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Abstract The local smoothing scheme in conjunction with
the modified crack closure integral technique has been
adopted in the boundary element method to improve the
accuracy of computed stress intensity factors. Simple re-
lations have been derived for the case of linear, quadratic
and quarter point elements around the crack tip. Case
studies are presented to demonstrate improvement in the
accuracy. While the displacement method gives a differ-
ence with the standard handbook solution up to 26%, the
suggested method helps to reduce it to within 2%.

List of symbols
GI ; GII strain energy release rate in mode I,

mode II
K stress intensity factor
l crack tip element length
P total load
p1; p2 tractions
r1; r2 internal and external radii
savg; sj x-component of traction
t, t1; t2; tavg; tj y-component of traction
u x-component of displacement
v y-component of displacement
W crack closure work
x, y cartesian coordinates
Y SIF correction factor
n natural coordinate

1
Introduction
The boundary element method (BEM) provides an at-
tractive alternative to finite element method (FEM) for the
extraction of stress intensity factors (SIFs). The issue has
received a considerable attention, e.g. Cruse and Buren
(1971), Cruse (1972, 1978), Cruse and Wilson (1978), Tan
and Fenner (1978, 1979), Nadiri et al. (1982), Bakr and

Fenner (1985), Perucchio and Ingraffea (1985) and Gerstle
(1988). The SIFs can be evaluated in principle using sev-
eral methods, e.g. displacement and stress method (Wat-
wood 1969, Chan et al. 1970), weight function technique, J-
integral method (Rice 1968), stiffness derivative procedure
(Parks 1974), crack closure integral (Irwin 1958), etc., for
2-D crack configurations. Out of these the first two has
been mostly adopted in the BEM.

In the BEM displacements and tractions are used as
independent variables. This offers scope for imposing
different rates of variation for the two entities. While using
the analog of the wellknown quarter point finite element
(Barsoum 1976) in the BEM, the assumption of a variation
of displacement in proportion to square root of distance
from the crack tip does guarantee a square root strain
singularity. This cannot however automatically ensure a
square-root traction singularity. Blandford et al. (1981)
and Martinez et al. (1984) have shown that more accurate
SIFs are obtained employing the traction singularity ele-
ments than strain singularity elements. They have em-
ployed the displacement based extrapolation method for
the extraction of the SIFs.

In the FEM, the adoption of the concept of modified
crack closure integral (CCI) have contributed to the im-
provement of accuracy of SIFs over the computation based
on the displacement method. This has been demonstrated
by several investigators, e.g. Rybicki and Kanninen (1977),
Krishnamurthy et al. (1985), Ramamurthy et al. (1986) and
Sethuraman and Maiti (1988). The method can also help
obtaining solution for problems with mixed mode loading.
This technique was first adopted in the FEM by Rybicki
and Kanninen (1977) to evaluate the SIF. They explained
the method considering a linear variation of the dis-
placement field around the crack tip. Consequently, the
element ensures a constant strain field. They termed the
method as modified crack closure integral technique. Later
it has been shown by Krishnamurthy et al. (1985),
Ramamurthy et al. (1986) and Sethuraman and Maiti
(1988) that crack line displacement and stresses can be
locally smoothed using the computed nodal data. These
smoothed field can then be employed to compute the crack
closure work. This procedure gives the energy release rate,
and hence the SIFs, which are more accurate than the re-
sults based on displacement method or the modified CCI.
The similar possibility has not yet been exploited in the
BEM. This has provided the motivation for the present
study. The formulation is presented and the performance
is illustrated for the case of linear, quadratic and quarter
point elements used around the crack tips.
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2
Mathematical formulation

