyX2, 

(15) 

- Thick shell theory 
---- Thin shell theory 
-. - - Reference [16j 

A 0” Layer 
0 90° Layers 

I 

I 
I I 4 

0 0.10 0.x) 0.x) 0.40 0.50 

X/L 

Fig. 6c. Variation of u, along the length for (90°/Oo/90”) lamination. 
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- Thick shell theory 
- - - -- Thin shell theory 
-.-.- Reference [IS] 

O Bottom surface 

Bottom surface 

Fig. tid. Variation of a, along the length for (90”/0”/90”) lamination. 

where the constants Cj to C: (i = 1,3) are evaluated 
knowing the values of the stresses and their positions 
at all nine Gauss points for different points in the 
thickness directions. Thus, by substituting these con- 
stants in eqn (IS), the stress fields acting on different 
surfaces of each layer are known. From these stress 
fields, the derivatives of the stresses with respect to B 
and x are computed from the following expressions: 

aa, - = c: + 2c:Re + c:x 
Rae 

+ ~C:(RB)X + C;X* + 2c;(Re)x* 

a%(r) 
- = c: + c: Re + 2c;x ax 

+ c:(Re)* + 2cgRe)x + 2c:(Reyx 

k,(z) 
- = c: + 2c: RB + c:x 

Rae 
+ 2C?(RB)x + c;x* + 2C;(Re)x* 

Jr,,(r) 
- = c: + c: Re + 2c:x 

i)r ___ 
+ C;(R@ + 2C;(RO)x + 2C;(RB)*x. (16) 

In this study, the values of derivatives are evaluated 
at four Gauss points corresponding to the 2 x 2 
Gauss quadrature rule for shear. Once the derivatives 
of the in-plane stresses with respect to 0 and x are 
known at a particular Gauss point, say at the top, 
centre and bottom of various layers [thus evaluating 
the right-hand side of the equilibrium equation, 
eqn (1411, through-the-thickness shear stress vari- 
ations are evaluated using the finite difference tech- 
nique. 

In this work, two well-known finite difference 
techniques, (a) the forward difference method and (b) 
the central difference method, are used to derive the 
shear stresses at different points in the lamina. Thus 
eqn (14) can be written in numerical form as follows 
(see Fig. 2). 

Forward diffkrence technique 

ARae 8X AR 

+ t13(,) (174 

72x,+ 1) - 723(I) 

AZ, 

+s= +&+g,, 

:. WV+ I) = AZ, 
a2l2 802 ‘F23 ------ 

AR8 &I’ > AR (,, 

+ 223(I). (17W 

Assuming that the laminate has shear free surfaces, 
we have rly,, and z,~,) = 0. With these as the starting 
values, the values of the transverse shear stresses are 
evaluated at all the other points through the thick- 
ness. The other free surface conditions are not uti- 
lized, although they are available, because we are 
dealing with first-order differential equations in 723 

and r13, which need only one initial condition. This 
is a physical paradox. 

Central difference technique 

f13(,+ ,) - (1 - a2h3(,) - a2~13(r- 1) 2 
a(a + 1) AZ, + m 713(I) = P(I) 

where 

PC,,= -(-& +g)(,, 
’ r,3(r+,,=a(a+l)Az,(P-~~,3)(,1 * * 
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“ZXIi 1) - (1 - a*)%3(,) - a2%(f- I) 

a(a + 1) AZ, 
1 

where 

+ (1 - a2hc1) + a2z23(1- ,). Wb) 

Here, a = AZ,_ ,/Az, 1231. Assuming that rt3 and 
tn at I = 1 are equal to zero for a shear free sur- 
face, the values of rZ3 and 713 at I = 2 are calcu- 
lated using eqn (17). Knowing the values now, at 
two points, the transverse shear stresses at all 
the other points in throu~-the-thickness directions 

are computed using eqn (18). At the interface, 
while setting up the equation, the values of P 
and Q are taken as the average of that at the top 
of the first layer and at the bottom of the second 
layer. 

NUMERICS EXAMPLES 

A computer program is developed based on the 
theoretical models described earlier, for pointwise 
estimation of interlaminar transverse shear stresses in 
a composite cylindrical shell. To validate the accuracy 
of these models, some examples involving different 
material properties and fibre orientations are solved. 
The results obtained are compared with those avail- 
able in the literature. The selective integration 
method has been adopted to calculate the contri- 
butions of membrane, bending and shear to the 
stiffness of the element. 
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Example 1 

A two-layered angle-ply ( - 15’/15’), square plate, 
fixed at all four edges and subjected to a uniform 
distributed load of unity is considered. The material 
properties of the lamina are as follows. 

E, = 40 x 106; El = 106; G,, = G13 = 0.5 x 106; 

G,, = 0.6 x 106; vu = vz3 = vn = 0.25. 

The plate is of unit length and the thickness is equal 
to 0.1, as shown in Fig. 3a. 

