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BIVARIATE FACTORIZATIONS CONNECTING
DICKSON POLYNOMIALS AND GALOIS THEORY

SHREERAM S. ABHYANKAR, STEPHEN D. COHEN, AND MICHAEL E. ZIEVE

Abstract. In his Ph.D. Thesis of 1897, Dickson introduced certain permu-
tation polynomials whose Galois groups are essentially the dihedral groups.
These are now called Dickson polynomials of the first kind, to distinguish them
from their variations introduced by Schur in 1923, which are now called Dick-
son polynomials of the second kind. In the last few decades there have been
extensive investigations of both of these types, which are related to the clas-
sical Chebyshev polynomials. We give new bivariate factorizations involving
both types of Dickson polynomials. These factorizations demonstrate certain
isomorphisms between dihedral groups and orthogonal groups, and lead to the
construction of explicit equations with orthogonal groups as Galois groups.

1. Introduction

By the quadratic equation case of Newton’s Theorem on symmetric functions we
have the polynomial identity in indeterminates U1 and U2 given by

Un1 + Un2 = Dn(U1 + U2, U1U2) for n ≥ 0,(1.1)

where Dn(X, a) is a bivariate polynomial with integer coefficients. This is the
most natural definition of the Dickson polynomial Dn(X, a) of first kind, which
was introduced by Dickson in [Di1]. This definition yields the recurrence relation{

Dn+2(X, a) = XDn+1(X, a)− aDn(X, a) for n ≥ 0
with initial conditions D0(X, a) = 2 and D1(X, a) = X,

(1.2)

which may also be taken as a definition of Dn(X, a). By induction on n, from (1.2)
we deduce the facts that


Dn(X, a) is monic of degree n in X for n ≥ 1
and
D2n(X, a) = D̂n(X2, a) with polynomial D̂n(X, a) of degree n in X for n ≥ 0.

(1.3)
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By induction on n, from (1.2) we deduce special formulas for some coefficients of
Dn(X, a), saying that

coeff of Xn−2[n/2] in Dn(X, a) = (−a)[n/2]2 for even n ≥ 0
and
coeff of Xn−2[n/2] in Dn(X, a) = (−a)[n/2]n for odd n ≥ 1
and
coeff of Xn−2 in Dn(X, a) = −an for n ≥ 2,

(1.4)

where

[n/2] denotes the largest integer ≤ n/2.

More generally, by induction on n, from (1.2) we deduce the entire explicit formula

Dn(X, a) =
[n/2]∑
i=0

n

n− i

(
n− i
i

)
(−a)iXn−2i for n ≥ 1.(1.5)

By putting U1 = U and U2 = a
U in (1.1), where U is another indeterminate, we get

the functional equation

Dn(U +
a

U
, a) = Un +

( a
U

)n
for n ≥ 0,(1.6)

and from this we deduce the recurrence relations

Dm(X, a)Dn(X, a) = Dm+n(X, a) + anDm−n(X, a) for m ≥ n ≥ 0(1.7)

and

Dmn(X, a) = Dm(Dn(X, a), an) for m ≥ 0 and n ≥ 0(1.8)

and

Dn(bX, b2a) = bnDn(X, a) for n ≥ 0(1.9)

where the last equation may be regarded as a trivariate identity. From (1.6) we
also deduce the recurrence relations

D2n(X, a) = (Dn(X, a))2 − 2an for n ≥ 0
and
D2n+1(X, a) = Dn(X, a)Dn+1 − anX for n ≥ 0.

(1.10)

By the quadratic equation case of Newton’s Theorem on symmetric functions we
also have the polynomial identity in indeterminates U1 and U2 given by

Un+1
1 − Un+1

2

U1 − U2
= En(U1 + U2, U1U2) for n ≥ 0,(1.11)

where En(X, a) is a bivariate polynomial with integer coefficients. Again this is the
most natural definition of the Dickson polynomial En(X, a) of second kind, which
was introduced by Schur in [Sch]. This definition yields the recurrence relation{

En+2(X, a) = XEn+1(X, a)− aEn(X, a) for n ≥ 0
with initial conditions E0(X, a) = 1 and E1(X, a) = X,

(1.12)
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which may also be taken as a definition of En(X, a). By induction on n, from (1.12)
we deduce the facts that


En(X, a) is monic of degree n in X for n ≥ 0
and
E2n(X, a) = Ên(X2, a) with polynomial Ên(X, a) of degree n in X for n ≥ 0.

(1.13)

By induction on n, from (1.12) we deduce special formulas for some coefficients of
En(X, a), saying that

coeff of Xn−2[n/2] in En(X, a) = (−a)[n/2] for even n ≥ 0
and
coeff of Xn−2[n/2] in En(X, a) = (−a)[n/2](n+ 1)/2 for odd n ≥ 1
and
coeff of Xn−2 in En(X, a) = −a(n− 1) for n ≥ 2.

(1.14)

More generally, by induction on n, from (1.12) we deduce the entire explicit formula

En(X, a) =
[n/2]∑
i=0

(
n− i
i

)
(−a)iXn−2i for n ≥ 0.(1.15)

By putting U1 = U and U2 = a/U in (1.11), we get the functional equation

En(U +
a

U
, a) =

Un+1 −
(
a
U

)n+1

U − a
U

for n ≥ 0,(1.16)

and from this we deduce the recurrence relations

Em(X, a)En(X, a) =
Dm+n+2(X, a)− an+1Dm−n(X, a)

X2 − 4a
for m ≥ n ≥ 0(1.17)

and

Em(Dn(X, a), an) =
Emn+n−1(X, a)
En−1(X, a)

for m ≥ 0 and n ≥ 1(1.18)

and

En(bX, b2a) = bnEn(X, a) for n ≥ 0.(1.19)

Finally, by induction on n, from (1.2) and (1.12) we deduce the recurrence relations

Dn+2(X, a) = XEn+1(X, a)− 2aEn(X, a) for n ≥ 0
and
En(X, a) = −a[n/2] +

∑[n/2]
i=0 aiDn−2i(X, a) for even n ≥ 0

and
En(X, a) =

∑[n/2]
i=0 aiDn−2i(X, a) for odd n ≥ 1.

