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Abstract

Analytical formulations and solutions to the static analysis of simply supported composite and sandwich plates hitherto not
reported in the literature based on a higher order refined theory developed by the first author and already reported in the literature
are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse
shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane displacements with respect to the thickness
coordinate — thus modelling the warping of transverse cross-sections more accurately and eliminating the need for shear correction
coefficients. In addition, a few higher order theories and the first order theory developed by other investigators and already available
in the literature are also considered for the evaluation. The equations of equilibrium are obtained using principle of minimum
potential energy (PMPE). Solutions are obtained in closed form using Navier’s technique by solving the boundary value problem.
The comparison of the present results with the available elasticity solutions and the results computed independently using the first
order and the other higher order theories available in the literature shows that this refined theory predicts the transverse dis-
placement and the stresses more accurately than all other theories considered in this paper. After establishing the accuracy of present
results for composite and sandwich plates, new results for the stretching-bending coupling behaviour of antisymmetric sandwich
laminates using all the theories considered in this paper are presented which will serve as a benchmark for future investiga-

tions. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Laminated composite plates are being increasingly
used in the aeronautical and acrospace industry as well
as in other fields of modern technology. To use them
efficiently a good understanding of their structural and
dynamical behaviour and also an accurate knowledge
of the deformation characteristics, stress distribution,
natural frequencies and buckling loads under various
load conditions are needed. The classical laminate plate
theory (CLPT) [1], which is an extension of classical
plate theory (CPT) [2,3], neglects the effects of out-
of-plane strains. The greater differences in elastic
properties between fibre filaments and matrix materials
lead to a high ratio of in-plane young’s modulus to
transverse shear modulus for most of the composite
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laminates developed to date. Because of this reason the
transverse shear deformations are much pronounced
for laminated plates than for isotropic plates. Thus the
CLPT which ignores the effect of transverse shear
deformation becomes inadequate for the analysis of
multilayer composites. In general the CLPT often un-
derpredicts deflections and overpredicts natural fre-
quencies and buckling loads. The first order theories
(FSDTs) based on Reissner [4] and Mindlin [5] assume
linear in-plane stresses and displacements, respectively
through the laminate thickness. Since the FSDT ac-
counts for layerwise constant states of transverse shear
stress, shear correction coefficients are needed to rectify
the unrealistic variation of the shear strain/stress
through the thickness and which ultimately define the
shear strain energy.

In order to overcome the limitations of FSDT,
higher order shear deformation theories (HSDTs) that
involve higher order terms in Taylor’s expansions of
the displacements in the thickness coordinate were
developed. In these higher order theories with each
additional power of the thickness coordinate an
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additional dependent unknown is introduced into the
theory. Hildebrand et al. [6] were the first to introduce
this approach to derive improved theories of plates
and shells. Nelson and Lorch [7], Librescu [8] pre-
sented higher order displacement based shear defor-
mation theories for the analysis of laminated plates.
Lo et al. [9,10] have presented a closed form solution
for a laminated plate with higher order displacement
model which also considers the effect of transverse
normal deformation. Levinson [11] and Murthy [12]
presented third order theories neglecting the extension/
compression of transverse normal but used the equi-
librium equations of the first order theory used by
Whitney and Pagano [13] in the analysis which are
variationally inconsistent. Kant [14] was the first to
derive the complete set of variationally consistent
governing equations for the flexure of a symmetri-
cally laminated plate incorporating both distortion of
transverse normals and effects of transverse normal
stress/strain by utilizing the complete three-dimen-
sional generalized Hooke’s law and presented results
for isotropic plate only. Reddy [15] derived a set of
variationally consistent equilibrium equations for the
kinematic models originally proposed by Levinson and
Murthy. Using the theory of Reddy, Senthilnathan
et al. [16] presented a simplified higher order theory by
introducing a further reduction of the functional de-
grees of freedom by splitting up the transverse dis-
placement into bending and shear contributions. Kant
et al. [17] are the first to present a finite element
formulation of a higher order flexure theory. This
theory considers three-dimensional Hooke’s law, in-
corporates the effect of transverse normal strain in
addition to transverse shear deformations. Pandya and
Kant [18-22], Kant and Manjunatha [23,24] and
Manjunatha and Kant [25] have extended this theory
and presented C° finite element formulations and so-
lutions for the stress analysis of symmetric and un-
symmetric laminated composite and sandwich plates.
Rohwer [26] made a comparative study of various
higher order theories for the bending analysis of
multilayer composite plates. The advantages and dis-
advantages of the various theories were highlighted.
Noor and Burton [27] presented a complete list of
references of FSDTs and HSDTs for the static, free
vibration and buckling analyses of laminated com-
posites. Pagano [28] presented exact three dimensional
elasticity solutions for the stress analysis of laminated
composite and sandwich plates which serve as bench-
mark solutions for comparison by many researchers.
The present paper deals with the analytical formula-
tions and solutions hitherto not reported in the liter-
ature of the refined theory already proposed by the
senior author as applied to static analysis of laminated
composite and sandwich plate problems with simply
supported edge conditions. Comparison of results with

the three-dimensional elasticity solutions available in
the literature shows that this theory predicts the trans-
verse displacements and the in plane stresses more ac-
curately than all other theories considered in this paper.
After establishing the accuracy of the present results for
composite and sandwich plates, benchmark results for
stretching-bending coupling behaviour of antisymmetric
sandwich plates are presented.

2. Theoretical formulation
2.1. Displacement models

In order to approximate the three-dimensional
elasticity problem to a two-dimensional plate problem,
the displacement components u(x,y,z), v(x,y,z) and
w(x,y,z) at any point in the plate space are expanded
in a Taylor’s series in terms of the thickness coordi-
nate. The elasticity solution indicates that the trans-
verse shear stresses vary parabolically through the plate
thickness. This requires the use of a displacement field
in which the in-plane displacements are expanded as
cubic functions of the thickness coordinate. In addi-
tion, the transverse normal strain may vary non-
linearly through the plate thickness. The displacement
field which satisfies the above criteria may be assumed
in the form [23]:

u(x,y,z) = uo(x,y) + 20x(x,y)
+Zup(x,y) + 2207 (x, ),

v(x,,2) = vo(x, ) +20,(x, )
+ 2205 (x, ») +z39;(x,y),

w(x, y,2) = wo(x, ) +z0.(x, y)
+ 2w (x,») + 2205 (x, ).
Further if the variation of transverse displace-
ment 2component w(x,y,z) in Eq. (1) is assumed
constant through the plate thickness and thus setting

&. = 0, then the displacement field may be expressed as
[22]

u(x,y,z) = uo(x, ) + z0:(x, y)
+ 20U (x, ) + 20, (x, ),

v(x,y,z) = vo(x,y) + z0,(x,») (2)
+ 2205 (x,y) + 2° 0, (x,»),

w(x,,z) = wo(x, ).