Because of asymmetrical behaviour, the full plate 
is discretized into 16 elements. The variations of 
displacement, normal stresses and transverse shear 
stress through the thickness are compared with 
higher-order plate theory and are plotted in Figs 
4a+l. 

Example 2 

The problem of an infinite circular cylindrical 
shell subjected to periodically spaced band loads 
is investigated. Detailed comparison of the result- 
ing stresses and displacements with exact elasticity 

(E), Reissner-Naghdi (R-N) and Flugge shell (F) 
solutions [2] is carried out. The shell is made of an 
isotropic material with E = 10 and v = 0.3. The 
dimensions of the shell are shown in Fig. 3b. 

The plots for the variation of displacements and 
the stresses across the thickness at different points 
along the length are presented in Figs 5a-5k. 

The values of transverse shear stresses evaluated 
both by constitutive relation (CR) and the forward 
difference technique (FD) for geometrically thick 
shell theory and thin shell theory have been presented 
and compared with other solutions. Because of sym- 
metry, only one-quarter of the shell is discretized for 
the analysis. 

Example 3 

A three-layered symmetrically laminated, cross- 
ply, simply supported cylindrical shell is investigated. 
The fibre orientations of the layers are 9oO/O”/900. The 
layers are of equal thickness. The geometry and 
the material properties of the shell are as follows 
(see Fig. 3~): L = 200 in; R = 10 in; h = 2.0 in; E, 
and E,, the Young’s moduli in the directions parallel 



144 T. KANT and M. P. MENON 

- Thick shell theory 
------ Thin shelltheory 
-.-.-- Reference [I61 

g.15 
I I I 

0.25 0.35 0.45 

X/L 

Fig. 8a. Variation of U, along the length for (-45“/45”) lamination. 

-e--m 

_._._._ 

Thick shell theory 
Thin shell thewy 
Reference [I61 

A Top surface 
o Middle surface 
x Bottom surface 

Fig. 8b. Variation of iJ, along the length for (-45”/45”) lamination. 

and transverse to the fibres, are 40 x lo6 and 
lo6 psi respectively; CL2 = G,, = G91 = 0.5 x lo6 psi; 
and vu = vr3 = vu = 0.25. The shell is subjected to 
an internal pressure of 100 psi. Because the shell is 
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Fig. 8~. Variation of U, along the length for (-45’/45’) 
lamination. 

axisymmetrically loaded and symmetrically layered, 
only one-quarter of the shell is discretized with 
proper boundary conditions. The variation, of differ- 
ent parameters along the length of the shell are 
plotted and compared with exact solutions [16] in 
Figs 6a-6d. 

Example 4 

A two-layered asymmetric cross-ply cylindrical 
shell, simply supported at the ends, is considered. 
The fibre orientations of the outer/inner layer are 
0”/90”. The layers are of equal thickness. The 
geometry and material properties of the layer are the 
same as in example 3. As the shell is axisymmet- 
ric with symmetric loading and the layers are 
cross-ply, one-quarter of the shell is discretized. 
The results obtained are plotted in Figs 7a-7d, 
and are compared with exact solutions given 
in [16]. 
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Example 5 

A two-layered asymmetric angle-ply, circular cylin- 
drical shell, simply supported, with fibre orientations 
of 45”/-45” for the outer and inner layers, is con- 
sidered. The shell dimensions and the material prop 
erties are as in example 3. As the layers are 
asymmetric angle-ply, the full shell is discretized in 
the circumferential direction, and along the length, 
half the shell length is discretized, with the appropri- 
ate boundary condition for symmetry and supports 
at the ends. The results obtained are presented in 
Figs 8a-8e, together with exact shell solutions [16] for 
comparison. 

CONCLUSIONS 

The results from a set of higher-order theories 
(geometrically thin shell and geometrically thick 
shell) for a composite cylindrical shell subjected to 
different loadings and boundary conditions are pre- 
sented. These theories do not require the usual shear 
correction coefficients. 

To validate these theories, a plate problem is first 
solved and the results are compared with a higher- 
order plate theory as shown in Figs 4a-4d. It is seen 
that transverse displacement, variation of in-plane 
stresses and interlaminar stresses ri3 by constitutive 
relations, match across the thickness. The values of 
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transverse shear stresses computed by a finite differ- 
ence scheme, utilizing the equilibrium equations, 
are slightly lower than those given by the higher- 
order plate theory. This can be improved by taking 
closer pivot points and by increasing the number of 
subdivisions in each layer. 

The influence of the ratio h/R in a thick shell is 
pronounced, as seen in Figs 5a-Sk of example 2. The 
thick shell theory solutions are close to the elasticity 
theory solutions, as compared with the thin shell 
theory solutions, which are close to the results based 
on the Flugge shell theory. The transverse shear stress 
distributions from the thick shell theory are in excel- 
lent agreement with those of the elasticity theory and 
Reissner-Naghdi theory. The values of transverse 
shear stresses obtained by the elasticity theory have 
a peak near the inner shell surface, whereas those 
obtained by other theories have a peak near the 
centre of the shell thickness. 