(1.20)

In Section 2 we shall review some more basic properties of Dickson polynomials,
including their relationship with Chebyshev polynomials. Further discussion of
Dickson polynomials can be found in the book [LMT] and in the papers [CM1] and
[CM2].



2874 SHREERAM S. ABHYANKAR, STEPHEN D. COHEN, AND MICHAEL E. ZIEVE

Let q > 1 be a power of a prime p, let kp ⊂ kp be fields of characteristic p where
kp is an algebraic closure of kp, and let kq be the splitting field of Y q − Y over kp
in kp, i.e.,

kq = kp(GF(q)) = SF(Y q − Y, kp) ⊂ kp.

We shall now let a take various values in kp, and regard En(X, a) and Dn(Y, a)
as members of the univariate polynomial rings kp[X ] and kp[Y ] respectively. In
particular, let F be the monic polynomial of degree 1 + q in Y over kp[X ] given by

F (X,Y ) = Y 1+q − Eq(X, 1)Y + Eq−1(X, 1),

and let Φ and Φ̂ be the monic polynomials of degree q2 − 1 and q2 in Y over kp[X ]
given by

Φ(X,Y ) = F (X,Y q−1) = Y q
2−1 − Eq(X, 1)Y q−1 + Eq−1(X, 1)

and

Φ̂(X,Y ) = YΦ(X,Y ) = Y q
2 − Eq(X, 1)Y q + Eq−1(X, 1)Y.

In Section 3 we shall prove the following Factorization Theorem (1.T1) about the
polynomials F and Φ, where F and F ∗ are the monic polynomials of degree 2 and
q − 1 in Y over kp[X ] given by

F (X,Y ) = Y 2 −XY + 1

and

F ∗(X,Y ) =
q−1∑
i=0

Ei(X, 1)Y q−1−i

and Φ and Φ∗ are the monic polynomials of degree 2q − 2 and (q − 1)2 in Y over
kp[X ] given by

Φ(X,Y ) = F (X,Y q−1) = Y 2q−2 −XY q−1 + 1

and

Φ∗(X,Y ) = F ∗(X,Y q−1) =
q−1∑
i=0

Ei(X, 1)Y (q−1)(q−1−i),

and where, as usual,

GF(q)∗ = GF(q) \ {0}.

Factorization Theorem (1.T1). In kp[X,Y ] we have the factorizations

F (X,Y ) = F (X,Y )F ∗(X,Y ) and Φ(X,Y ) = Φ(X,Y )Φ∗(X,Y ),

where F (X,Y ) and Φ(X,Y ) are irreducible in kp(X)[Y ], and in kq[X,Y ] we have
the factorization

Φ∗(X,Y ) =
∏

a∈GF(q)∗

[Dq−1(Y, a)−X ]

of Φ∗(X,Y ) into the q − 1 monic polynomials Dq−1(Y, a) − X of degree q − 1 in
Y over kq[X ], each of which is irreducible in kp(X)[Y ]. Moreover, if p = 2 then
F ∗(X,Y ) is irreducible in kp(X)[Y ].



BIVARIATE FACTORIZATIONS 2875

In the case p > 2, in Section 3 we shall prove the following Supplementary
Factorization Theorem (1.T2) about the polynomials F ∗ and Φ∗, where, for 1 ≤
j ≤ 2, F (j) is the monic polynomial of degree (q − 1)/2 in Y over kp[X ] given by

F (j)(X,Y ) =
(q−1)/2∑
i=0

(−1)i
(

(q − 1)/2
i

)
E2i((X + (−1)j2)1/2, (−1)j)Y (q−1−2i)/2

and Φ(j) is the monic polynomial of degree (q − 1)2/2 in Y over kp[X ] given by

Φ(j)(X,Y ) = F (j)(X,Y q−1)

=
(q−1)/2∑
i=0

(−1)i
(

(q − 1)/2
i

)
E2i((X + (−1)j2)1/2, (−1)j)Y (q−1)(q−1−2i)/2

with

E2i((X + (−1)j2)1/2, (−1)j) = Êi(X + (−1)j2, (−1)j),

and where

GF(q)(1) =

{
the set of all squares in GF(q)∗ if q ≡ 3 (mod 4),
the set of all nonsquares in GF(q)∗ if q ≡ 1 (mod 4),

and

GF(q)(2) =

{
the set of all squares in GF(q)∗ if q ≡ 1 (mod 4),
the set of all nonsquares in GF(q)∗ if q ≡ 3 (mod 4).

Supplementary Factorization Theorem (1.T2). If p > 2, then in kp[X,Y ] we
have the factorizations

F ∗(X,Y ) = F (1)(X,Y )F (2)(X,Y ) and Φ∗(X,Y ) = Φ(1)(X,Y )Φ(2)(X,Y ),

where F (1)(X,Y ) and F (2)(X,Y ) are irreducible in kp(X)[Y ], and in kq[X,Y ] we
have the factorization

Φ(j)(X,Y ) =
∏

a∈GF(q)(j)

[Dq−1(Y, a)−X ] for 1 ≤ j ≤ 2.