The parameters wug, vy, are the in-plane displacements
and wy is the transverse displacement of a point (x,y)
on the middle plane. The functions 0,,0, are rotations
of the normal to the middle plane about y and x axes,
respectively. The parameters u;, vj, w, 0;, 0;, 07 and 0.

are the higher-order terms in Taylor’s series expansion
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and they represent higher-order transverse cross-sec-
tional deformation modes. Though the above two
theories were already reported earlier in the literature
and numerical results were presented using finite ele-
ment formulations, analytical formulations and solu-
tions are obtained for the first time in this investigation
and so the results obtained using the above two theo-
ries are referred to as present (Model-1 and Model-2) in
all the tables and figures. In addition to the above, the
following higher order theories and the first order
theory developed by other investigators and reported in
the literature for the analysis of laminated composite
and sandwich plates are also considered for the eval-
uation. Analytical formulations and numerical results
of these are also being presented here with a view to
have all the results on a common platform.
Model-3 [29]

e 3:2) = w(,)
vzt -5 (2) {otmn + 2},
)

o(x,,2) = vo(x,y
e =5 () {oten + 53]

+2[0,00)

W(xay7z) = W0<X,y). (3)
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(x,y,z) - LAMINATE REFERENCE AXES

Fig. 1. Laminate geometry with positive set of lamina/laminate ref-
erence axes, displacement components and fibre orientation.

Model-4 [16]

()C Y, )—uo(x,y)—z_x__

v(x,3,2) = (%, y) =z — 33
w(x,y,z) = wj(x,») + wi(x, ).
Model-5 [13]

u(x,y,z) = up(x, ) +20.(x,y),
U(XaJ/aZ) = UO(xvy) +Z€y(xvy)7 (5)
w(x,y,z) = wo(x, ).

In this paper the analytical formulations and solution
method followed using the higher order refined theory
(Model-1) are only presented in detail and the same
procedure is followed in obtaining the results using
other models. The geometry of a two-dimensional lam-
inated composite and sandwich plates with positive set
of coordinate axes and the physical middle plane dis-
placement terms are shown in Figs. 1 and 2, respectively.
By substitution of the displacement relations given by
Eq. (1) into the strain—displacement equations of the

TYPICAL LAMINA
IN FACE SHEET

L

z,3 Vo
LAMINATE
MID-PLANE

(x,y,z ) - LAMINATE REFERENCE AXES

Fig. 2. Geometry of a sandwich plate with positive set of lamina/
laminate reference axes, displacement components and fibre orienta-
tion.
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classical theory of elasticity, the following relations are
obtained:

2 3
& = & +ZK, + 26 + 2K,
_ 2 * 3 %
& = &0 2K, + 2 €50 +z K,
N 2 ok 3k
& =&y tzK, +z7ey+z L

— a 2 o
yxy = &x0 +z Kxy +z ‘L'xy()

3 %
+ K,
o 2 g% 3 %
Ne =@yt 2K+ ¢+ 27K,

Ve = qu + 2Ky +ZZ¢)‘>: +z K;Z7

where
(£x01 £40, £030) = Qug Ovg Quy , Ovg
x05 €0y Gxp0) — ox ’ ay ) ay ox ’

v+ o« _ [ Ouy Ovy Ouy Oug
(‘L',r()?‘('y()?{“xy()) - ( Ox ’ ay ’ ay + Ox ’

(820,8:0) - (02730:)a
(00, 00, ., 00, a0,

(Kx7Ky7 Kz7ny) - ( ax ’57 W07 ay a>7
(K* K K*)* 670;670;670;6 60;

2wl o Toy Ty ox )]

.00, .. 00,
(sza’CyZ) = <21/l0 + ax 7200 + ay >,

ey (20 2
xz) yz) T Ox ’ ay ’

(oo by ) = (ex+

aW()

— 30"
ox’ »t

2.2. Constitutive equations

Each lamina in the laminate is assumed to be in
a three-dimensional stress state so that the constitu-
tive relation for a typical lamina L with reference to
the fibre-matrix coordinate axes (1-2-3) can be written
as

(] L C“ C12 C13 0 0 0 L &1 L
02 Ch Cn Cx 0 0 0 &
g3 _ Ciz Cp Cs 0 0 0 &3
m(( |0 0 0 Cs 0 0 7o [
T23 0 0 0 0 C55 0 V23
T13 0 0 0 0 0 C66 Y13

(8)

where (01, 05, 03,712,723, 713) are the stresses and (e, &,
€3, V12s V23, V13) are the linear strain components referred
to the lamina coordinates (1-2-3) and the C;;’s are the
elastic constants or the elements of stiffness matrix of
the Lth lamina with reference to the fibre axes (1-2-

3). In the laminate coordinates (x,y,z) the stress strain
relations for the Lth lamina can be written as

Ox t [ On O Oz Ou 0 O_L
Oy On On Ou 0 0
o | On O 0 0
Txy Q44 0 0
Ty symmetric Oss  Oss
Ty L Oes |
L
&y
&y
&
X : )
ny
’y}z
’yXZ

where (oy,0,,0:, Ty, Tyz, ;) are the stresses and (e, ¢,
€,V V)es Vxz) Ar€ the strains with respect to the laminate
axes. ;s are the transformed elastic constants or
stiffness matrix with respect to the laminate axes x, y,z.
The elements of matrices [C] and [Q] are defined in
Appendices A and B.

2.3. Governing equations of equilibrium

The equations of equilibrium for the stress analysis
are obtained using the principle of minimum potential
energy (PMPE). In analytical form it can be written as
follows [29]:

S(U+V) =0, (10)

where U is the total strain energy due to deformations, V'
is the potential of the external loads, and U + V = Il is
the total potential energy and ¢ denotes the variational
symbol. Substituting the appropriate energy expression
in the above equation, the final expression can thus be
written as

