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Abstract Damped transient dynamic elasto-plastic

analysis of plate is investigated. A finite element model

based on a C0 higher order shear deformation theory

has been developed. Nine noded Lagrangian elements

with five degrees of freedom per node are used. Se-

lective Gauss integration is used to evaluate energy

terms so as to avoid shear locking and spurious mecha-

nisms. Von Mises and Tresca yield criteria are incorpo-

rated along with associated flow rules. Explicit central

difference time stepping scheme is employed to inte-

grate temporal equations. The mass matrix is diagonal-

ized by using the efficient proportional mass lumping

scheme. A program is developed for damped transient

dynamic finite element analysis of elasto-plastic plate.

Several numerical examples are studied to unfold dif-

ferent facets of damping of elasto-plastic plates.
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1. Introduction

There are many important sophisticated structures such

as nuclear reactors, pressure vessels, submarine hulls,

rocket casings, aircrafts, etc., in which a flat plate

forms an integral structural component. The high di-

versity severity of demands as well as operating con-

ditions to which these components are exposed results

in dynamic non-linear elasto-plastic behavior of the

plates.

Another area where dynamic plastic response of

plate is of utmost significance is crashworthiness pro-

tection of aircraft, automobiles, buses, ships, and trains.

To minimize the damages, efforts should be directed

towards reducing displacement response of plate. At

this stage it becomes pertinent to explore methodolo-

gies, which will help this cause. Damping of elasto-

plastic plate subjected to transient catastrophic load is

one such aspect that needs an attention. Surprisingly

such an important field of research has not received

due consideration by the researching fraternity, which

is evident from the scarcity of literature available on the

topic.

The dynamic non-linear elasto-plastic bending re-

sponse of plate is certainly dependent on the modeling

of plates. In the classical theory of thin plates, there is

no provision for transverse normal and transverse shear

strains. However, the transverse shear and the normal

stresses are obtained using the equilibrium equations.

Obviously this involves violation of the constitutive

law. Reissner [1] and Mindlin [2] suggested first-order
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Fig. 1 Shear deformation
of plate as per different
theories

shear deformation theories. They aim at improving the

theory by incorporating the transverse shear strains.

The main drawback of these theories is the considera-

tion of constant shear strain along the thickness, which

in turn compels for an approximation in the form of a

shear correction coefficient. It can be concluded that

the major disadvantage of the first order theories is that

although they account for the transverse shear defor-

mations, they can not correctly represent its through

thickness distribution as shown in Fig. 1. To overcome

these limitations and to make the theory more generic

higher order shear deformation theories were proposed

[3, 4]. In this the displacement field is chosen in a suit-

able form and the energy principle is used to formulate

the governing equations. Mostly the dynamic material

non-linear analyses are dealt with first order theory

[5–8]. In some geometric non-linear dynamic analy-

sis of plates, higher order shear deformation theories

are used [9, 10]. In higher order shear deformation the-

ory (HOST) the modification of displacement fields

enables to include higher order terms. Thus for thick

plates the prominent effect of warping is taken care of.

However, the HOST formulation requires more num-

ber of degrees of freedom per node, i.e. more number

of boundary conditions. The boundary conditions, re-

lated to higher order terms, cannot be assigned phys-

ical meaning. The present formulation includes only

two additional degrees of freedom to conserve compu-

tational efficiency along with improved accuracy. The

geometric nonlinear damped circular plate analysis has

been dealt in [23]. The material nonlinear dynamic

analysis of the plate with special emphasis on damp-

ing is not investigated till date to the best of authors’

knowledge and this paper aims at bridging this gap.

In this paper transient elasto-plastic C0 finite el-

ement formulation using a higher order shear defor-

mation theory for nine noded Lagrangian elements is

presented. Tresca [11] and von Mises [12] yield crite-

ria along with associated flow rules are employed. The

response of the plate in linear and non-linear range is

obtained along with effect of varying degree of damp-

ing. Lumped mass scheme is used for explicit time in-

tegration. Reduced integration is selectively applied to

evaluate the shear energy terms.