In Section 3 we shall also prove the following Normic Theorem (1.T3), which
expresses the above polynomials Φ∗ and Φ(j) as the field theoretic norms
Nk(X,Y n)/k(X,Ymn)(z) of certain elements z ∈ k(X,Y n) relative to the field exten-
sions k(X,Y n) of k(X,Y mn), where n and m are certain positive integers and k is
any field between kq and kp, and hence, in view of the above factorizations, provides
alternative definitions of the above polynomials F,Φ, F ∗,Φ∗, F (j), and Φ(j).

Normic Theorem (1.T3). If k is any field between kq and kp then, in the case
p = 2, we have

Φ∗(X,Y ) = Nk(X,Y )/k(X,Y q−1)(Dq−1(Y, 1)−X),

and, in the case p > 2, for any lj ∈ GF(q)(j) we have

Φ(j)(X,Y ) = Nk(X,Y 2)/k(X,Y q−1)(Dq−1(Y, lj)−X) for 1 ≤ j ≤ 2,

where we note that we can always take l2 = −1, and if q− 1 is nondivisible by 4 we
can also take l1 = 1.
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In Section 4 we shall relate Dickson polynomials with dihedral groups. In par-
ticular, we shall prove the following Dihedral Theorem (1.T4), where, as usual, by
Gal(L,K) we denote the Galois group of a Galois extension L of a field K, and by
Gal(f,K) we denote the Galois group of a univariate separable polynomial f over
K, i.e., the Galois group of the splitting field of f over K regarded as a permutation
group on the roots of f . Moreover, for every positive integer n, by Zn we denote
the cyclic group of order n, and by DL2n we denote the dihedral group of order 2n
which is defined as the semidirect product

DL2n = Zn o Z2,

where the nonidentity element of Z2 acts on Zn by sending every element to its
inverse. Via its regular representation, we may regard DL2n as a subgroup of the
symmetric group S2n on 2n letters. We also define the modified dihedral group
MDLn as the subgroup of Sn generated by the “rotation”ρ given by ρ(i) = i + 1
or 1 according as 1 ≤ i < n or i = n, and the “reflection” ρ′ given by ρ′(n) = n
together with ρ′(i′) = n− i′ for 1 ≤ i′ ≤ n− 1. Note that then

MDLn ≈
{
DL2n if n ≥ 3,
Zn if 1 ≤ n ≤ 2,

where ≈ denotes isomorphism.

Dihedral Theorem (1.T4). If a field k contains a primitive n-th root of 1, where
n is a positive integer which is not divisible by the characteristic of k, then for any
0 6= a ∈ k we have Gal(Dn(Y, a) − X, k(X)) = MDLn. Moreover, if k is a field
between kq and kp and n = q − 1 then we have the following:

(1.T4.1) Gal(Φ, k(X)) = DL2n and Gal(F , k(X)) = S2;
(1.T4.2) Gal(F ∗, k(X)) = MDLn for p = 2;
(1.T4.3) Gal(F ∗, k(X)) ≈ Gal(F (j), k(X)) = MDLn/2 for p > 2 ≥ j ≥ 1 and

q 6= 5; and
(1.T4.4) Gal(F ∗, k(X)) = DL4 and Gal(F (j), k(X)) = MDL2 for 2 ≥ j ≥ 1 and

q = 5.

In Section 5 we shall show how the above factorizations illustrate certain rela-
tionships between dihedral groups and orthogonal groups. In particular we shall
prove the following Orthogonal Theorem (1.T5); for the basic theory of the or-
thogonal groups O+(2m, q) and their projectivizations PO+(2m, q) see the book
[Di2] of Dickson or the book [KLi] of Kleidman and Liebeck; indeed, one of the
starting points of our present investigation was Proposition (2.9.1)(iii) on page 43
of [KLi] stating that O+(2, q) ≈ DL2(q−1), and hence PO+(2, q) ≈ DL2(q−1) or
DLq−1 according as p = 2 or p > 2.

Orthogonal Theorem (1.T5). If k is any field between kq and kp, then for
the polynomials Φ̂ and F we have Gal(Φ̂, k(X)) = O+(2, q) and Gal(F, k(X)) =
PO+(2, q).

As noted in Theorem (b) of [Lie], in its action on the 2m−1 dimensional projec-
tive space, PO+(2m, q) has two orbits of sizes (1 + q + · · ·+ qm−1)(qm−1 + 1) and
qm−1(qm−1) in the case p = 2, and three orbits of sizes (1+q+· · ·+qm−1)(qm−1+1),
(1/2)qm−1(qm−1) and (1/2)qm−1(qm−1) in the case p > 2. Although in [Lie] it is
assumed that m ≥ 2, these orbit sizes are valid also for m = 1. Thus, in its action
on the projective line, the orbit sizes of O+(2, q) are 2 and q − 1 in the case p = 2,
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and 2, (1/2)(q−1) and (1/2)(q−1) in the case p > 2. This is in accordance with the
Y -degrees of the factors F and F ∗ of F in the case p = 2, and the factors F , F (1)

and F (2) of F in the case p > 2. This prediction of the degrees of the factors was
the primary starting point of our present investigation, which consisted in a search
for suitable polynomials F and Φ. All this becomes even more significant in the
construction of equations with Galois groups O+(2m, q) and PO+(2m, q) for m > 1,
which will be discussed elsewhere. For analogous construction of equations with
the orthogonal groups O−(2m, q) and PO−(2m, q) as groups, see [Ab7]. Likewise,
for the construction of equations with linear, unitary and symplectic groups see
[Ab3], [Ab5] and [Ab6] respectively. Moreover, for an overview of the construction
of equations see [Ab4] and [Ab8], and for algebro-geometric background see [Ab1]
and [Ab2]. A review of all these groups can be found in the papers [Ab2]–[Ab8] as
well as the books [Di2] and [KLi].