2.1
Linear element
For a typical BEM discretisation (Fig. 1a), with crack tip at
node j and the two adjacent nodes j ) 1 and j + 1, the
displacement variation over OA can be written in the form

v � a0 � a1�1 ÿ x=l� �1�

where a0 and a1 are arbitrary constants, l is the length of
the crack tip element and x is the coordinate. It is
straightforward to show that a0 � 0 and a1 � vjÿ1. A linear
variation of the traction along OB can be represented in
the same way as the displacement. That is

t � 0:5�tj � tj�1� ÿ 0:5�tj ÿ tj�1�n �2�

where n a is natural coordinate. The total load P on the
face OB

P �

Z l

0
t dx � 0:5�tj � tj�1�l �3�

In the smoothing scheme the traction variation is assumed
consistent with the displacement variation. For a linear
element, the traction variation is assumed constant over
each element span. The normal traction p1 over OB is so
chosen that the total load p1l� P. This gives

p1 � 0:5�tj � tj�1� �4�

In the boundary element formulation the work done cor-
responding to the span AO of the boundary is not zero,
though this segment is free of any normal traction. This is
because traction at the node j is nonzero. The constant
traction p2 along the face AO is assumed to be equal to the

traction at the node j for the crack closure work calcula-
tions, i.e. p2 � tj. The total crack closure work W is given
by

W �

1
2

Z l

0
�v p1 � v p2� dx �5�

Finally this leads to

GI �
vjÿ1

2
�0:75 tj � 0:25 tj�1� �6�

A similar expression can be derived for mode II, which
will involve x components of tractions and displacements.
The SIF can then be obtained using the standard relations
between G and K.

If the traction p1 over OB is arbitrarily assumed to be a
constant and is equal to tj, a different expression for G is
obtained.

GI � vjÿ1tj=2 �7�

2.2
Quadratic element
In the case of quadratic elements around the crack tip
(Fig. 1b) the displacement variation over OB is given by

v � vjÿ1 ÿ 0:5 vjÿ2 n � �0:5 vjÿ2 ÿ vjÿ1� n2
�8�

Similarly the traction variation, which is also quadratic,
has the form

t � tj�1 � 0:5�tj�2 ÿ tj� n � �0:5 �tj�2 � tj� ÿ tj�1� n2

�9�

The total normal load arising out of the traction on the
face OB

P �

Z l

0
t dx � �tj � 4tj�1 � tj�2�l=6 �10�

The traction variation for smoothing is assumed to be
linear. The variation of traction p1 along AO is given by

p1 �
1
2
�1 � n� tj �11�

The variation of traction p2 along OB is assumed to be

p2 �
1
2
�1 ÿ n� t1 �

1
2
�1 � n� t2 �12�

where t1 and t2 are the assumed tractions at the nodes j
and j+2. t1 and t2 are assumed so that the total load is the
same as P. t1 and t2 can be taken in the following form

t1 � �tj � 2 tj�1�=3 �13�

t2 � �2 tj�1 � tj�2�=3 �14�

The total crack closure work

W �

1
2

Z l

0
�v p1 � v p2� dx

� �2 tjvjÿ1 � t1�2 vjÿ1 � vjÿ2� � 2 t2 vjÿ1�=12 �15�
Fig. 1a–c. (a) Linear element. (b) Quadratic element. (c) Quarter
point element
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The strain energy release rate

GI �
1
6
�tjvjÿ1 � t1�vjÿ1 � 0:5 vjÿ2� � t2 vjÿ1� �16�

A similar expression for GII can be obtained involving x-
component of tractions and displacements.

2.3
Quarter point element
In the case of quarter point elements (Fig. 1c) the dis-
placement is assumed to vary as

���

x
p

along OA. That is

v �2 �vjÿ2 ÿ 2 vjÿ1� �1 ÿ x=l�

��4 vjÿ1 ÿ vjÿ2�
�������������������

�1 ÿ x=l�
p

�17�

The traction too has a similar variation and can be re-
presented in the form

t � tjfÿ0:5 n�1 ÿ n�g � tj�1�1 ÿ n2
� � tj�2f0:5 n�1 � n�g

�18�

where 1 � n � 2
����������

�x=l�
p

.
The total load over OB

P �

Z l

0
t dx � �2 tj�1 � tj�2� l=3 �19�

This equation shows that the total load is independent of
the traction at the crack tip node j. Therefore, total load for
the span AO is zero, because tjÿ1 and tjÿ2 are both zero.
Hence the traction p1 along AO can be neglected. In order
to ensure a singularity variation of traction along the span
OB and the same total load P, the traction p2 along OB is
taken as follows.