2. Higher order shear deformation theory

The displacement fields, using Taylor’s series, can be

expressed as (Kant [3]),

u(x, y, z, t) = zθx (x, y, t) + z3θ∗
x (x, y, t)

v(x, y, z, t) = zθy(x, y, t) + z3θ∗
y (x, y, t)
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w(x, y, z, t) = w0(x, y, t) (1)

The parameters u and v are in-plane displacements

and w is transverse displacement. θx and θy are ro-

tations about y and x axes respectively at time t.
The terms θ∗

x and θ∗
y denote higher order trans-

verse deformation modes. The linear relationship be-

tween displacements and strains can be obtained

by using definitions of strains from the theory of

elasticity.

εx = ∂u

∂x
= zχx + z3χ∗

x

εy = ∂v

∂y
= zχy + z3χ∗

y

εz = 0

γxy = ∂u

∂y
+ ∂v

∂x
= zχxy + z3χ∗

xy (2)

γyz = ∂v

∂z
+ ∂w

∂y
= φy + z3φ∗

y

γzx = ∂u

∂z
+ ∂w

∂x
= φx + z2φ∗

x

where

(χx , χy, χxy) =
(

∂θx

∂x
,
∂θy

∂y
,
∂θx

∂y
+ ∂θy

∂x

)
(χ∗

x , χ∗
y , χ∗

xy) =
(

∂θ∗
x

∂x
,
∂θ∗

y

∂y
,
∂θ∗

x

∂y
+ ∂θ∗

y

∂x

)
(3)

(φx , φy, φ
∗
x , φ

∗
y ) =

(
θx + ∂w0

∂x
, θy + ∂w0

∂y
, 3θ∗

x , 3θ∗
y

)

The total energy of a system can be given by

L = T − � (4)

in which T is the kinetic energy. The total potential

energy � of the plate with volume V, surface area A
and at time t can be written as,

� = U − W (5)

Here U is strain Energy of the plate, W is work done by

the external forces

Thus,

L = 1

2

∫
v

u̇T ρu̇ dv

−
[

1

2

∫
v

εTσdv −
∫

v

uT pdv

]
(6)

where p is the vector of force intensities corresponding

to generalized displacement vector u and

εT = (εx , εy, γxy, γyz, γxz) and

σT = (σx , σy, τxy, τyz, τxz) (7)

� in the Equation (5) may be expressed in terms of

resultants as,

� = 1

2

∫
A
ε̄T σ̄ d A −

∫
A

ūT Pd A (8)

ū = {w, θx , θy, θ
∗
x , θ∗

y }T

˙̄u = {ẇ, θ̇x , θ̇y, θ̇
∗
x , θ̇∗

y }T

where

ε̄ = {χx , χy, χxy, χ
∗
x , χ∗

y , χ∗
xy,

ϕx , ϕy, ϕ
∗
x , ϕ

∗
y}T

σ̄ = {Mx , My, Mxy, M∗
x , M∗

y ,

M∗
xy, Qx , Qy, Q∗

x , Q∗
y}T

(9)

The components of the stress-resultant vector σ̄ for the

plate are:

(Mx , My, Mxy) =
∫ +h/2

−h/2

(σx , σy, τxy)zdz

(M∗
x , M∗

y , M∗
xy) =

∫ +h/2

−h/2

(σx , σy, τxy)z3dz

(Qx , Qy) =
∫ +h/2

−h/2

(τxz, τyz)dz

(Q∗
x , Q∗

y) =
∫ +h/2

−h/2

(τxz, τyz)z
2dz

(10)

By integrating stress components through the plate

thickness stress resultants can be obtained. The

constitutive relations in terms of stress-resultants and

other details are available elsewhere [27].
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3. Elasto-plastic incremental stress
strain relationship

For elasto-plastic problems the evaluation ofσ requires

the generation of an elasto-plastic matrix to relate the

increments of stress and strain, which results in rela-

tionship of the form as below.

dσ f = D f
epdε f

0 (11)

Where dσ f and dε f
0 are the flexural stress and strain

increments respectively. The elasto-plastic matrix D f
ep

is expressed as [13],

D f
ep = D f − D f

[
∂F
∂σ f

][
∂F
∂σ f

]T

D f

{
H +

[
∂F
∂σ f

]T

D f

[
∂F
∂σ f

]}−1

(12)

in which F is the yield function being employed and

H is known as strain-hardening parameter. The matrix

D f
ep replaces the usual elastic rigidity matrix D f after

onset of yielding at a point, and is symmetric and pos-

itive definite. The incremental stresses defined by (11)

are then accumulated to give the total elastic-plastic

stresses. The reader is referred to ref. [13] for details.