2. Remarks on the Algebra of Dickson Polynomials

In Remarks (2.1) to (2.4), we shall again regard Dn(X, a) and En(X, a) as bi-
variate polynomials with integer coefficients.

Remark 2.1. For n ≥ 1 and another indeterminate Y , we get

(Y 2 −XY + 1)
n∑
i=0

Di(X, 1)Y n−i = D0(X, 1)Y n+2 + [D1(X, 1)−XD0(X, 1)]Y n+1

− [XDn(X, 1)−Dn−1(X, 1)]Y +Dn(X, 1)

+
n−2∑
i=0

[Di+2(X, 1)−XDi+1(X, 1) +Di(X, 1)]Y n−i,

and by (1.2) the RHS equals 2Y n+2 −XY n+1 −Dn+1(X, 1)Y +Dn(X, 1); hence{
letting D̃n(X,Y ) = 2Y n+2 −XY n+1 −Dn+1(X, 1)Y +Dn(X, 1)
we have D̃n(X,Y ) = (Y 2 −XY + 1)

∑n
i=0 Di(X, 1)Y n−i for n ≥ 1.

(2.1.1)

For n ≥ 1, we also get

(Y 2 −XY + 1)
n∑
i=0

Ei(X, 1)Y n−i = E0(X, 1)Y n+2 + [E1(X, 1)−XE0(X, 1)]Y n+1

− [XEn(X, 1)− En−1(X, 1)]Y + En(X, 1)

+
n−2∑
i=0

[Ei+2(X, 1)−XEi+1(X, 1) + Ei(X, 1)]Y n−i

and by (1.12) the RHS equals Y n+2 − En+1(X, 1)Y + En(X, 1); hence{
letting Ẽn(X,Y ) = Y n+2 − En+1(X, 1)Y + En(X, 1)
we have Ẽn(X,Y ) = (Y 2 −XY + 1)

∑n
i=0 Ei(X, 1)Y n−i for n ≥ 1.

(2.1.2)

Remark 2.2. In the notation of (2.1.2), the fact that Y 2−XY +1 divides Ẽn(X,Y )
as a polynomial in X and Y , i.e., equivalently, the fact that Y −X + Y −1 divides
Ẽn(X,Y ) as a polynomial in X over the rational function field in Y , can also be
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seen by noting that by (1.16) we have

Ẽn(Y + Y −1, Y ) = Y n+2 − (Y n+2 − Y −n−2)Y
Y − Y −1

+
Y n+1 − Y −n−1

Y − Y −1

and, by cancelling like terms with opposite signs, the RHS equals zero, and hence

Ẽn(Y + Y −1, Y ) = 0.(2.2.1)

Here, instead of using (1.16) we could use (1.6) and (1.20). Similarly, in the notation
of (2.1.1), the fact that Y 2 −XY + 1 divides D̃n(X,Y ) as a polynomial in X and
Y , i.e., equivalently, the fact that Y −X + Y −1 divides D̃n(X,Y ) as a polynomial
in X over the rational function field in Y , can be seen by noting that by (1.6) we
have

D̃n(Y + Y −1, Y ) = 0.(2.2.2)

Remark 2.3. Although we shall not use it in this paper, to explain the relationship
of the Dickson polynomials with the Chebyshev polynomials Tn(X) and Un(X),
respectively of first and second kind, we note that, over the complex field, for
n ≥ 0, these are defined by the trigonometric identities

cos(nΘ) = Tn(cos Θ) and
sin((n+ 1)Θ)

sin Θ
= Un(cos Θ),(2.3.1)

and, say by (1.2) and (1.12), we deduce that

Dn(X, 1) = 2Tn(X/2) and En(X, 1) = Un(X/2).(2.3.2)

Remark 2.4. Letting ξ be a primitive (2n)-th root of 1 and η be a primitive (n+1)-
th root of 1, by putting X = U +aU−1 in (1.6) and (1.16) we get the factorizations

Dn(X, a) = Xn−2[n/2]

[n/2]∏
i=1

[X2 − (2 + ξ2i−1 + ξ2n−2i+1)a] for n ≥ 1(2.4.1)

and

En(X, a) = Xn−2[n/2]

[n/2]∏
i=1

[X2 − (2 + ηi + ηn+1−i)a] for n ≥ 0(2.4.2)

and

E2n−1(X, a) = En−1(X, a)Dn(X, a) for n ≥ 1.(2.4.3)

Remark 2.5. Recalling that kp is a field of characteristic p > 0 and q > 1 is a power
of p, and regarding Dn(X, a) and En(X, a) as members of kp[X ] with a ∈ kp, by
(1.6) and (1.16) we get

Dq(X, a) = Xq ∈ kp[X ] for a ∈ kp(2.5.1)

and

Eq−1(X, a) =

{
X2 − 4a)(q−1)/2 ∈ kp[X ] for q odd and a ∈ kp,
Xq−1 for q even and a ∈ kp,

(2.5.2)

where we note that these identities can also be deduced respectively from (2.4.1)
and (2.4.2) by “reduction mod p.” For use in the proof of Theorem (1.T2) to be
given in Section 3, we note that by (1.4) we also have

Dq−1(0, a) = (−a)(q−1)/22 for p > 2 and 0 6= a ∈ GF(q),
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and hence by (2.5.2) we get