W2
[/h/Z /A(ax&sx + 0,08, + 006 + T, 07, + 1,207,

+ 1,.0y,,)d4dz — /pj&vtfr dA} =0, (11)
4

where w = wy + (h/2)0. + (h*/4)w}; + (h*/8)0; is the
transverse displacement of any point on the top surface
of the plate and p/ is the transverse load applied at the
top surface of the plate. Using Eqgs. (1), (6) and (7) in Eq.
(11) and integrating the resulting expression by parts,
and collecting the coefficients of dug, dvy, owy, 00, 60,,
80., dug, ovg, owg, 00y, 607, 60_ the following equations
of equilibrium are obtained:
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ON, ON,
ouy : a ¥ =0,
ox )%
ON, 0N,
vg: —+—=2=0
‘o dy + Ox ’
00, 090,
owy : o —l—&—i-p+ =0,
ax Oy :
oM, 6Mr
00, : Y 0,=0,
6x
oM, 6M
80, . == ¥ _0,=0
Ty Ox & ’
oS, oS,
40, : — N, ) =
R (p )=
ON* N, (12)
Ouy : —— - 25, =0,
Ox ay
ovy, ON, | ONy 28,=0
UO : g ax — y = Y,
0Q: 00,
owy — —2M; ) =
Wo Ox + ay + (P a
oM: oM
o . —= ¥ _30'=0
o + dy O ’
7Ty + Ox Q” -
oSy 0S;
o0; - — — 3N} ") =
and the boundary conditions are of the form:
On the edge x = constant
uy =iy or Ny =Ny, 0, =0, or M, = M,,
vo =10 or Ny, =Ny, 0,=0, or M,, = M,,
WOZWO or Qx_Qx, Hz: éz or Sx :gxa (13)
uy =u, ot NN =N, 0-=0 or M =M,
vy =10, 0r Ny =N, 0= (5; or M, = M,
wy=wyor Q- =0, 0:=0 orS =8
On the edge y = constant
uy =iy ot Ny, =N,,, 0, =0, or My, = M,
UozﬁoorNy:Ny, 026 y—M
wo=woor O, =0,, 0.= 6. orSy:S'v,
- 14
ug =iy or N, =N, 0, =0, or M; =M, (14)
vy =10, or Ny =Ny, 0, =0, or M; = M,
wy=wyor 0, =0;, 0.=0;o0rS =S5,
where the stress resultants are defined by
M, M: o,
My M’f NL | g 3
" _;/ Ok (15)
M, M, B Ty

r e NL 2141
g; 8;]—2/ {2‘;}[1 2dz, (16)

L=1

Nx N; Oy
N. * NL 2141 ,
VYA D DI A S (T P (17
[Ny N, e Ty

(S, S;] %/l{r}[ dz (18)
s« - zZ Z .
_S,V Sy L=1 Yz Tz

The resultants in Eqs. (15)—(18) can be related to the
total strains in Eq. (6) by the following equations:

Nv €x0
N, &0
N; &y
N* &
y 0 '
Nz €20 ?30
N b= ey ¢ 1]
M, K K;?’
M, K, v
M; K,
m;
M K,
: (19)
Ex0
€)0
€y
ny Syo Ex)0
N; 0 £
o p = 1BIS o B 0,
* Kx *’
Mxy K, Ky
K,
Ky
K,
QX (rbx z}’
o\ _ iyl I
Sx o [D] Kxz + [ } K}z ’
Sy Ky K
(20)
Qy ¢x d)y
O\ _ o) ¢ b,
S Y N [E] Kyz + [E] K}fz ’
S, Ky Ky
where the matrices [4], [4'], [B], [B], [D], [D'], [E], [E"]

are the matrices of plate stiffnesses whose elements are
defined in Appendix C.

3. Analytical solutions

Here the exact solutions of Egs. (12)—(20) for cross-
ply rectangular plates are considered. Assuming that
the plate is simply supported in such a manner that
normal displacement is admissible, but the tangential
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displacement is not, the following boundary conditions
are appropriate:

At edges x =0 and x = a:
UOZOa

wo=0, 0,=0, 0.=0,

0:=0, 0=0, M =0, (21

z

vy =0,
N, =0, N =0.

*
wy =0,

Atedgesy = Oand y = b:
UOZO, W():O, QXZO, 9220, My:0,
uy=0, wy=0, 0;=0, 0 =0, M =0, (22)

N,=0, N'=0.

Following Navier’s solution procedure [2,3,30], the so-
lution to the displacement variables satisfying the above
boundary conditions can be expressed in the following
forms:

NgE
NgE

Uy = ug, COSax sin fy,

'mn

3
Il
3
Il

5
NgE
NgE

v, Sin ox cos Py,

'mn

m=1 n=I
o0 o0
Wy = Z Z Wy,,, Sin o sin iy,
m=1 n=1
o0 o0
0 = Z Z 0,,, cosoxsin fy,

3
I
3
I

0,,,, sin ox cos By,

W
NgE
e

3
I
3
Il

0

i
NgE
NgE

sin o sin fy,

Zmn

3
I
3
I

CT*
NgE
NgE

. .
uy cos o sin fy,

'mn

m=1 n=1
o0 o0
vy = vy sinoxcos fi
0= 0, ST Y,
m=1 n=1
o0 o0
. . .
Wy = E E wy, Sinox sin fy,

3
X
I

"
NgE
[Me

. .
0 cosoxsin Sy,

Xmn

3
Il
—_
=
Il

Table 1
Displacement models (shear deformation theories) compared

o]
E . sinox cos fy,

lMB HM&%

o0
E _sinox sin By,

and the loading term is expanded as

= i zoo:pztm sin ocx sin By, (23)
m=1 n=1

where o = mn/a, f = nn/b.
Substituting Egs. (21)-(23) into Eq. (12) and collect-
ing the coefficients one obtains

Ug 0

Do 0

Wo P;r

0, 0

0, 0

0- (h/2)(p)
X : = z 24
[ ]12><12 ug 0 ( )

vy 0

W (h/4)(p)

0 0

0, 0

0 ) 1o (B /8)(PX) ) 121

for any fixed values of m and n. The elements of coef-
ficient matrix [X] are given in Appendix D.

4. Numerical results and discussion

In this section, various numerical examples solved are
described and discussed for establishing the accuracy of
the various theories for the stress analysis of laminated
composite and sandwich plates. The description of
the various displacement models compared is given in
Table 1. A shear correction factor of 5/6 is used in
computing results using Whitney-Pagano’s theory. For
all the problems a simply supported (diaphgram sup-
ported) plate is considered for the analysis. The trans-
verse loading considered is sinusoidal. Results are
obtained in closed form using Navier’s solution tech-
nique for the above geometry and loading and the
accuracy of the solution is established by comparing the

Source Theory Year (Ref.) Degrees of freedom Transverse normal
deformation
Present (Model-1) HSDT 1988 ([23]) 12 Considered
Present (Model-2) HSDT 1988 ([22]) 9 Not considered
Reddy (Model-3) HSDT 1984 ([15]) 5 Not considered
Senthilnathan et al. (Model-4) HSDT 1987 ([16]) 4 Not considered
Whitney-Pagano (Model-5) FSDT 1970 ([13]) 5 Not considered
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results with the exact elasticity solution wherever avail-
able in the literature.