Thus, when the stress at a Gauss point satisfies the

yield condition, the sub matrix D f
ep, replaces the sub

matrix D f of the complete stress-strain relationship as

given by following relation.{
dσ̂ f

dσ̂s

}
=

[
D f

ep 0

0 Ds

] {
dε̂ f

dε̂s

}
dσ̂ = Depdε̂ (13)

4. Damping

Damping in structures is not viscous; rather, it is due

to mechanisms such as hysteresis in the material and

slip in connections. These mechanisms are not well

understood. Very limited information is available on

damping in linear solid mechanics problems and there

is even less data available for damping in nonlinear

situations. Moreover, they are awkward to incorporate

into the equations of structural dynamics, or they make

the equations computationally difficult. Therefore, the

actual damping mechanism is usually approximated by

viscous damping. Comparisons of theory and experi-

ments show that this approach is sufficiently accurate

in most cases [24].

For plate as stated above the determination of the

damping matrix C is, in practice, difficult because of

the lack of knowledge of the viscous term μ. The most

usual approximation for C is so-called Rayleigh damp-

ing, given by a linear combination of mass and stiffness

matrices.

C = αM + βK (14)

where α and β are to be determined experimentally. It

can be shown that, in low frequency dominant system,

the term βK can be neglected. More so ever, in present

analysis, matrix K is not formed and hence effects of

βK are not studied. By approximating β = 0 in the

central difference method,

C = αM (15)

Another type of damping scheme available is ‘Adaptive

Damping’ [14, 15]. In this, damping factor is constantly

updated on the basis of the information gained during

current iteration, in contrast to a constant value of α

throughout the analysis, which appears to be more re-

alistic. On the other hand, for geometric nonlinearity,

adaptive damping is shown to be complete failure in

certain situations [15]. In light of above information

and scarcity of pinpointed literature availability on the

topic, only kinetic damping has been applied and in-

vestigated in this paper.

The various plates considered in this investigation

responded in different fashion to different degree of

damping for applied dynamic loading. This varied re-

sponse is due to frequency dependence of viscous

damping as shown in Fig. 2. The first part of the curve

(low frequency) is mass damping predominant as is

evident. When the plate pertains to this zone, it is very

sensitive to mass proportional damping i.e. absolute

damping. At this stage it is felt necessary to devise

one non-dimensional parameter, which will ascertain

to which zone the plate belongs. The authors found that
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Fig. 2 Proportional damping as a function of frequency and contribution of mass and stiffness damping to overall damping

non-dimensional parameter (NDP) presented below

predicts the dependence of response very efficiently.

NDP =
√

(D/ρh)/a2 (16)

where D is flexural rigidity of plate, ρ is mass density, h
is plate thickness and a is length of side of square plate.

The mass proportional damping sensitivity of plate

and its dependence on NDP is discussed in detail later

in section ‘Numerical Experimentation’.

5. The time stepping scheme

It is well known that considerable computational efforts

are needed in nonlinear transient analysis of structures.

In the present work, the very popular and easily im-

plemented explicit time integration scheme is being

employed for time stepping. During each time step,

relatively little computational effort is required, since

no stiffness and mass matrices of the complete element

assemblage need to be formed, the solution can essen-

tially be carried out on the element level and relatively

little high speed storage is required. Using this scheme,

system of very large order can be solved effectively.

Unfortunately the method is conditionally stable and

very small time steps are needed. Therefore the com-

putational advantages of the central difference scheme

are counterbalanced by the very small size time step

necessary when some stiff and/or small elements are

present.