Eq−1((Dq−1(0, a) + (−1)j2)1/2, (−1)j) =[(−a)(q−1)/22 + (−1)j2− (−1)j4](q−1)/2

for p > 2 ≥ j ≥ 1 and 0 6= a ∈ GF(q),

and therefore 
Eq−1((Dq−1(0, a) + (−1)j2)1/2, (−1)j) 6= 0
for p > 2 ≥ j ≥ 1 and a ∈ GF(q)∗ \GF(q)(j)

with GF(q)∗ and GF(q)(j) as in Section 1.
(2.5.3)

3. Factorizations

To prove Theorems (1.T1)–(1.T3), let the notation be as in Section 1.
For a ∈ GF(q)∗, letting n = q − 1, and letting (µ, ν) = (1, 0) or (0, 1) according

as q is even or odd, successively by (2.5.1), (1.20), (1.8), and (1.7) we see that

Φ̂(Dq−1(Y, a), Y )

= D(n+1)(n+1)(Y, a)−Dn+1(Y, a)En+1(Dn(Y, a), 1) +D1(Y, a)En(Dn(Y, a), 1)

= D(n+1)(n+1)(Y, a) + µDn+1(Y, a)− νD1(Y, a)

−

Dn+1(Y, a)
[(n+1)/2]∑

i=0

Dn+1−2i(Dn(Y, a), 1)

+

D1(Y, a)
[n/2]∑
i=0

Dn−2i(Dn(Y, a), 1)


= D(n+1)(n+1)(Y, a) + µDn+1(Y, a)− νD1(Y, a)

−

Dn+1(Y, a)
[(n+1)/2]∑
i=0

D(n+1−2i)n(Y, a)

+

D1(Y, a)
[n/2]∑
i=0

D(n−2i)n(Y, a)


= D(n+1)(n+1)(Y, a) + µDn+1(Y, a)− νD1(Y, a)

−

[(n+1)/2]∑
i=0

D(n+2−2i)n+1(Y, a)

+

[n/2]∑
i=0

D(n−2i)n+1(Y, a)


− a

[(n+1)/2]−1∑
i=0

D(n−2i)n−1(Y, a)

− νD1(Y, a)− µDn+1(Y, a)

+ a

[n/2]−ν∑
i=0

D(n−2i)n−1(Y, a)

+ νD1(Y, a)

= 0,

where the last equality follows by cancelling like terms with opposite signs. Al-
ternatively, for a ∈ GF(q)∗, by putting Y = U + aU−1, successively by (1.6) and
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(1.16) we get

Φ̂(Dq−1(Y, a), Y )

= (uq
2
+au−q

2
)−(uq+au−q)eq(uq−1 + u1−q, 1)+(U+aU−1)Eq−1(U q−1+U1−q, 1)

=
(U q

2
+ aU−q

2
)(U q−1 − U1−q)

U q−1 − U1−q

− (U q + aU−q)(U q
2−1 − U1−q2

)
U q−1 − U1−q +

(U + aU−1)(U q
2−q − U q−q2

)
U q−1 − U1−q

= 0,

where the last equality follows by cancelling like terms with opposite signs. Thus
we have given two proofs of the fact that

Φ̂(Dq−1(Y, a), Y ) = 0 for all a ∈ GF(q)∗.(3.1)

If p > 2, then, putting X = U2 +U−2 so that (X + (−1)j2)1/2 = U + (−1)jU−1

for 1 ≤ j ≤ 2, by (1.16) we get

F ∗(X,Y ) =
q−1∑
i=0

(U2i+2 − U−2−2i)Y q−1−i

U2 − U−2

and

2∏
j=1

F (j)(X,Y ) =
2∏
j=1

(q−1)/2∑
i=0

(−1)i
(

(q−1)/2
i

) (
U2i+1 − (−1)jU−1−2i

)
Y (q−1−2i)/2

U − (−1)jU−1


and by rearranging terms we see that

the RHS of the above equation for F ∗(X,Y )

=

(
U2
∑q−1
i=0 U

2iY q−1−i
)
−
(
U−2

∑q−1
i=0 U

−2iY q−1−i
)

U2 − U−2

=
U2(Y − U2)q−1 − U−2(Y − U−2)q−1

U2 − U−2

=
2∏
j=1

[
U(Y − U2)(q−1)/2 − (−1)jU−1(Y − U−2)(q−1)/2

U − (−1)jU−1

]

= the RHS of the above equation for
2∏
j=1

F (j)(X,Y ),

where the second and third equalities follow by using the identities (A − B)q−1 =∑q−1
i=0 B

iAq−1−i and A2 − B2 =
∏2
j=1[A − (−1)jB] respectively, and the fourth

equality follows by using the binomial theorem. Thus

F ∗(X,Y ) = F (1)(X,Y )F (2)(X,Y ) if p > 2,(3.2)

and hence

Φ∗(X,Y ) = Φ(1)(X,Y )Φ(2)(X,Y ) if p > 2.(3.3)
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By (2.1.2) we have

F (X,Y ) = F (X,Y )F ∗(X,Y ),(3.4)

and hence we get

Φ(X,Y ) = Φ(X,Y )Φ∗(X,Y ),(3.5)

and, by linearity in X , we see that{
F (X,Y ) and Φ(X,Y ) are irreducible in kp(X)[Y ],
and so is Dq−1(Y, a)−X for any a ∈ GF(q)∗.