The following sets of data are used in obtaining nu-
merical results.

Material 1 [28]
EiJE, =25, E,=E;=10°psi (7 GPa),
G =G;3 =0.5E), Gy =0.2E,,
U1y = b3 = 13 = 0.25.

Material 2 [28]

Face sheets

E\/E, =25, E,=E;=10°

Core
E\/E; = 0.08,

Gi3/Es = Gy /E; = 0.12,
Uy3 = V13 = 0.02.

E»/E; = 0.08,

Material 3 [30]
Face sheets (graphite epoxy T300/934)

E/ =19 x 10° psi (131 GPa),
E, =1.5x10° psi (10.34 GPa),

E2 :E37

G, =1 x 10° psi (6.895 GPa),

Ey=0.5x 10°,

Ui = 025,

Gi3 = 0.90 x 10° psi (6.205 GPa),

335

G = G13=0.5E, Gy =0.2E,, Gy =1 x10° psi (6.895 GPa),
U2 = U3 = D13 = 0.25. Upp = 022, D13 = 022, Uy3 = 0.49.
Table 2
Nondimensionalized deflections and stresses in a three-layer (0°/90°/0°) simply supported square laminate under sinusoidal transverse load
alh Theory w G, Gt Ty
2 Elasticity® - 0.938 0.669 0.0859
Present (Model-1) 49147 1.1355 0.5356 0.0754
Present (Model-2) 5.2158 1.0912 0.6334 0.0803
Model-3 5.1286 1.3112 0.5876 0.0889
Model-4 4.3088 1.3460 0.1493 0.0532
Model-5 5.2293 0.3597 0.7039 0.0488
4 Elasticity® - 0.755 0.556 0.0505
Present (Model-1) 1.8948 0.7648 0.4939 0.0487
Present (Model-2) 1.9261 0.7670 0.5079 0.0500
Model-3 1.9218 0.7344 0.5028 0.0497
Model-4 1.4852 0.7581 0.0902 0.0300
Model-5 1.7758 0.4370 0.4774 0.0370
10 Elasticity® - 0.590 0.285 0.0289
Present (Model-1) 0.7151 0.5836 0.2705 0.0279
Present (Model-2) 0.7176 0.5847 0.2712 0.0281
Model-3 0.7125 0.5684 0.2690 0.0277
Model-4 0.6041 0.5747 0.1649 0.0227
Model-5 0.6693 0.5134 0.2536 0.0252
20 Elasticity® - 0.552 0.210 0.0289
Present (Model-1) 0.5053 0.5504 0.2049 0.0231
Present (Model-2) 0.5058 0.5507 0.2050 0.0231
Model-3 0.5041 0.5460 0.2043 0.0230
Model-4 0.4746 0.5477 0.1759 0.0216
Model-5 0.4921 0.5318 0.1997 0.0223
50 Elasticity® - 0.541 0.185 0.0216
Present (Model-1) 0.4432 0.5406 0.1838 0.0216
Present (Model-2) 0.4433 0.5406 0.1838 0.0216
Model-3 0.4430 0.5399 0.1836 0.0216
Model-4 0.4382 0.5401 0.1790 0.0213
Model-5 0.4411 0.4480 0.1829 0.0215
100 Elasticity® - 0.539 0.181 0.0213
Present (Model-1) 0.4343 0.5392 0.1807 0.0214
Present (Model-2) 0.4343 0.5392 0.1807 0.0214
Model-3 0.4342 0.5390 0.1806 0.0214
Model-4 0.4330 0.5391 0.1795 0.0213
Model-5 0.4337 0.5384 0.1804 0.0213

#Max value occurs at z = +h/6.
®See [28].
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Core (isotropic)
E| =E,=E; =2G = 1000 psi (6.90 x 10~* GPa),
G, = Gi3 = Gy = 500 psi (3.45 x 107 GPa),

vi2 =13 = U3 = 0.

Results reported in tables and plots are using the
following nondimensional form:

_ 100A°E, _ 100A°E,

u=u|———;—1», v=v|—7F7|,
P0a4 P0a4

_ (100/°E,\ n

w=w 7P0a4 y Ox = Oy P_0a2 )

h? h?
O'},:UVV(W), ‘L'xy:‘fxy(w).

Unless otherwise specified within the table(s) the lo-
cations (i.e. x-, y-, and z-coordinates) for maximum
values of displacements, stresses and stress resultants for
the present evaluations are as follows:

In-plane displacement (u): (0,5/2,£h/2).

In-plane displacement (v): (a/2,0,+h/2).

Transverse displacement (w): (a/2,b/2,0).

In-plane normal stress (o,): (a/2,b/2,+h/2).

In-plane normal stress (o,): (a/2,b/2,+h/2).

In-plane shear stress (t,,): (0,0, £h/2).

Example 1. A simply supported three-layered sym-
metric cross-ply (0°/90°/0°) square plate under sinu-
soidal transverse load is considered. The layers have
equal thickness. Material set 1 is used. The numerical
results of transverse displacement and in-plane stresses
are given in Table 2. The numerical results of maxi-
mum in-plane stresses are compared with the exact
elasticity solution given by [28]. The results clearly
show that the values obtained using Model-2 and
Model-3 are in close agreement for all a/h ratios. For
a/h ratio equal to 2, Model-1 underpredicts deflection
by 5.77%, Model-4 by 17.39% compared to the results
of Model-2. Fig. 3 shows the through the thickness
variation of in-plane displacement u. It shows that the
results obtained using Model-1, Model-2 and Model-3
are in good agreement whereas the values predicted by
Model-4 and Model-5 differ from others considerably.
Table 3 shows the percentage of error with respect
to exact elasticity solution in computing the in-plane
stresses. The results show that even at slenderness ratio
as low as 2, Model-2 gives better accuracy compared to
other displacement models. The accuracy of all models
in predicting the in-plane stresses increases with in-
creasing slenderness ratio. Figs. 4-6 shows the through
the thickness variation of nondimensionalized in-plane
stresses 0y, 0, and 7,, for a/h ratio equal to 10. It shows
that the stress values obtained using Model-1 and
Model-2 are in excellent agreement.

0.6 —

O  Present (Model-1)

Present (Model-2)
O Model-3

—%— Model-4

---- Model-5

0.3

<l

-0.6 -

Fig. 3. Variation of nondimensionalized in-plane displacement (&)
through the thickness (z/h) of a three-layer (0°/90°/0°) simply sup-
ported square plate under sinusoidal transverse load.

