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Proton-nucleus optical model potential at low energies—a review

M K MEHTA and S KAILAS
Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay 400085, India

Abstract. Ever since it was proposed more than three decades ago, the nuclear optical model
has been very successful in interpreting a large body of nucleon-induced nuclear reaction data
in terms of a complex nucleon-nucleus potential. Rapid progress both in the experimental
measurements and the theoretical developments in the last two decades has led to a better
understanding of this nucleon-nucleus optical potential. From the parameter-fitting phenomen-
ological stage, the optical model has come a long way and it is now possible to calculate the
nucleon-nucleus optical potential in a reasonable way starting from the fundamental nucleon-
nucleon interaction. Excellent reviews on various aspects of the optical model exist in the
literature for proton energies above 10 MeV. The present article is an attempt to review
comprehensively the status of the proton-nucleus optical potential at low proton energies,
below the Coulomb-barrier, for target nuclei with mass numbers lying between 40 and 130. The
sets of phenomenological optical potential derived mostly from (p, n) reaction data are
reviewed and their applicabilities discussed. The neutron-nucleus optical model is referred to
wherever it is relevant, Microscopic calculations for one case is carried out and compared with
the corresponding phenomenological values.

Keywords Low energy proton + nucleus optical model potential; phenomenological analy-
sis; real and imaginary potential parameters.

PACS No. 2410; 2540
1. Introduction

Since its application by Feshbach et al (1954) to explain the extensive neutron-nucleus
cross section data, the nuclear optical model has come of age and has been fully established
as the most suitable and physical phenomenological model for the description of the
nucleon-nucleus interaction. The concept has proved itself to be a very useful tool in
parameterizing the interaction between the various projectiles, n, p, d, *He, *He, and the
target nuclei (Hodgson 1971) and has become the basis on which reactions between
complex nuclei are also analyzed and interpreted (Satchler and Love 1979). The
phenomenological parametrization of the nucleon-nucleus interaction through optical
model is also considered to be an important intermediate step towards full microscopic
understanding of this interaction. In this model the nucleon-nucleus interaction is
parametrized in terms of a complex potential, ¥ (r), which has a Woods-Saxon form for
the real part and a Woods-Saxon or derivative Woods-Saxon form for the imaginary
part (Hodgson 1971). Over the years considerable progress has been made both in the
microscopic and the phenomenological aspects of the nucleon-nucleus optical model
(Hodgson 1984, 1985; Rapaport 1982; Schwandt 1983; Von Geramb 1979, 1985). We are
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now in a position to write down the nucleon-nucleus optical potential with reasonable
accuracy given the mass number and the atomic number of the nucleus, the nucleon
type and the energy. From systematic phenomenological analyses, Perey (1963)
obtained the optical model parameters for protons with energies (E,) lying between 9
and 22 MeV and for target mass numbers (4;) between 30 and 100. While Becchetti and
Greenlees (1969) determined them for E, = 10-50 MeV, Menet et al (1971) obtained
them for E, = 30-60 MeV. For protons at higher energies upto 200 MeV, Schwandt
(1983) determined them. For neutrons the status of the optical potential is reviewed by
several workers (Rapaport 1982; Hodgson 1984; Walter and Guss 1985; Smith et al
1986).

Low energy neutron-nucleus optical model is very well studied and reviews have been
written on this topic (Rapaport 1982; Hodgson 1984; Smith et al 1986). But this is not
the case for the low energy proton-nucleus optical model. The present work is aimed at
reviewing the experimental and theoretical work regarding the proton-nucleus
interaction in the scheme of the nuclear optical model at low energies. We are
particularly concerned with the optical potential for proton energies which are
conventionally defined as sub-Coulomb i.e. below the Coulomb barrier for the proton-
target system, which varies from 6:5MeV for #*Sc to 11-4 MeV 130T¢ (figure 1). There

are several groups the world over who contributed actively in the last decade in

generating data useful for determining the proton optical potential at sub-Coulomb
energies (Oak Ridge, U.S.A.—Johnson et al 1979; Trombay, India—XKailas and Mehta
1982; Erlangen, FRG—Finckh 1980; Melbourne, Australia—Sargood 1982; Kentucky,
U.S.A—Flynn et al 1985; California, U.S.A—Esat et al 1981).