(3.6)

Now clearly

Φ(X,Y ) = Y q−1(Y q−1 + Y 1−q −X)

and

Dq−1(Y, a) 6= Y q−1 + Y 1−q for all a ∈ GF(q)∗,

and hence

Φ(Dq−1(Y, a), Y ) 6= 0 for all a ∈ GF(q)∗.(3.7)

By (1.4) we also see that

Dq−1(Y, a) 6= Dq−1(Y, b) for all a 6= b in GF(q)∗,(3.8)

and therefore, working with polynomials in X over kq[Y ], by (3.1) and (3.5) we
conclude that

Φ∗(X,Y ) =
∏

a∈GF(q)∗

[Dq−1(Y, a)−X ].(3.9)

By (2.5.3) we see that

Φ(j)(Dq−1(0, a), 0) 6= 0 if p > 2 ≥ j ≥ 1 and a ∈ GF(q)∗ \GF(q)(j),(3.10)

and hence

Φ(j)(Dq−1(Y, a), Y ) 6= 0 if p > 2 ≥ j ≥ 1 and a ∈ GF(q)∗ \GF(q)(j).(3.11)

Therefore, again working with polynomials in X over kq[Y ], by (3.3) and (3.9) we
conclude that

Φ(j)(X,Y ) =
∏

a∈GF(q)(j)

[Dq−1(Y, a)−X ] if p > 2 ≥ j ≥ 1.(3.12)

Upon letting ζ be a primitive (q − 1)-th root of 1 in GF(q), by (1.9) we get

Dq−1(ζrY, a) = Dq−1(Y, aζ−2r) for 1 ≤ r ≤ q − 1 and a ∈ GF(q)∗.(3.13)

In view of (3.13), by (3.8) and (3.9) we see that
if p = 2, then we have
Dq−1(ζrY, 1) 6= Dq−1(ζsY, 1) for 1 ≤ r < s ≤ q − 1,
and Φ∗(X,Y ) =

∏
1≤r≤q−1[Dq−1(ζrY, 1)−X ].

(3.14)

For a moment assume that p = 2; then upon letting J ′ = kp(X,Y ) and J =
kp(X,Y q−1) we see that J ′ is a Galois extension of J and, for 1 ≤ r ≤ q − 1, the
q − 1 members of Gal(J ′, J) are given by Y 7→ ζrY ; therefore by (3.14) it follows
that Φ∗(X,Y ) = NJ′/J(Dq−1(Y, 1)−X) and F ∗(X,Y ) is irreducible in kp(X)[Y ];
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for any field k between kq and kp, upon letting I ′ = k(X,Y ) and I = k(X,Y q−1),
we clearly have NI′/I(Dq−1(Y, 1)−X) = NJ′/J (Dq−1(Y, 1)−X). Thus

if p = 2, then F ∗(X,Y ) is irreducible in kp(X)[Y ],
and for any field k between kq and kp we have
Φ∗(X,Y ) = Nk(X,Y )/k(X,Y q−1)(Dq−1(Y, 1)−X).

(3.15)

In view of (3.13), by (3.8) and (3.12) we see that
if p > 2, then, given any lj ∈ GF(q)(j) and 1 ≤ j ≤ 2, we have
Dq−1(ζrY, lj) 6= Dq−1(ζsY, lj) for 1 ≤ r < s ≤ (q − 1)/2,
and Φ(j)(X,Y ) =

∏
1≤r≤(q−1)/2[Dq−1(ζrY, lj)−X ].

(3.16)

For a moment assume that p > 2 and let lj ∈ GF(q)(j) and 1 ≤ j ≤ 2; then upon
letting J∗ = kp(X,Y 2) and J = kp(X,Y q−1) we see that J∗ is a Galois extension of
J and, for 1 ≤ r ≤ (q−1)/2, the (q−1)/2 members of Gal(J∗, J) are given by Y 2 7→
ζ2rY 2; therefore by (3.16) it follows that Φ(j)(X,Y ) = NJ∗/J(Dq−1(Y, lj)−X) and
F (j)(X,Y ) is irreducible in kp(X)[Y ]. For any field k between kq and kp, letting
I∗ = k(X,Y 2) and I = k(X,Y q−1), we clearly have NI∗/I(Dq−1(Y, lj) − X) =
NJ∗/J (Dq−1(Y, lj)−X). Thus

if p > 2 and 1 ≤ j ≤ 2, then F (j)(X,Y ) is irreducible in kp(X)[Y ],
and for any lj ∈ GF(q)(j) and any field k between kq and kp we have
Φ(j)(X,Y ) = Nk(X,Y 2)/k(X,Y q−1)(Dq−1(Y, lj)−X).

(3.17)

This completes the proof of Theorems (1.T1)–(1.T3).

4. Galois Theory of Dickson Polynomials

To prove Theorem (1.T4), let n be a positive integer, let Sn, Zn, DL2n and
MDLn be as introduced in Section 1 before the statement of (1.T4), and let k be
any field whose characteristic does not divide n and which contains a primitive n-th
root ζ of 1.

For 0 6= a ∈ k, let F a be the monic polynomial of degree 2 in Y over k[X ] given
by

F a(X,Y ) = Y 2 −XY + an,(4.1)

and let Φa be the monic polynomial of degree 2n in Y over k[X ] given by

Φa(X,Y ) = F a(X,Y n) = Y 2n −XY n + an.(4.2)

Let Ua be a root of F a, i.e., let Ua be an element in an algebraic closure Ω of k(X)
with F a(X,Ua) = 0. Then clearly

X = Ua + anU−1
a(4.3)

and

F a(X,Y ) = (Y − Ua)(Y − anU−1
a )(4.4)

and

SF(F a, k(X)) = k(Ua) and Gal(k(Ua), k(X)) = Z2,(4.5)
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where SF denotes the splitting field in Ω. Also, clearly,

Gal(F a, k(X)) = S2.(4.6)