Table 3
Error (%) in a three-layer symmetric cross-ply (0°/90°/0°) laminate
alh Theory Oy gy Ty
2 Present (Model-1) 21.05 -19.94 -12.22
Present (Model-2) 16.33 -5.32 -6.52
Model-3 39.78 -12.17 3.49
Model-4 43.49 —-77.68 -38.07
Model-5 —61.65 5.22 —43.19
4 Present (Model-1) 1.30 -11.17 -3.56
Present (Model-2) 1.59 -8.65 -0.99
Model-3 -2.06 -9.57 —-1.58
Model-4 0.41 —-83.78 —40.59
Model-5 —42.12 -14.14 -26.73
10 Present (Model-1) -1.08 -5.09 -3.46
Present (Model-2) -0.90 -4.84 -2.77
Model-3 -3.66 -5.61 —4.15
Model-4 -2.59 —42.14 -21.45
Model-5 —-12.98 —-11.02 -12.80

Example 2. A simply supported three-layered sym-
metric (0°/core/0°) square sandwich plate with the
thickness of each face sheet equal to //10 is considered.
Material set 2 is used. The numerical results of trans-
verse displacement and in-plane stresses for various
aspect ratios (a/h) are shown in Table 4. The numerical
results of maximum in-plane stresses are compared
with exact elasticity solution given by [28]. Table 5
shows the percentage of error with respect to exact
elasticity solution in computing the in-plane stresses for
various a/h ratios. The results show that the percentage
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z/h
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Present (Model-2)
- - - - Model-3 0.4 <
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a/h=10
T T 1
0.4 0.6
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Fig. 4. Variation of nondimensionalized in-plane normal stress (&)

through the thickness (z/h) of a three-layer (0°/90°/0°) simply sup-
ported square plate under sinusoidal transverse load.

of error got using the Model-4 and Model-5 is very
large compared to other models and the percentage of
error goes on reducing as the plate becomes thinner.
For a/h equal to 4, 10 and 20, Model-1 gives better
estimate of in-plane stresses 6, and &, whereas Model-2

z/h
0.6 5
O  Present (Model-1)
Present (Model-2) 04
A Model-3 p
- - - - Model-4 )} ah=10
+ Model-5

-0.6 -4

Fig. 5. Variation of nondimensionalized in-plane normal stress (4,)
through the thickness (z/h) of a three-layer (0°/90°/0°) simply sup-
ported square plate under sinusoidal transverse load.
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&Y\ 0.4 - Present (Model-2)
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Fig. 6. Variation of nondimensionalized in-plane shear stress (7.,)
through the thickness (z/h) of a three-layer (0°/90°/0°) simply sup-
ported square plate under sinusoidal transverse load.

predicts the in-plane shear stress more accurately than
the other models for the above aspect ratios. For very
thin laminate (a/h =50 and above) Model-2 gives
better accurate results of all in-plane stresses as com-
pared to other models. The percentage error in pre-
dicting the in-plane stresses o, and &, using Model-1
increases as the sandwich plate becomes thinner. The
through the thickness variation of in-plane displace-
ments # and ¢ for a/h ratio equal to 4 is shown in Figs.
7 and 8. From the figures it can be seen that the values
of in-plane displacements predicted by both Model-1
and Model-2 are same, there is a considerable differ-
ence in values of the above displacements predicted by
other models.

Example 3. A simply supported two-layer (0°/90°)
antisymmetric square laminate under sinusoidal trans-
verse load is considered. The layers have equal thick-
ness. Material set 1 is used. Numerical values of
nondimensionalized transverse displacement and in-
plane stresses are shown in Table 6. Three-dimensional
elasticity results are obtained using the method given
by [28]. The percentage error with respect to three-
dimensional elasticity solution is given in Table 7. The
results clearly indicate that the percentage error with
respect to three-dimensional elasticity solution in pre-
dicting the transverse displacement and in-plane stres-
ses is very much lesser in the case of Model-2 and the
prediction of in-plane normal stresses o, o, by Model-
4 is very poor.
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Table 4
Nondimensionalized deflections and stresses in a three-layer simply supported square sandwich plate (0°/core/0°) under sinusoidal transverse load

a/h Theory w G, g, Toy
4 Elasticity* - 1.512 0.2533 0.1437
Present (Model-1) 7.0551 1.5137 0.2648 0.1379
Present (Model-2) 7.1539 1.5030 0.2391 0.1409
Model-3 7.0873 1.4182 0.2365 0.1383
Model-4 5.6205 1.5765 0.0780 0.0623
Model-5 4.7666 0.8918 0.1562 0.0907
10 Elasticity* - 1.152 0.1099 0.0707
Present (Model-1) 2.0798 1.1523 0.1100 0.0685
Present (Model-2) 2.0848 1.1495 0.1042 0.0688
Model-3 2.0629 1.1300 0.1030 0.0679
Model-4 1.6458 1.1746 0.0581 0.0464
Model-5 1.5604 1.0457 0.0798 0.0552
20 Elasticity* - 1.110 0.0700 0.0511
Present (Model-1) 1.1933 1.1110 0.0705 0.0504
Present (Model-2) 1.1939 1.1091 0.0682 0.0504
Model-3 1.1876 1.1039 0.0679 0.0502
Model-4 1.0704 1.1164 0.0552 0.0441
Model-5 1.0524 1.0830 0.0612 0.0466
50 Elasticity® - 1.099 0.0569 0.0446
Present (Model-1) 0.9296 1.1005 0.0578 0.0445
Present (Model-2) 0.9294 1.0989 0.0566 0.0445
Model-3 0.9284 1.0980 0.0565 0.0445
Model-4 0.9090 1.1001 0.0545 0.0435
Model-5 0.9063 1.0947 0.0554 0.0439
100 Elasticity® - 1.098 0.0550 0.0437
Present (Model-1) 0.8913 1.0990 0.0560 0.0436
Present (Model-2) 0.8910 1.0975 0.0549 0.0436
Model-3 0.8908 1.0973 0.0549 0.0436
Model-4 0.8859 1.0978 0.0543 0.0434
Model-5 0.8852 1.0964 0.0546 0.0435

“See [28].