5.1. Central difference approximation

Upon finite element discretization of the dynamic equi-

librium equations, a nonlinear system in motion can be

written in matrix form as

Md̈n + Cḋn + pn = fn (17)

where M, C and pn are the global mass, damping and

internal resisting nodal forces matrices respectively; f is

the external load vector; and d̈ and ḋ are the acceleration

and velocity vectors of the finite element assemblage

respectively. Instead of satisfying this equation at any

time t, in the central difference scheme, it is satisfied

only at discrete time intervals �t apart. This yields

dn+1 =
(

M + �t

2
C

)−1[
(�t)2(−pn + fn)

+2Mdn −
(

M − �t

2
C

)
dn−1

]
(18)

It should be noted that the displacements at time station

tn + �t are given explicitly in terms of the displace-

ments at time stations tn and tn − �t .
If the mass matrix M and damping matrix C are

diagonal then the solution of Equation (21) become

trivial as follows,

d (i)
n+1 =

(
mii + �t

2
cii

)−1[
(�t)2

( − pi
n + f i

n

)
Springer
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+2miid
(i)
n −

(
mii − �t

2
cii

)
d (i)

n−1

]
(19)

Where superscript (i) denotes ith component of the cor-

responding displacement vectors and mii and cii are

the diagonal terms of the mass and damping matri-

ces. From Equation (19) it is obvious that for each dis-

placement degree of freedom at time tn − �t , there is

a separate equation involving information at the de-

gree of freedom at times tn and tn − �t . No matrix

factorization or sophisticated equation solving is there-

fore necessary.

5.2. Starting algorithm

The governing equilibrium equation at time station

tn + �t in the central difference method involves in-

formation at two previous time stations tn and tn − �t .
A starting algorithm is therefore necessary. From initial

conditions, the values d(0−�t) may be obtained as,

d(0−�t) = 2�t ḋ(0) + d(0+�t) (20)

and hence

d (i)
1 = (�t)2

2mii

(−p(i)
0 + f (i)

0

) + d (i)
0

+�t

(
1 − cii�t

2mii

)
ḋ (i)

0 (21)

6. Special mass matrix diagonalization scheme

The inertia force vector requires the evaluation of the

mass matrix M. This consistent mass matrix is not di-

agonal and it must be therefore be diagonalized in some

way if it is to be useful in the explicit marching scheme.

The use of lumped mass matrix need not necessarily

incorporate approximation; rather in some cases it is

proved to improve accuracy of the solution. For the

quadratic isoparametric elements used here, several al-

ternatives were investigated by Hinton et al. [16]. The

most efficient scheme found to date could be summa-

rized as follows:

(i) Only the diagonal coefficients of the consistent

mass matrix are computed.

M =
∫

A
NT m̄N d A (22a)

where

m̄ =

⎡⎢⎢⎢⎢⎣
I1 0

I2

I2

I3

0 I3

⎤⎥⎥⎥⎥⎦ (22b)

in which I1, I2 and I3 are normal inertia, rotary

inertia and higher-order inertia terms respectively.

These are given by,

(I1, I2, I3) =
N N∑
L=1

∫ (
1, z2, z6

)
ρ dz (22c)

and ρ is the material density and NN are number

of nodes in an element.

(ii) The total mass of the element is computed,

Mt =
∫

vol

ρ d(vol.) (23)

(iii) The diagonal coefficients Mii associated with

translation (but not rotation) degrees of freedom,

are summed such that

SUM =
∑

Mii (24)

(iv) All the diagonal coefficients of the consistent mass

matrix are scaled in the following manner.

Md
ii = Mii

Mt

SUM
(25)

7. Numerical experimentation

The superiority of the present higher order model is

already established for linear and non-linear dynamic

analysis of plates [9, 10, 17, 18, 22, 25, 26]. This

paper is an attempt to highlight damped dynamic re-

sponse of the elasto-plastic plates. Plates are subjected

to transverse dynamic loading, which will incorporate

linear as well as elasto-plastic behavior. Isoparametric

nine noded lagrangian elements are used to discretize
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Fig. 3 Plate discretization
and geometry of plate for
linear dynamic analysis

Fig. 4 Comparison of central deflection of simply supported elastic and elasto-plastic plate using different theories

the plate. Programs are developed for analysis of

plates using higher order shear deformation theory

(HOST-NL) as well as for first order shear deforma-

tion theory (FOST-NL) for comparison. In this paper

specifically effects of viscous damping are studied on

elasto-plastic dynamic response of plates with different

boundary conditions. Since the loading considered is

symmetrical in nature for all the problems considered
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Fig. 5 Progressive yielding
of Gauss points for different
damping parameters
α = 0.0 to 0.50 at different
time for quarter plate

Fig. 6 Effect of damping on simply supported square elastic plate using present HOST-NL formulation and the loading pulse applied

in this study, only quarter of the plate is considered for

analysis. The mesh size is arrived at after a convergence

study conducted on plates.