p2 �
tavg

2
�����������

�x=l�
p �20�

where tavg � �2 tj�1 � tj�2�=3 �21�

The total crack closure work

W �

1
2

Z l

0
v p2 dx � 0:5 tavg�vjÿ2 �4=3 ÿ p=4�

� vjÿ1�p ÿ 8=3�� �22�

The strain energy release rate

GI � 0:5 tavg�vjÿ2�4=3 ÿ p=4� � vjÿ1�pÿ 8=3�� �23�

A similar expression can be derived for GII, the mode II
energy release rate.

GII � 0:5 savg�ujÿ2�4=3 ÿ p=4� � ujÿ1�p ÿ 8=3�� �24�

where savg � �2 sj�1 � sj�2�=3; sj�1 and sj�2 are the
x-components of nodal tractions.

3
Case studies
Numerical studies have been carried out on mode I con-
sidering problems of centre crack, single edge crack and
circular ring with radial cracks (Fig. 2). The a/w ratio is
considered in the range 0.2 to 0.8 for the centre crack
problem (Fig. 2a) and 0.2 to 0.7 for the edge crack problem
(Fig. 2b). A similar parameter a=�r2 ÿ r1�, is considered in
the range of 0.2 to 0.8 for the circular ring with radial inner
edge crack under external uniform tension (Fig. 2c) and
0.1 to 0.6 for the circular ring with radial outer edge crack
under internal pressure (Fig. 2d). The material is assumed
to be isotropic. In the case of quadratic and quarter point
elements the crack tip element size is 0.01a. For the case of
linear element the size is 0.005a. The subsequent element
sizes, away from the crack tip, are 0.02a, 0.04a, 0.08a,
0.15a, etc. In the case of centre and edge cracks, there are
approximately 22 elements and 44 nodes in the dis-
cretisation when quadratic and quarter point elements are
used around the crack tip. When the linear element is
used, the number of elements and nodes are 48. These
extra nodes come up because two closely spaced nodes are
used at the four corners. In the case of circular ring the
number of elements and nodes are 26 and 52 when
quadratic and quarter point elements are used. The SIF has
been computed through both the displacement and the
proposed CCI methods. In the displacement technique the
SIF is evaluated considering separately the displacement of
the first and second corner nodes from the crack tip. The
results in the form of SIF correction factor Y in the case of
centre crack, edge crack and radial inner edge crack are
compared with the handbook solutions (Rooke and Cart-
wright, 1976 and Murakami 1987) in Tables 1 to 10 and the
data for the case of radial outer edge crack are presented in
Table 11.

Fig. 2a–d. Geometries considered for analysis. (a) Centre crack.
(b) Edge crack. (c) Circular ring with radial inner edge crack.
(d) Circular ring with radial outer edge crack
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The effect of the crack tip element size on the accuracy
of the results has been studied for both the centre crack
and edge crack problems considering a/w = 0.5. The re-
sults are shown in Figs. 3 and 4.

4
Discussion
The accuracy of the displacement method is dependent on
where the displacements are compared. The accuracy
improves substantially in the case of linear elements
considering the second corner node rather than the first
corner node for a comparison. Thereby the maximum
error reduces from 27% to about 6.5%. The CCI method

helps to keep this difference to within 11.39% for the
centre crack problem. In the case of both quadratic and
quarter point elements, the comparison of displacements
at the second corner node is preferable. However in these
cases, the CCI method gives the best accuracy. The error is
less than about 1.5%.