Example 4. In order to study the stretching-bending
coupling effect, the analysis of a five-layer square sand-
wich plate (0°/90°/core/0°/90°) with isotropic core and
unbalanced cross-ply plates is presented. Material set 3
is used. The ratio of the thickness of the core ¢, to
thickness of the face sheet # considered is equal to 4.
Results are compared with the corresponding sandwich
plate results with orthotropic faces. The numerical
results of nondimensionalized transverse deflection,
in-plane stresses of a five-layer sandwich plate with
unbalanced cross-ply faces and a sandwich plate with
orthotropic face sheets are given in Tables 8 and 9,
respectively. The variation of nondimensionalized de-
flection ratio w./w, (where w, is the nondimensionalized
transverse deflection of sandwich plate with unbalanced
cross-ply faces and wy is the nondimensionalized trans-
verse deflection of sandwich plate with orthotropic face
sheets) with plate side-to-thickness ratio (a/h) of a an-
tisymmetric square sandwich plate under sinusoidal load
is given in Fig. 9. From the figure it can be concluded
that in the case of multilayer sandwich plate, the
stretching—bending coupling effect is considerable in the

case of thick plate and decreases the stiffness of the plate
when higher order models are used. Irrespective of the
thickness of the plate, the effect of coupling is always to
increase the stiffness in the case of Model-5 and to re-
duce the stiffness of the plate in the case of Model-4. The
higher order models, i.e., Model-1, Model-2 and Model-
3, show that there is an increase in the stiffness when the
plate thickness changes from thick to relatively thin,
that is a/h value changes from 2 to 50. When the
sandwich plate becomes very thin (a/h = 100), all the
models show negligible coupling effect.

5. Conclusion

Analytical formulations and solutions to the static
analysis of simply supported composite and sandwich
plates hitherto not reported in the literature based on a
higher order refined theory developed by the first author
and already reported in the literature are presented. The
displacement field of this theory takes into account both
the transverse shear and normal deformations thus
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Table 5
Error (%) in a three-layered symmetric sandwich (0°/core/0°) plate
alh Theory Oy Gy Ty

4 Present (Model-1) 0.112 4.54 -4.04
Present (Model-2) -0.60 -5.60 -1.95

Model-3 -6.20 —-6.63 -3.76

Model-4 4.26 —-69.20 —-56.65

Model-5 -41.02 —-38.33 -36.88

10 Present (Model-1) 0.026 0.091 -3.11
Present (Model-2) -0.22 -5.19 -2.69

Model-3 -1.91 —-6.28 -3.96

Model-4 1.96 —47.13 —34.37

Model-5 -9.23 -27.39 -21.92

20 Present (Model-1) 0.09 0.71 -1.37
Present (Model-2) —-0.08 -2.57 -1.37

Model-3 -0.55 -3.0 -1.76

Model-4 0.58 -21.14 -13.70

Model-5 -243 -12.57 -8.81
50 Present (Model-1) 0.136 1.58 —-0.224
Present (Model-2) -0.091 -0.527 -0.224
Model-3 —-0.091 —-0.703 -0.224

Model-4 0.1 -4.22 -2.47

Model-5 —-0.391 -2.64 -1.57

100 Present (Model-1) 0.091 1.82 -0.229
Present (Model-2) —0.046 —-0.182 -0.229

Model-3 —-0.064 —0.182 -0.229

Model-4 -0.018 -1.27 —-0.686

Model-5 —0.146 -0.727 —0.458

making it more accurate than the first order and other
higher order theories considered. For laminated com-
posite plates the solutions of the higher order refined
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Fig. 7. Variation of nondimensionalized in-plane displacement (i)
through the thickness (z/h) of a three-layer (0°/core/0°) simply sup-

ported square plate under sinusoidal transverse load.

theories (Model-1 and Model-2) are found to be in ex-
cellent agreement with the three-dimensional elasticity
solutions and the percentage error with respect to 3D
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Fig. 8. Variation of nondimensionalized in-plane displacement ()
through the thickness (z/4) of a three-layer (0°/core/0°) simply sup-
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ported square plate under sinusoidal transverse load.
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Table 6
Nondimensionalized deflections and stresses in two-layer (0°/90°) simply supported square laminated plate under sinusoidal transverse load
alh Theory w O Gy Ty
2 Elasticity* 4.9362 —0.9070 1.4480 —0.0964
Present (Model-1) 4.6558 —-0.8268 1.1946 -0.0729
Present (Model-2) 4.9691 —0.9535 0.9535 —0.0758
Model-3 4.5619 —1.4277 1.4277 -0.0719
Model-4 4.5619 —1.8199 1.8199 -0.0719
Model-5 5.4103 -0.7151 0.7151 -0.0527
5 Elasticity® 1.7287 —0.7723 0.8036 —0.0586
Present (Model-1) 1.6800 —-0.7510 0.7720 —-0.0557
Present (Model-2) 1.7037 —0.7662 0.7662 —0.0572
Model-3 1.6670 —-0.8385 0.8385 —0.0558
Model-4 1.6670 —1.4133 1.4133 —0.0558
Model-5 1.7627 -0.7151 0.7151 —-0.0527
10 Elasticity* 1.2318 -0.7317 0.7353 —0.0540
Present (Model-1) 1.2192 —0.7269 0.7273 —0.0533
Present (Model-2) 1.2274 —0.7286 0.7286 —0.0539
Model-3 1.2161 —0.7468 0.7468 —-0.0533
Model-4 1.2161 —1.3500 1.3500 —0.0533
Model-5 1.2416 -0.7151 0.7151 —0.0527
20 Elasticity* 1.1060 —0.7200 0.7206 —0.0529
Present (Model-1) 1.1025 —0.7189 0.7186 —-0.0527
Present (Model-2) 1.1078 —0.7185 0.7185 —0.0530
Model-3 1.1018 —-0.7235 0.7235 —-0.0527
Model-4 1.1018 —1.3340 1.3340 —0.0527
Model-5 1.1113 -0.7151 0.7151 —0.0527
100 Elasticity* 1.0742 -0.7219 0.7219 -0.0529
Present (Model-1) 1.0651 -0.7161 0.7161 —0.0525
Present (Model-2) 1.0695 —0.7152 0.7152 —0.0527
Model-3 1.0651 -0.7161 0.7161 —-0.0525
Model-4 1.0651 —1.3288 1.3288 —0.0525
Model-5 1.0651 -0.7151 0.7151 -0.0527
#See [28].
Table 7
Percentage error in a two-layer (0°/90°) cross-ply laminate
alh Theory w [ G, Ty
5 Present (Model-1) -2.82 -1.98 -3.93 495
Present (Model-2) -1.45 -0.79 —4.65 -2.39
Model-3 -3.57 8.57 4.34 -4.78
Model-4 -3.57 83.00 75.87 —-4.78
Model-5 1.97 -7.41 -11.01 -10.07
10 Present (Model-1) -1.02 —-0.66 -1.09 —1.30
Present (Model-2) -0.36 -0.42 -0.91 -0.19
Model-3 -1.27 2.06 1.56 —1.30
Model-4 -1.27 84.50 83.60 -1.30
Model-5 0.80 -2.27 -2.02 -2.41
100 Present (Model-1) -0.85 -0.80 —-0.80 -0.76
Present (Model-2) —-0.44 -0.93 -0.93 -0.38
Model-3 -0.85 -0.80 —-0.80 -0.76
Model-4 -0.85 84.07 84.07 -0.76
Model-5 -0.85 -0.94 -0.94 -0.38
elasticity solutions is very much less compared to other natha and Pandya—Kant theories are in good agreement
shear deformation theories used for comparison in this whereas the error is quite considerable when the first