Example 1. Simply supported square elastic plate sub-

jected to a uniform step load.

A simply supported plate shown in Fig. 3 is solved

for linear response. A uniform pressure q =10 N/cm2 is

applied in the z-direction as shown. The plate properties

are as follows. E = 2.1 × 106 N/mm2, ν = 0.25, ρ =
8 × 10−6 N sec2/cm4. Quarter of plate is discretized
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Fig. 7 Damped (HOST-NL) and undamped responses of simply supported square elasto-plastic plate with UDL 0.05 lb/sq. inch

Fig. 8 Progressive yielding of Gauss points for different damping parameters at different time for quarter simply supported plate. (a)
Undamped plate (b) Plate with α = 0.5 (c) Plate with α = 0.10

by 16 elements (4 × 4 mesh). The results of the lin-

ear response of HOST-NL are shown in Table 1 and

are compared with other Finite Element solution [19],

along with different degree of damping in terms of α.

The plate is moderately thick plate. It is evident from

Table 1 that the FOST solution [19] is under predict-

ing the displacements. As mentioned previously, the

non-dimensional parameter devised and introduced, as

per (16) so as to ascertain the vulnerability of plate to

absolute damping i.e. mass proportional damping for

the present plate has a value of 6110.101. It is clear

from Table 1 that there are little changes in displace-

ments with increase in α because of high value of NDP.

The plate is rated as extremely insensitive to viscous

damping in Table 3.

Example 2. Simply supported square plate subjected to

a uniform step load.
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Fig. 9 Effect of damping
on responses of simply
supported square
elasto-plastic plate with
higher UDL 0.08 lb/sq. inch
using HOST-NL

This problem is one of the standard problems. All

sides of plate are simply supported. Both elastic and

elasto-plastic materials are considered. Pressure q =
300 psi (2.07 MPa) is applied in the z-direction. The

plate properties are as follows. E = 1 × 107lb/in2 (69.0

×103 MPa), ν = 0.3, ρ = 0.259 × 10−6 lb sec2/in4

(2768 kg/m3) and σy = 30 ksi (207 MPa). The present

formulation (HOST-NL) results are compared with

those obtained with analytical solution of Liu and Lin

[20], first order solution [7] and classical plate theory

solution [21] for elastic and elasto-plastic materials re-

spectively. Time histories for elastic and elasto-plastic

of the deflection of the center point without damping

are plotted in Fig. 4. It is clear that even for thin plate,

the HOST-NL results are matching well with the vari-

ous thin plate solutions. Thus the present formulation

is effective in linear as well as nonlinear zone for thin

plates. The effect of damping is presented in Table 2.

The value of non-dimensional parameter in this case

is 148.65. As in previous case the changes in response

with change in α are very minute due to high value

of non-dimensional damping parameter. The same ob-

servation is emphasized in Fig. 5, where it is clearly

evident that the yielded positions of Gauss point are

unchanged, irrespective of value of damping parame-

ter α (which is varying from 0.05 to 0.50).

Example 3. Linear and non-linear response of a sim-

ply supported square plate and non-linear response of

clamped square plate under a uniformly distributed im-

pulsive loading.

A square plate is subjected to a uniformly distributed

impulsive load. The plate size is 32′′ × 32′′ × 4′′ (812.8

mm × 812.8 mm × 101.6 mm) along with follow-

ing properties. q = 0.05 lb/in2 (3.45 × 10−4N/mm2),

E = 100 lb/in2(0.6897 N/mm2), ν = 0.3, ρ = 1.0 lb-

sec2/in4 (1.0687 × 107 kg/m3), �T = 0.08 sec. and

yield moment/unit length = 2.0 lb in/in ( 8.9 N mm/mm

). Elastic response of the plate to different degrees of

damping is obtained for this plate as shown in Fig. 6 us-

ing HOST-NL. Elasto-plastic small deflection response

for von Mises yield criteria for HOST-NL for simply

supported case is compared with reference [6] first or-

der undamped solution in Fig. 7. The effect of damping

is presented using HOST-NL. Figure 8 depicts effects

of damping on yielding of Gauss points, area-wise as

well as along time dimension. The effects as can be seen

in Fig. 8 are very prominent. The increase in damping

delays the inception of plasticity in the plate and also

curbs the area of yielded Gauss points substantially.