In the case of edge crack in the rectangular panel, again
comparison of displacement at the second corner node is
preferable. The error is around 30% when linear element is
employed and SIF is compared at the first corner node.
This error reduces to within 14% for quarter point element
and less than 4.2% for quadratic element. The error is
within 6% for all the three elements when the SIF is

Table 1. Comparison of SIF correction factor Y for centre crack for linear element

a/w SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (6) %Error

Y % Error Y % Error

0.2 1.0254 0.7611 )25.778 0.9696 )5.443 0.9228 )10.002
0.3 1.0594 0.7831 )26.081 0.9973 )5.862 0.9495 )10.372
0.4 1.1118 0.8205 )26.197 1.0454 )5.972 0.9949 )10.510
0.5 1.1891 0.8760 )26.331 1.1157 )6.174 1.0622 )10.670
0.6 1.3043 0.9988 )23.422 1.2189 )6.547 1.1856 ) 9.103
0.7 1.4842 1.0859 )26.835 1.4201 )4.317 1.3191 )11.125
0.8 1.7989 1.3121 )27.059 1.7136 )4.745 1.5940 )11.388

Table 2. Comparison of SIF correction factor Y for centre crack for quadratic element

a/w SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (16) % Error

Y % Error Y % Error

0.2 1.0254 0.9743 –4.984 0.9858 )3.864 1.0226 )0.270
0.3 1.0594 1.0079 )4.866 1.0265 )3.110 1.0572 )0.204
0.4 1.1118 1.0567 )4.952 1.0695 )3.808 1.1094 )0.217
0.5 1.1891 1.1293 )5.025 1.1425 )3.918 1.1857 )0.289
0.6 1.3043 1.2332 )5.449 1.2471 )4.385 1.2944 )0.760
0.7 1.4842 1.4020 )5.535 1.4268 )3.868 1.4713 )0.871
0.8 1.7989 1.6938 )5.845 1.7222 )4.265 1.7778 )1.173

Table 3. Comparison of SIF correction factor Y for centre crack for quarter point element

a/w SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (23) % Error

Y % Error Y % Error

0.2 1.0254 1.1384 11.024 1.0343 0.871 1.0157 )0.944
0.3 1.0594 1.1771 11.124 1.0508 )0.816 1.0516 )0.735
0.4 1.1118 1.2352 11.096 1.1220 0.913 1.1023 )0.857
0.5 1.1891 1.3203 11.031 1.1997 0.889 1.1784 )0.898
0.6 1.3043 1.4437 10.686 1.3117 0.571 1.2886 )1.201
0.7 1.4842 1.6398 10.484 1.4626 )1.454 1.4655 )1.263
0.8 1.7989 1.9830 10.236 1.7609 )2.112 1.7727 )1.458
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Table 4. Comparison for SIF correction factor Y for edge crack for linear element

a/w SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (6) % Error

Y % Error Y % Error

0.2 1.3736 1.0293 )25.066 1.3159 )4.203 1.2471 ) 9.207
0.3 1.6629 1.2452 )25.117 1.5951 )4.078 1.5081 ) 9.309
0.4 2.1066 1.5763 )25.176 2.0237 )3.933 1.9072 ) 9.463
0.5 2.8297 2.0886 )26.191 2.6962 )4.718 2.5257 )10.743
0.6 4.0299 2.9119 )27.743 3.7953 )5.823 3.5141 –12.675
0.7 6.3610 4.4314 )30.335 5.9779 )6.022 5.3575 )15.776

Table 5. Comparison for SIF correction factor Y for edge crack for quadratic element

a/w SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (16) % Error

Y % Error Y % Error

0.2 1.3736 1.3160 )4.195 1.3360 )2.738 1.3793 0.418
0.3 1.6629 1.6008 )3.737 1.6272 )2.149 1.6767 0.828
0.4 2.1066 2.0380 )3.257 2.0762 )1.441 2.1315 1.180
0.5 2.8297 2.7284 )3.579 2.7907 )1.379 2.8475 0.627
0.6 4.0299 3.8950 )3.348 4.0091 )0.516 4.0518 0.543
0.7 6.3610 6.1061 )4.007 6.4362 1.182 6.3594 )0.026