study. For sandwich plates the results of Kant-Manju- order theory and the theories of Reddy and Senthilna-
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Table 8
Nondimensionalized deflections and stresses in a five-layer (0°/90°/core/0°/90°) simply supported square sandwich plate under sinusoidal transverse
load

a/h Theory We O gy Toy

2 Present (Model-1) 43.2468 2.6494 4.5305 —-0.7688
Present (Model-2) 44.9032 —-3.5349 3.5349 0.5515

Model-3 30.2539 -2.0269 2.0269 0.2959

Model-4 30.2539 -2.8710 2.8709 0.2959

Model-5 8.6438 -0.6199 0.6199 0.0693

4 Present (Model-1) 14.1627 —-1.6445 1.4931 0.2031
Present (Model-2) 14.3440 —-1.5328 1.5328 0.2196

Model-3 8.7941 -0.9937 0.9937 0.1291

Model-4 8.7941 -1.2525 1.2524 0.1291

Model-5 2.9509 -0.6199 0.6199 0.0693

10 Present (Model-1) 3.3032 —-0.8104 0.7606 0.0946
Present (Model-2) 3.3197 -0.7771 0.7771 0.0951

Model-3 2.3075 —-0.6815 0.6815 0.0787

Model-4 2.3075 -0.7634 0.7631 0.0787

Model-5 1.3570 -0.6200 0.6200 0.0693

100 Present (Model-1) 1.0697 —-0.6231 0.6226 0.0691
Present (Model-2) 1.0763 -0.6216 0.6216 0.0696

Model-3 1.0595 -0.6214 0.6214 0.0690

Model-4 1.0595 —-0.6692 0.6691 0.0690

Model-5 1.0564 -0.6200 0.6200 0.0693

than et al. are used. The main aim of this entire inves- Appendix A. Coefficients of [C] matrix

tigation is to bring out clearly the accuracy of the vari-
ous shear deformation theories in predicting the stresses

so that the claims made by various investigators re- C = Ei(1 — va303) Cpy = E1 (021 + v31023)
garding the supremacy of their models are put to rest. A ’ A ’
Table 9

Nondimensionalized deflections and stresses in a simply supported square sandwich plate with orthotropic face sheets under sinusoidal transverse
loads

a/h Theory Wwo Gy G, Ty
2 Present (Model-1) 37.8550 -2.3560 0.3752 0.3172
Present (Model-2) 39.0218 —4.0665 0.5310 0.5184
Model-3 29.4799 —2.4689 0.3922 0.3583
Model-4 28.3619 -2.66384 0.2526 0.2750
Model-5 9.7795 -0.3814 0.1943 0.1440
4 Present (Model-1) 14.3218 —-1.7931 0.2128 0.2702
Present (Model-2) 14.4949 —1.8204 0.3077 0.2783
Model-3 9.6703 —1.0558 0.2358 0.1978
Model-4 8.6085 -1.2193 0.1154 0.1257
Model-5 3.5348 —-0.5176 0.1308 0.1077
10 Present (Model-1) 3.8714 —-0.8536 0.1372 0.1363
Present (Model-2) 3.8899 —0.8344 0.1527 0.1352
Model-3 2.7265 —-0.6913 0.1198 0.1069
Model-4 2.2887 —0.7558 0.0715 0.0779
Model-5 1.4854 —-0.6301 0.0784 0.0777
100 Present (Model-1) 1.0740 —0.6657 0.0641 0.0694
Present (Model-2) 1.0806 —-0.6647 0.0642 0.0699
Model-3 1.0591 —0.6642 0.0636 0.0689
Model-4 1.0531 —-0.6651 0.0630 0.0686

Model-5 1.0515 —-0.6629 0.0630 0.0690
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Appendix B. Coefficients of [Q] matrix
011 = Ciic* 4+ 2(Chy + 2Cyy)s* S + Cas?,

7 ! 01 = Cia(c* +5*) + (C1y + Cpp — 4Cuy)s* 3,

O 013 = Ci3* + Cxns?,

O = (Cii —Cip — 2C44)SC3 +(Ca—Cpn+ 2C44)CS37

038 ——777— On= C11S4 + C2204 + (2C + 4C44)S2C2,

-20 0 20 40 60 80 100 120

053 = Ci3s” + Cx3c?,
04 = (C11 — Cip — 2Cy)s’c + (Cpa — Cop + 2Cuy)Cs,

a/h

Fig. 9. Nondimensionalized deflection ratio (w./w,) as a function of

plate side-to-thickness ratio (a/h) of a five-layer (0°/90°/core/0°/90°) 033 = Cs3,
simply supported square sandwich plate under sinusoidal transverse
load. O = (G351 — Cx)sc,

Ou = (C1y — 2C12 + Cpy — 2Cu4)%s™ + Caa(c* + %),
Oss = Cssc® + Cgs”,

C N E] (1)31 + Uo1 1)32) C N E2(1 — 1)13031) QS() = (C66 — CSS)CS;
BE 2= , s
QOss = Csss™ + Cgee
Cor — E> (032 + 012031 Cun — E3(1 —vp5001)
Bn=E—— wE— 4 and
Cyu =G, Css=0Gun, Cs=Gpy, 0;=0;, i,j=1t06,
where where

4= (1 — V12021 — U23U32 — 31013 — 2012023031) .
c=cosoe and s =sina.

and

_ 0 02 a3 Appendix C. Elements of [4], [4'], [B], [B], [D], [D'], [E],
E, E, E;’ [E'] matrices

OuH, QunH, OuHs QpnHy QuH, 30i3Hs OuH, QipH, OnHy QnHi 2013H;
Onfy QOpH, QuHs OnHy QOxH 30xH; QpH, QOnH, QnHiy Onfy 20xH,
Ouf; QuHy OuHs QnpHs QuiHy 30i3Hs QuHy QupHy OnHs Qnfs 2Q13H,
OnHy OnHy QnHs OnHs OnHy 30x»Hs QpHy OnHy QunHs OnHs 202H,

e | OQuHy OnHy QuHy OnHy OnHy 30nH; QuHy, OnH, QOnHy OnHy 203H,
[A}:Z OuHs  OxnHs QuisHs OnpHs QOnHs 30uHs QuiHy OnHy QuHs OnHs 20uH, |,