We can take Ta ∈ Ω with

T na = Ua,(4.7)

and then we get

Φa(X,Y ) =
∏

1≤i≤n

[
(Y − ζiTa)(Y − ζiaT−1

a )
]
.(4.8)

Let Aut(k(Ta), k) be the group of all k-automorphisms of k(Ta). Let σa ∈
Aut(k(Ta), k) be given by Ta 7→ ζTa, and let σ′a ∈ Aut(k(Ta), k) be given by
Ta 7→ aT−1

a . As usual let 〈σa, σ′a〉 be the subgroup of Aut(k(Ta), k) generated by
σa and σ′a. Now clearly

SF(Φa, k(X)) = k(Ta) and Gal(k(Ta), k(X)) = 〈σa, σ′a〉 ≈ DL2n,(4.9)

and

Gal(Φa, k(X)) = DL2n.(4.10)

Moreover, Dn(Y, a) − X is a monic irreducible polynomial of degree n in Y over
k[X ], and by (1.6) we have

Dn(Y, a)−X =
∏

1≤i≤n
(Y − ζiTa − ζ−iaT−1

a ),(4.11)

and hence

SF(Dn(Y, a)−X, k(X)) =

{
k(Ta) if n ≥ 3,
k(Ta + aT−1

a ) if 1 ≤ n ≤ 2,
(4.12)

and therefore

Gal(SF(Dn(Y, a)−X, k(X)), k(X)) ≈MDLn(4.13)

and

Gal(Dn(Y, a)−X, k(X)) = MDLn.(4.14)

Let Φ∗1 be the monic polynomial of degree n2 in Y over k[X ] given by

Φ∗1(X,Y ) =
∏

1≤λ≤n

[
Dn(Y, ζλ)−X

]
,(4.15)

and let Φ1 and Φ̂1 be the monic polynomials of degree n(n+ 2) and (n+ 1)2 in Y
over k[X ] given by

Φ1(X,Y ) = Φ1(X,Y )Φ∗1(X,Y ) and Φ̂1(X,Y ) = YΦ1(X,Y )(4.16)

respectively. Let V ∗ be the set of cardinality n2 given by

V ∗ = {ζrT1 + ζsT−1
1 : 1 ≤ r ≤ n and 1 ≤ s ≤ n},(4.17)

and let V and V̂ be the sets of cardinality n(n+ 2) and (n+ 1)2 given by

V = V ∗ ∪ {ζiT1 : 1 ≤ i ≤ n} ∪ {ζiT−1
1 : 1 ≤ i ≤ n} and V̂ = V ∪ {0}(4.18)

respectively. We can arrange matters so that

Uζλ = U1 and Tζλ = T1 for 1 ≤ λ ≤ n,
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and then by (4.11) we get

Φ∗1(X,Y ) =
∏
y∈V ∗

(Y − y)(4.19)

and

SF(Φ∗1, k(X)) =

{
k(T1) if n ≥ 2,
k(X) if n = 1.

(4.20)

Therefore by (4.8) we get

Φ1(X,Y ) =
∏
y∈V

(Y − y) and Φ̂1(X,Y ) =
∏
y∈V̂

(Y − y)(4.21)

and

SF(Φ1, k(X)) = SF(Φ̂1, k(X)) = k(T1).(4.22)

Let S(V ∗) = Sn2 be the symmetric group on V ∗, and let τ∗ ∈ S(V ∗) and τ ′∗ ∈
S(V ∗) be induced by σ1 and σ′1 respectively. Again, as usual, let 〈τ∗, τ ′∗〉 denote
the subgroup of S(V ∗) generated by τ∗ and τ ′∗. Then, in view of (4.9), by (4.19)
and (4.20) we see that

Gal(SF(Φ∗1, k(X)), k(X)) =

{
〈σ1, σ

′
1〉 ≈ 〈τ∗, τ ′∗〉 ≈ DL2n if n ≥ 2,

Z1 if n = 1,
(4.23)

and

Gal(Φ∗1, k(X)) =

{
〈τ∗, τ ′∗〉 if n ≥ 2,
S1 if n = 1.

(4.24)

Let S(V ) = Sn(n+2) and S(V̂ ) = S(n+1)2 be the symmetric groups on V and V̂
respectively, let τ ∈ S(V ) and τ ′ ∈ S(V ) be induced by σ1 and σ′1 respectively, and
let τ̂ ∈ S(V̂ ) and τ̂ ′ ∈ S(V̂ ) be induced by σ1 and σ′1 respectively. Again, as usual,
let 〈τ, τ ′〉 denote the subgroup of S(V ) generated by τ and τ ′, and let 〈τ̂ , τ̂ ′〉 denote
the subgroup of S(V̂ ) generated by τ̂ and τ̂ ′. Then, in view of (4.9), by (4.21) and
(4.22) we see that

Gal(k(T1), k(X)) = 〈σ1, σ
′
1〉 ≈ 〈τ, τ ′〉 ≈ 〈τ̂ , τ̂ ′〉 ≈ DL2n(4.25)

and

Gal(Φ1, k(X)) = 〈τ, τ ′〉 and Gal(Φ̂1, k(X)) = 〈τ̂ , τ̂ ′〉.(4.26)

For 1 ≤ i ≤ n we have

Φ∗1(X, ζiY ) =
∏

1≤λ≤n

[
Dn(ζiY, ζλ)−X

]
by (4.15),

=
∏

1≤λ≤n

[
Dn(Y, ζλ−2i)−X

]
by (1.9)