Table 6. Comparison for SIF correction factor Y for edge crack for quarter point element

a/w SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (23) % Error

Y % Error Y % Error

0.2 1.3736 1.5410 12.186 1.4042 2.230 1.3726 )0.075
0.3 1.6629 1.8755 12.756 1.7117 2.936 1.6695 0.396
0.4 2.1066 2.3903 13.466 2.1870 3.819 2.1245 0.848
0.5 2.8297 3.2052 13.270 2.9441 4.041 2.8433 0.482
0.6 4.0299 4.5911 13.927 4.2438 5.309 4.0582 0.703
0.7 6.3610 7.1817 12.901 6.6361 4.325 6.3669 0.093

Table 7. Comparison of SIF correction factor Y for circular ring with radial inner edge crack under external tension for linear element

a/(r2)r1) SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (6) % Error

Y % Error Y % Error

0.2 2.7760 2.0871 )24.817 2.6256 )5.418 2.5273 ) 8.958
0.3 2.8672 2.1237 )25.931 2.6711 )6.841 2.5719 )10.301
0.4 2.9887 2.1948 )26.565 2.7601 )7.646 2.6581 )11.602
0.5 3.1360 2.2679 )27.683 2.8547 )8.970 2.7457 )12.445
0.6 3.3152 2.3919 )27.851 3.0123 )9.137 2.8954 )12.662
0.7 3.5541 2.5502 )28.247 3.2152 )9.535 3.0859 )13.174
0.8 3.9125 2.8202 )27.918 3.5608 )8.989 3.4118 )12.796
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compared at the second corner node. The CCI method
helps to contain the error within 16% in the case of linear
element. The error reduces drastically when the quadratic
or quarter point elements are employed around the crack
tip. The maximum error is 1.18% for the range of
a/w = 0.2 to 0.7 for both the quadratic and quarter point
elements. Similar trend is observed in the case of circular
rings. The error is found to be less than 2% for the range of
a=�r2 ÿ r1� = 0.2 to 0.8 when quadratic or quarter point
elements are employed in the proposed method.

The error in Y through Eqn. (6) is in the range of 10–
16% in the case of centre crack, edge crack and circular

ring with inner edge crack. However, if Eqn. (7) is em-
ployed instead (Table 10), the error reduces to within 3%
in the case of centre crack, 7.66% for the edge crack and
4.8% for the circular ring. This means that an assumption
of a constant traction p1 � tj over the edge OB produces
better results than the assumption of a value p1 � �tj
� tj�1�=2. It is not possible to provide any justification for
this observation at this stage.

The results for the case of circular ring with radial outer
edge crack (Table 11) shows that, for a/w, for example,
equal to 0.3, the difference with Rooke and Cartwright
(1976) is less than 10%, 1.62% and 1% based on linear

Table 8. Comparison of SIF correction factor Y for circular ring with radial inner edge crack under external tension for quadratic
element

a/(r2)r1) SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (16) % Error

Y %Error Y % Error

0.2 2.7760 2.6380 )4.972 2.6624 )4.094 2.7620 )0.503
0.3 2.8672 2.7193 )5.160 2.7441 )4.293 2.8476 )0.682
0.4 2.9887 2.8386 )5.022 2.8648 )4.146 2.9726 )0.539
0.5 3.1360 2.9663 )5.413 2.9955 )4.479 3.1041 )1.017
0.6 3.3152 3.1395 )5.301 3.1721 )4.315 3.2837 )0.950
0.7 3.5541 3.3513 )5.705 3.3889 )4.648 3.5019 )1.468
0.8 3.9125 3.6982 )5.478 3.7434 )4.322 3.8604 )1.331