=1 | QuH, QuH, QuHs QnHy QuiHy 3013Hy QuHs; QunH; QuHs QnHs 20iH;
Onfy, QOpH, QuHy OnHi QOpH, 30nH; QnHy QOpHy QpHs OnHs 20x3H;
OuH, OnH, OuH¢ QOnH¢ QOiHy 3013Hs OnHs QpHs QOnH; QpH; 2013Hs
OnHy OnHy QpHs OnHs OnHy 30nHs QipHs OnHs QpH; OnH; 20»Hs
| Oy, Ol OusHy OnHy Ol 303H; QisHy OnH; QisHs  OxnHs  2033H; |
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OuHy QuH; QOuH, QOuH, Xop = Ao + Biy0?, X5 =0,
OuHs OwuHs QuHy QuHs
B| = , Xo4 = Ar70P + By saf,
18] — | QuHy OuHy QuH;  QuHs 4 7 f 1s2h
OuHy  QOuHs  QuHs  QuH; Xos = ArsB> 4+ Bis®, Xog = —AssP,
[ Q]4H] Q14H3 Q14H2 Q14H4 i X2,7 = AZJO‘ﬁ + Bl,31ﬁ, XzAg = A214ﬂ2 + B]$4OC27
OuHy  OwuH; OuH, 0OxuH, Xoo = —A>11f, Xoio = Aroaf + Bysof
OuHy QuHs QuHs Ol Xott = Aorofi® + Bisi?,  Xo» = —Aof,
OuHs  OuHs OyHy OyHg Y Do BB X b
s | Oy OsHy Oy, OsaHy 33 = D10 + Er2f, 34 = M1,
[4'] = Z OuHy  QuHs  OuHy OuH |, Xss =E B, Xsg =D’ +Eif,
=V QuHy,  OuHy  QuHs  O1aHs X7 =Dis0, X33 =Esp,
gZ4Z2 524? gZ4Z3 gZ4Z5 Xs9 = D140 + Eraf’,  Xspo = Diso,
14 s QO 14
’ ’ ’ Xsn = Ei3f, Xspo = Di70% + E7f,
OwuHy OuHs OuHs  OxuHy , ,
| Oulhs  OuH, OuHy OwuHs | Xya = A7707 + Bssp~+ D1, Xas = Argof + Bsgaf,
u [OuH,  OuH, OuHy OuH; OuH, 30uHy; QOuH, OuH, QuHi; QuHi 20uH,
B] = Z Oulsy OuHs QuHs OxuHs QuHy 303Hs QuHy OwHy QuuHs OwHs 2034Hy
c~ | Quth OuHy QuHiy OwuHy QOuHy 30uHy QuHs OuHs QuHs OuHs 2034H;
| Qs OuHy QuHs QuHs QuHy 30uHg QuHs QOuHs QuH; QOwuH; 20uHs
o OssHy  QesHz  QssHy  QscHa Xy = —A7500+ Dy got,  Xy7 = A730° + B33 + D5,
D] = 36653 g“zs 36654 g“zﬁ , Xyg = A740B + B340B,  Xa9 = —A71100+ Dy 40,
. Q66H2 Q66H4 Q%H3 Q%H5 Xygo = A790° + B37f° + D13, Xayy = A7100 + B3 gof,
sy QesHs  QesHs  QosHr
Xy1p = —Aq60 + Dy 70,
OseHi  QOseHs  QseHy  QseHy H12 7’26 1’72
(D] = i OseH;  OseHs  QseHa  OseHs Xss =Assf” + Byeo” + Ery, Xsg = —Assp+ Eiel,
=1 Q56H2 Q56H4 Q56H3 Q56H5 ’ X577 = Agng,(xﬁ + B3,30(ﬁ, X5_’8 = A874ﬁ2 + B374062 + E175,
Oseta Osetls  OseHs  QsHy Xso = —Agip +Eiaf, Xsi0=Agoof + Bs70p,
H H- H H,
NL Osshh Osshy— OssHy - OssH X = A&,wﬁz + B30 + Er3, Xsio= —Asef + E17B,
£l — OssHy  QOssHs  QOssHy  QOssHg ) 5
[E] = OssHr  OssHy  QssHy  OssHs |’ Xos = Dsgo” + E36f™ + Ass, Xe7 = Dss00— As30,
=
OssHy  QOssHg  QssHs  QssHy Xos = EssB — AsaP, Xoo = D3ao® + Esaf> + As i1,
OssHy  OseHs  QseHy  QseHy Xs10 = Dazoe — Asoo,  Xg11 = E33f — As 10,
NL
B] = Z gselH; gsezs 85654 85656 Xo12 = D3 707 + Es7 + Asg,
— sefly  QOssHy  Qsely  QseHs
=1 OssHy OseHo OsoHs OsoH, X77 = A330% + Bosf’ +2Ds5, Xog = As40B + Braof,

Appendix D. Coefficients of matrix [X]

X = A0 +31,1ﬂ2, Xip = A0 + By rop,
Xi3=0, Xi4=4,70+Bs5,
Xy 5 = A1308 + B gof,
Xig=—Ais0, Xig=A30° + B3,

Xig = A140f + Braaf, Xio = —A110,

Xi10 = Ay 907 + B35, Xin = A4100f + Bigap,
X112 = —Ai60,

Xy9 = —As 0+ 2D3 40, X710 = A3907 + By7f° + 2Ds3,
Xon = Asq00f + Bagof, Xp12 = —Aseo+ 2D5 70,

Xgg = 1‘14,4ﬁ2 + Bpso® +2Ess5, Xgg = —Aqnif+ 2E34p,
Xg 10 = Aagoff + Brqofl, Xgi1 = 1‘14,10ﬁ2 + Bygo® + 2E533,
Xy 12 = —Aasf + 2E37p,

Xog = Dyq0? + Ez,4ﬁ2 + 24111, Xoi0 = Dyzo— 24110,
Xo1 = Ex3f — 241110p,

Xo1n = Dy70? + Ez,7ﬁ2 + 24116,

Xio.10 = Ag90” + By7f° + 3Dy,
Xio11 = Ao 00f 4 Bygof,
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Xio12 = —Ao ot + 3D5 70,

Xiin = A0 + Bygo? + 3E»3,

Xin = —AweB + 3E27P,

Xiz12 = Dyyo® + E4,7,32 + 3466
and X, =X, (i,j=1,12).
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