In order to investigate the response of the same plate

to higher load the plate is subjected to impulse of q =
0.08 lb / in2 (5.52 × 10−4 N/mm2) and the effect of
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Fig. 10 Effect of damping on responses of clamped square elasto-plastic plate with UDL 0.08 lb/sq. inch, using HOST-NL

Fig. 11 Progressive yielding of gauss points for different damping parameters at different time for quarter fixed plate, (a) Undamped
plate (b) Plate with α = 0.10 (c) Plate with α = 0.20

different values of α is noted. The response of simply

supported plate with higher load is shown in Fig. 9.

To study the effect of boundary conditions, the same

plate with clamped boundary condition and q = 0.08

lb / in2(5.52 × 10−4 N/mm2) was subjected to dif-

ferent degree of damping as shown in Fig. 10. The

central deflection in case of simply supported plate is

many times more in comparison to clamped plate under

same condition of loading, material and geometry as ex-

pected. The effective frequency of vibration is more in

clamped plates as compared to simply supported plate.

The Gauss point’s yielding dependence on damping pa-

rameter is shown in Fig. 11. In all these cases the non-

dimensional parameter has very low value of 0.047283.

As a consequence the plate is sensitive to applied damp-

ing. The response varies to a great deal with changes in

α. The sensitivity of plate is independent of boundary

conditions.
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Fig. 12 Damped (HOST-NL) and undamped central deflection of circular elasto-plastic clamped plate

Example 4. Non-linear Response of a clamped circular

plate under a uniformly distributed step load.

A clamped circular plate is modeled using 20

elements in symmetric quarter and is subjected to

a uniformly distributed step load. The plate diam-

eter is 200 inches (5080 mm) and thickness is

20 inches (508 mm) along with following proper-

ties. q = 0.1 lb/in2 (6.897 × 10−4 N/mm2), E = 100

lb/in2 (0.6897 N/mm2), ν = 0.3, ρ = 10 lb sec2/in4

(1.0687 × 108 kg/m3), �T = 0.6 sec. and yield

moment/ unit length = 150 lb in /in (667.47 N

mm/mm). The elasto-plastic small deflection response

for von Mises yield criterion for HOST-NL solution

is compared with reference [6] (a first order solu-

tion) along with effect of damping in Fig. 12. The

non-dimensional parameter has still lower value of

0.030261. As a consequence the plate is extremely

sensitive to applied damping. The response variation

with changes in α is very conspicuously evident from

Fig. 12.

8. Conclusions

A formulation using higher-order shear deformation

theory (HOST-NL) is presented for damped elasto-

plastic dynamic bending analysis of plates. It is well

acknowledged and established that the C0 HOST

formulation has certain edge over first-order shear

deformation theory owing to its more realistic assump-

tion of transverse shear deformation over the thickness.

Moreover this formulation does not use approximation

in the form of shear correction coefficient. Main aim of

this paper was to study the response of the plate under

different degrees of damping measured by α (defined

previously) and to justify the varied behavior. The

sensitivity of response of the plate to absolute damping

i.e. mass proportional damping is seen to be dependent

on non-dimensional parameter (NDP). For the larger

NDP values the plate is observed to be insensitive to

damping considered. As is summarized in Table 3, the

sensitivity of plate is described qualitatively in relation

to NDP and in terms of minimum value of damping

coefficient α, which introduced appreciable change

in central deflection response of different plates. For

the sensitive plates, it is found that with increase in

damping coefficient α the central displacement de-

creases without affecting effective period of vibration

of plate as is true in case of elastic plates. In contrast

to damped behavior of elastic plate, where the central

displacement response approaches the equilibrium or
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Table 2 Central deflection
in inches for undamped and
damped response of
simply-supported elastic
and elasto-plastic plate
using HOST-NL