Table 9. Comparison of SIF correction factor Y for circular ring with radial inner edge crack under external tension for quarter point
element

a/(r2)r1) SIF Correction Factor Y

Reference
Solution

Computed by

Displacement Method CCI Method

1st Corner Node 2nd Corner Node Y Eqn. (23) % Error

Y % Error Y % Error

0.2 2.7760 3.0793 10.927 2.8635 3.153 2.7394 )1.301
0.3 2.8672 3.1768 10.800 2.9537 3.018 2.8274 )1.388
0.4 2.9887 3.3191 11.054 3.0862 3.261 2.9540 )1.160
0.5 3.1360 3.4685 10.603 3.2273 2.913 3.0849 )1.629
0.6 3.3152 3.6739 10.818 3.4201 3.163 3.2657 )1.493
0.7 3.5541 3.9247 10.428 3.6567 2.888 3.4856 )1.929
0.8 3.9125 4.3384 10.888 4.0462 3.416 3.8489 )1.625

Table 10. Comparison of SIF correction factor Y based on a different scheme of CCI calculation for centre crack, edge crack and
circular ring with radial inner edge crack for linear element

a/w SIF Correction Factor Y Computed by Eqn. (7)

Centre crack Edge crack Circular ring

Y % Error Y % Error Y % Error

0.2 1.1016 )1.348 1.3673 )0.460 2.7713 )0.170
0.3 1.0408 )1.753 1.6535 )0.563 2.8200 )1.647
0.4 1.0906 )1.906 2.0914 )0.719 2.9145 )2.484
0.5 1.1644 )2.081 2.7703 )2.099 3.0108 )3.993
0.6 1.2721 )2.470 3.8597 )4.224 3.1751 )4.227
0.7 1.4440 )2.711 5.8736 )7.662 3.3842 )4.7781
0.8 1.7449 )3.000 – – 3.7421 )4.355
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element, quadratic element and quarter point element re-
spectively with adoption of the CCI.

The effect of crack tip element size on the accuracy of
SIF shows (Figs. 3 and 4) that the displacement method is
very sensitive to the crack tip element size. The accuracy
reduces as the element size increases. On the other hand
the proposed method is less sensitive to the mesh refine-
ment. In the case of the linear elements the difference with
the reference solution increases steadily with the element
size. The minimum difference observed is about 10% for a
crack tip element size of 0.01a for both the cases. In the

case of quadratic elements, for a crack tip element size up
to 0.2a, the difference is around 1% for the centre crack
and it is less than 4.5% for the edge crack. In the case of
the quarter point elements there is very good accuracy for
element size up to 0.12a in the case of centre crack pro-
blem and 0.06a in the case of edge crack.

5
Conclusion
Thus it is clear that the crack closure integral and local
smoothing can be used together to improve the accuracy

Fig. 3a–c. Effect of crack tip element size on error in the case of
centre crack. (a) Linear element. (b) Quadratic element.
(c) Quarter point element

Fig. 4a–c. Effect of crack tip element size on error in the case of
edge crack. (a) Linear element. (b) Quadratic element.
(c) Quarter point element

Table 11. SIF correction factor Y for circular ring with radial outer edge crack using CCI method

a/(r2)r1) SIF Correction Factor Y Computed By

Linear element Quadratic element Quarter point element

Y Y Y

0.1 1.085 1.1649 1.1619
0.2 1.2012 1.3088 1.3008
0.3 1.3860 1.5650 1.5551
0.4 1.6557 1.8296 1.8213
0.5 2.0271 2.2416 2.2337
0.6 2.4653 2.7271 2.7174
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of boundary element based computation of SIFs. While
locally smoothing the traction and displacement variation
along the crack line, it is beneficial to keep the order of
displacement variation the same as in the BEM but the
order of traction variation one order less than the dis-
placement. By adopting the CCI along with local smooth-
ing the error can be reduced to less than 1% in the case of
mode I problems. In general the crack tip element size less
than about 0.06a is recommended.
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