=
∏

1≤λ≤n

[
Dn(Y, ζλ)−X

]
obviously

= Φ∗1(X,Y ) by (4.15),
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and hence there exists a unique monic polynomial F ∗1 (X,Y ) of degree n in Y over
k[X ] such that

Φ∗1(X,Y ) = F ∗1 (X,Y n).(4.27)

In view of (4.17), by (4.19) and (4.27) we see that

F ∗1 (X,Y ) =
∏

1≤i≤n

[
Y − (ζiT1 + T−1

1 )n
]
.(4.28)

Clearly 
for 1 ≤ i ≤ n
we have σ1((ζiT1 + T−1

1 )n) = (ζi+2T1 + T−1
1 )n

and σ′1((ζiT1 + T−1
1 )n) = (ζ−iT1 + T−1

1 )n.
(4.29)

Let k be the algebraic closure of k in Ω.
By (4.28) we get

F ∗1 (X,Y ) =
∏

1≤i≤n

[
Y − (ζ2iT1 + T−1

1 )n
]

for n odd,

and therefore by (4.20), (4.23), (4.27) and (4.29) we see that

if n is odd, then F ∗1 (X,Y ) is irreducible in k(X)[Y ](4.30)

and

SF(F ∗1 , k(X)) =

{
k(T1) for odd n ≥ 3,
k(X) for n = 1,

(4.31)

and

if n is odd then Gal(F ∗1 , k(X)) = MDLn.(4.32)

Let

W (1) =

{
{2, 4, . . . , n} if n ≡ 2 (mod 4),
{1, 3, . . . , n− 1} if n ≡ 0 (mod 4),

(4.33)

and

W (2) =

{
{2, 4, . . . , n} if n ≡ 0 (mod 4),
{1, 3, . . . , n− 1} if n ≡ 2 (mod 4),

(4.34)

and let

Φ(j)
1 (X,Y ) =

∏
λ∈W (j)

[
Dn(Y, ζλ)−X

]
for even n and 1 ≤ j ≤ 2.(4.35)

Using an argument similar to the above argument, by (1.9) and (4.35) we see that

Φ(j)
1 (X, ζiY ) = Φ(j)

1 (X,Y ) for even n and 1 ≤ j ≤ 2 and 1 ≤ i ≤ n,

and hence there exists a unique monic polynomial F (j)
1 (X,Y ) of degree n/2 in Y

over k[X ] such that

Φ(j)
1 (X,Y ) = F

(j)
1 (X,Y n) for even n and 1 ≤ j ≤ 2.(4.36)
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Now obviously 
if n is even
then Φ∗1(X,Y ) = Φ(1)

1 (X,Y )Φ(2)
1 (X,Y )

and F ∗1 (X,Y ) = F
(1)
1 (X,Y )F (2)

1 (X,Y ).
(4.37)

Again, arguing as above, by (4.11), (4.28) and (4.29) we see that

F
(j)
1 (X,Y ) =

∏
λ∈W (j)

[
Y − (ζλT1 + T−1

1 )n
]

for even n and 1 ≤ j ≤ 2,

and

if n is even and 1 ≤ j ≤ 2, then F
(j)
1 (X,Y ) is irreducible in k(X)[Y ],(4.38)

and

SF(F ∗1 , k(X)) = SF(F (j)
1 , k(X)) =

{
k(T 2

1 ) for even n ≥ 6 and 1 ≤ j ≤ 2,
k(X) for n = 2 and 1 ≤ j ≤ 2,

(4.39)

and

SF(F ∗1 , k(X)) = k(T 2
1 ) and SF(F (j)

1 , k(X)) = k((−1)jT 2
1 + T−2

1 ) for n = 4,

(4.40)

and

if n is even and 1 ≤ j ≤ 2, then Gal(F (j)
1 , k(X)) = MDLn/2.(4.41)

Now Theorem (1.T4) follows from (4.6), (4.10), (4.14), (4.32), (4.39), (4.40) and
(4.41) by taking n = q−1 and k to be any field between kq and kp, and suppressing
the subscripts a and 1.

Remark 4.42. Yet another incarnation of the dihedral group can be introduced by
defining the twisted dihedral group TDLn+2 as the subgroup of Sn+2 generated by
the “rotation” σ̃ given by σ̃(i) = i + 1 or 1 or i according as 1 ≤ i < n or i = n
or n + 1 ≤ i ≤ n + 2, and the “reflection” σ̃′ given by σ̃′(n) = n together with
σ̃′(i′) = n− i′ for 1 ≤ i′ ≤ n− 1 as well as σ̃′(n+ 1) = n+ 2 and σ̃′(n+ 2) = n+ 1.
Note that then we always have

TDLn+2 ≈ DL2n.

Moreover, if n = q − 1 and k = GF(q), then, by taking (1, 2, . . . , n, n+ 1, n+ 2) =
(ζ, ζ2, . . . , ζn, 0,∞), the group TDLn+2 gets identified with the image of 〈σ1, σ

′
1〉

under the natural isomorphism Aut(k(T1), k)→ PGL(2, q).

5. Orthogonal Groups and Dickson Polynomials

In the situation of Section 4, let n = q − 1 and let k be any field between kq
and kp. Then V̂ = {vT1 +wT−1

1 : (v, w) ∈ GF(q)2} is a 2 dimensional vector space
over GF(q), and 〈τ̂ , τ̂ ′〉 is the isometry group for the quadratic form vT1 +wT−1

1 7→
vw. Therefore by (4.26) we have Gal(Φ̂, k(X)) = O+(2, q), and therefore (see
Proposition 3.1 on page 16 of [Ab3]) we get Gal(F, k(X)) = PO+(2, q).

This completes the proof of Theorem (1.T5).
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