Time Undamped Damped Damped Damped Damped Damped

(Sec.) α = 0.0 α = 0.05 α = 0.10 α = 0.15 α = 0.20 α = 0.50

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000054 0.003281 0.003281 0.003281 0.003281 0.003281 0.003281

0.000108 0.015097 0.015097 0.015097 0.015097 0.015097 0.015097

0.000162 0.042315 0.042315 0.042315 0.042315 0.042315 0.042314

0.000216 0.077072 0.077071 0.077071 0.077071 0.077071 0.077069

0.000270 0.108202 0.108201 0.108201 0.108200 0.108200 0.108197

0.000324 0.139499 0.139498 0.139497 0.139496 0.139496 0.139491

0.000378 0.172115 0.172114 0.172113 0.172112 0.172111 0.172105

0.000432 0.207728 0.207726 0.207725 0.207724 0.207722 0.207713

0.000486 0.236146 0.236144 0.236142 0.236140 0.236138 0.236126

0.000540 0.252293 0.252290 0.252288 0.252286 0.252283 0.252269

0.000594 0.258815 0.258813 0.258810 0.258807 0.258804 0.258787

0.000648 0.262523 0.262520 0.262517 0.262513 0.262510 0.262491

0.000702 0.264495 0.264491 0.264488 0.264484 0.264480 0.264458

0.000756 0.261711 0.261706 0.261702 0.261698 0.261693 0.261667

0.000810 0.249037 0.249032 0.249027 0.249022 0.249018 0.248989

0.000864 0.232750 0.232745 0.232740 0.232735 0.232730 0.232702

0.000918 0.218802 0.218798 0.218793 0.218788 0.218783 0.218754

0.000972 0.204767 0.204762 0.204757 0.204753 0.204748 0.204718

0.001026 0.188168 0.188163 0.188159 0.188154 0.188149 0.188121

0.001080 0.172070 0.172066 0.172061 0.172057 0.172053 0.172027

0.001134 0.164490 0.164486 0.164482 0.164479 0.164475 0.164452

0.001188 0.162823 0.162819 0.162816 0.162812 0.162809 0.162788

0.001242 0.162799 0.162796 0.162793 0.162790 0.162787 0.162768

0.001296 0.165516 0.165514 0.165511 0.165508 0.165505 0.165489

0.001350 0.176204 0.176201 0.176199 0.176196 0.176194 0.176179

0.001404 0.193402 0.193399 0.193397 0.193394 0.193392 0.193376

0.001458 0.208531 0.208529 0.208526 0.208523 0.208520 0.208504

0.001512 0.222428 0.222425 0.222422 0.222419 0.222416 0.222398

0.001566 0.237431 0.237427 0.237424 0.237421 0.237418 0.237398

0.001620 0.253725 0.253721 0.253717 0.253713 0.253709 0.253686

0.001674 0.263247 0.263243 0.263238 0.263234 0.263229 0.263202

0.001728 0.264246 0.264241 0.264236 0.264231 0.264226 0.264197

0.001782 0.263687 0.263681 0.263676 0.263671 0.263666 0.263634

Table 3 Effect of NDP on
damped response of plate Sr. Minimum α to Qualitative response of

No. NDP Value which plate is sensitive a plate to α

1. 6110.101 – Extremely insensitive

2. 148.650 – Insensitive

3. 0.047238 0.05 Sensitive

4. 0.030261 0.01 Very Sensitive
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steady state position of oscillations, the elasto-plastic

response is characterized by rigid body shift on lower

side. This effect is more pronounced in case of plate

with higher load and very low value of NDP, which

will eventually incorporate more elasto-plasticity. One

important conclusion can be drawn from the above

discussion that in case of elastic plates damping only

reduces the period for which the plate shall continue

to vibrate while the equilibrium position or permanent

deformation is independent of damping. On the other

hand for elasto-plastic plate the permanent deformation

is function of damping and is inversely proportional

to damping. For plates with lower NDP, damping

introduces varying degree of elasto-plasticity. The

more is value of α the lesser number of Gauss points

yield while the plate vibrates. Further it can be stated

that damping delays inception of plasticity for sensi-

tive plates. The sensitivity to damping is independent

of boundary conditions. No unexpected qualitative

response was observed for elastic and elasto-plastic

plates with change in boundary conditions.
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