The optical potential at this low energy sub-Coulomb region is interesting from
several points of view:

(i) This energy region more or less connects the negative energy bound states with
the positive energy unbound states and hence the data in this region provide a handle to
understand this transition region (Mahaux and Ngo 1981; Bauer et al 1982; Finlay et al
1985).

(ii) The presence of the single particle/size resonances can be seen more clearly in this
low energy region (Johnson et al 1977a). It turns out that at these sub-Coulomb
energies, the Coulomb barrier, by virtue of its height relative to the spreading width
from the absorptive potential, can quasibind a single-particle state. In view of this it is
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more likely that a single particle resonance will be sharpened sufficiently to be observed
as a function of proton energy for a given nucleus. v

(iii) In determining the optical model parameters, effects due to nuclear structure—
level density, collective and shell effects—are seen rather strongly in this energy region
(Grimes 1980; Hodgson 1985; Johnson et al 1977b; Kailas et al 1979; Flynn et al 1985).

(iv) Using the proton optical parameters determined in this energy region, the cross-
sections at lower energies which are of interest to astrophysics and for other
applications can be calculated.

(v) The nucleus-nucleus potential at low energies can be determined from a
knowledge of nucleon-nucleus potential at these energies and by employing “folding
model techniques”.

(vi) In performing DWBA calculations for transfer reactions and inelastic scattering
involving protons at these energies the proton-nucleus optical potentials are used. Even
in certain special reactions like (n, p), the proton-nucleus optical potentials are used.
(Avrigeanu et al 1986)

(vii) The energy variation of the imaginary part of the optical potential has an effect
on the real part manifested through the dispersion relation (Mahaux et al 1986). This
effect is most pronounced at energies close to the Fermi and sub-Coulomb energies.

In the present work, we have reviewed this field and summarized the various features
of the proton-nucleus optical potential for E, ~ 1-7 MeV and for target nuclei with A,
~ 40-130. Both the phenomenological and the microscopic models used in the analysis
are discussed. Wherever possible the connection to the neutron-nucleus optical model
has been brought out. A brief discussion of the experimental techniques employed in
measuring the proton scattering and absorption data is given in §2. The determination
of the proton optical model parameters—the methodology, the salient features and the
systematics of the parameters—forms the subject matter of §3. In §4 we discuss the
strength function and the effective mass concepts as applied to the present work. The
microscopic and the phenomenological models are also compared here. Section 5 sets
out the conclusions.

2. Experimental techniques

When proton collides with the target nucleus at low energies, broadly speaking there are
two processes that take place, the elastic scattering (o) and the absorption (o)
followed by various reactions leading to emission of not only protons but gamma rays,
neutrons, alpha and other particles. The optical parameters are generally determined by
measurement and analysis of g, and g,;,,. Determination of g, involves measurement of
angular distribution and also excitation function at selected backward angles. Normally
this is carried out in a scattering chamber using silicon surface barrier detectors. As
explained in the next section, in the determination of the optical model parameters, at
sub-Coulomb energies, there is greater sensitivity to o,y (= ¢, ,) than o data.

At sub-Coulomb energies and at proton energies above the neutron threshold the
neutron emission dominates over the other emission channels and hence o, ~ o, ,.. At
low energies by measuring the (p, n) cross-section, the proton absorption cross-section
can be determined conveniently without much error. Normally the excitation function
of the (p, n) reaction is measured from the threshold to 5 or 7 MeV (high energy limit
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dictated by the accelerator used for measurement) in convenient energy steps using
either thick target to average over fine structures or thin target followed by energy
averaging to simulate the thick target data. The targets employed have been either self-
supporting foils or material deposited on suitable backing materials. The total (p, n)
cross-sections have been measured using the activation technique when the residual
nuclei are radioactive with suitable half-lives. The most widely used technique for (p, n)
measurement involves use of either the long counter or the 47 geometry neutron
counter. Because of easy portability the long counter has been usually preferred
whenever angular distribution measurements are carried out. However, for the total
cross-section measurements the 4z geometry counter is the most suitable as it integrates
over all angles and sums over all neutron groups. Tt has a large efficiency (typical 5-10%)
and has a fairly flat response for a range of neutron energies. In the literature several
counters of this type—their design and efficiency details—have been reported (Macklin
1957; Macklin et al 1972; Sekharan 1966; Sekharan et al 1976; Gupta and Kerekatte
1971; Gabbard 1977). Generally, o, , measurements have errors of 5-10 % consisting of
uncertainties in efficiency and percentage number of the high energy neutrons (when
the efficiency of the counter is not uniform enough with respect to energy) and in the
target thickness. A very high degree of accuracy (~ 1%)in o, ,measurements has been
reported by Johnson et al (1977a) in special cases. .