The cross-ply and angle-ply shells show a drastic 
redistribution of stresses in the shell as a result of the 
layering effect and anisotropy. Numerical results 
have been presented for 90/O/90, O/90 and -45145 
laminations. The solutions obtained by the present 
theories have been compared with results from the 
available constant shear angle theory (CST), an ex- 
tension of Mindlin’s shear deformation theory for a 
homogeneous isotropic plate. It has been observed 
that the thin shell theory solutions are closer to CST 
solutions than are the thick shell solutions. For all 
laminations, transverse displacement u3, longitudinal 
displacement u2 and longitudinal stress e2 are the 
same for the three solutions in the central region, 
whereas the same is not true in the edge region. This 
is mainly because the central region has primarily a 
membrane action, whereas a bending action is pre- 
dominant in the edge region. The slight variation of 
the transverse displacement obtained by the thick 
shell theory and the thin shell theory in the central 
regions is merely the result of the assumption that the 
loadings act on the mid-surface in the case of the thin 
shell theory and on the linear surface in the thick shell 
theory; this is actually the case. There is appreciable 
difference in the variations of circumferential stresses 
obtained by the thick shell theory and the thin shell 
theory. This implies that the influence of the ratio h/R 
is predominant in the case of circumferential stresses 
and circumferential moments. 

It may be concluded that the geometrically thick 
theory solutions are more reliable and accurate than 
those of the thin shell theory for both thin and 
moderately thick shells. 
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APPENDIX A 

The elements of the matrix for the geometrically thin shell theory are given here as follows. If we set 

q=(/l;+,-h;)/i 

such that i takes an integer value from one to seven, then the sub-matrices can be readily obtained in the following forms 
based on the geometric; assumption (h/R) Q I: 

D,= E 
L=l 

HIQII H,Q,, KQ,, H,QII 4Q12 H,Q,, 
H, Q22 4 Qn H,Qzl KQz H, Qz 

HI Q33 H3Q3, H3Q32 H, Q,, 
HsQ,, H5Q,2 f&Q,3 

H5 Q22 H5 Q2s 
Symmetric H5 Q33 

H, QM H, Q,, f-hQ@ HxQ4s 4Qq H2 Q45 

H, Q55 H3Q5-4 H3Q55 H2Q54 H2 Q55 

H5Q44 H5Q45 H4Q44 H4 QG 
H5Q55 H4Q54 fh Qs 

H3 Q44 & Q45 
Symmetric f&Q,, 

The elements of the D, matrix are obtained by replacing H,, H, and H, by H2, H4 and H6 respectively in the DM matrix 
above. Similarly, the D, matrix is obtained by replacing H,, H, and H5 by H,, H, and H, respectively in the D, matrix. 

APPENDIX B 

The elements of the matrix for the thick shell theory are defined here as follows. If we set 

Hi=(hi+,-hL)/i 

H; =(H,-K. H,,,) 

H:=(Hi+K.Hi+,), where K=f, 

and i takes integer value from one to eight, then the sub-matrices can be readily obtained in the following forms based 
on the geometrical assumption (h/IQ2 4 1: 

r 
H;Q,, H,Q,z Hi-Q,, H,Q,, H, Q,, f&Q,2 H, Q,s f&Q,, 

H: Q22 H,Q,, H: Q23 I&Q,, H: Q22 f&Q23 H: Q23 
HiQ33 H, Q33 HC Q3, H3Q32 HF Q33 H3Q33 

D,= f 
H:Q,, H,QI, H: Q,2 H3Q33 H:Q33 

K-Q,, H,Q,, H; Q,3 f&Q,, 
L= ’ Symmetric H:Q,, f&Qz H: Qz 

H; Q,, 4 Qss 
W’Q33 

H: Q44 H, Q45 W Q44 f& Q45 H2+ Q44 H2Q45 H4Q4s ‘lh layer 

Hi Qs H3Q.w HC Qss H2Q54 Hi Qs HCQS 

D,= f 
H: Q44 Hs Q45 H: Qez H4Q4s f&Q45 

H;Q,, fhQs4 KQ,, f&Q,, 
L-I H: Qu H9Q4, HsQ4, 

Symmetric H; Qs H; Qs 
H; Q55 

Llh layer 

The elements of the D, matrix are obtained by replacing H, , H: , Hi, H,, H: , H< , H,, HJ and H, by H2, H$ , Hi, 
H4, Hi, H;, H,, Hz and H; respectively in the D, matrix above. Similarly, the D, matrix ,s obtained by replacing H, , 

Hi+, Hi, H>, H:, H,, Hs, H_C andH;byH,,H:,H;,H,,Hf,H,,H,,H: and H; respectively in the D, matrix. 