For proton energies below the neutron threshold the other reaction channel viz (p, ),
(p, p") will become increasingly important. In the present discussion we will be
concerned mainly at proton energies above the neutron threshold. Hence the basic
measurements of interest are gy and ¢, ,. In the present article, most of the relevant
(p, n) reactions studied, have been reviewed regarding their interpretation in terms of
the optical model, and are listed in table 1. For further details of experimental
arrangements and measurements the reader may refer to the original articles listed in
table 1.

3. Optical model

3.1 General considerations

The nuclear reactions in this low energy region are best described by the compound
nuclear statistical model developed by Hauser and Feshbach (1952). Based on this
formalism, the cross-section for the (p, n) reaction can be written as (Kailas et al 1975),

T, (E) Y T (E
@J+1) iy (B) 2, T, (B

— 2
Tpn =Ty Y, 2T, + DS+ T, (E)+ X T, (E)

Juip by
Iﬂ’jﬂi Eﬂ

where J, and S, equal the target and the projectile spins, T, and T, are the proton and
the neutron transmission coefficients, J; equals the compound nuclear spin. In writing
the above we have assumed that the direct reaction contribution is negligible and have
considered only the proton and the neutron emission probabilities. If we further make
the assumption that

Y T, (E)> T j, (Ep)




Proton-nucleus optical model potential 143

Table 1. (p, n) data.

Target  Q, ,(MeV) Reference Target  Q, ,(MeV) Reference
K —1-210  Saini et al (1983) 93Nb —1-201 Johnson et al (1979)
458 —2:841  Iyengar (1967) %47r ~1704  Flynn et al (1979)
48Ca —0493  Gulzar Singh et al (1982) °’Mo —2-441  Flynn et al (1979)
49Ti —1384  Kennett et al (1980a) 96Zr —0568  Flynn et al (1985)
50T —2:997 Kailas et al (1975) Mo —2372  Flynn et al (1979)
Kennett et al (1980b) 100M0 —1-118  Flynn et al (1985)
sty ~1:534  Kailas et al (1985) 103Rh —1:337  Johnson et al (1979)
Zyskind et al (1980) 105pg —2:083 Johnson et al (1979)
53Cr —1380  Johnson et al (1960) ,
*#Cr —2161  Kailas et al (1975) 107Ag —2-199  Hershberger et al (1980)
55Mn — 1015  Viyogi et al (1978) 1094¢ —0951  Hershberger et al (1980)
S7Fe —~0353  Johnson et al (1960) Hopg —1:650  Johnson et al (1979)
39Co — 1855  Kailas et al (1975) icd —~1869  Johnson et al (1979)
6INj —3:018  Johnson et al (1960) 13cd —0485  Johnson et al (1979)
84N —2461  Johnson et al (1960) 14cd —2215  Johnson et al (1979)
85Cu —~2:131  Saini et al (1983) 130 —0293  Hershberger et al (1980)
877n —1783  Johnson et al (1960) Hécd —1-300  Johnson et al (1979)
58Zn —3702  Esat et al (1981) 1178n —2:603  Johnson et al (1977)
1Ga —1018  Johnson et al (1960) 119gp —1361  Johnson et al (1977)
75As —1-647  Johnson et al (1960) 1208, —3.468  Johnson et al (1977)
‘ Drenckhahn et al (1980)
778e —~2147  Johnson et al (1960) 1228y —2405  Johnson et al (1977)
80ge —2:653  Kailas et al (1979) 124Qp —1436  Johnson et al (1977)
Drenckhahn et al (1980)
89y —3616  Johnson et al (1968) 128T¢ —2:050  Johnson et al (1979)
°27r —2789  Flynn et al (1979) 130T —1229  Johnson et al (1979)

which is ex"pecfed to be valid at sub-Coulomb energies and above neutron threshold
Ey, (500 keV above E ) and use the fact that

QI +1) = (2J+1) 2j,+1),
J;

the above expression reduces to

@j,+1 1)
QS+U

Opn=TI2 Y i, (Ep).
I

Further using the fact j, = l,+S, and S, = 1/2 we get
Opn =l [+ D) T +1, 751
where W=hL+s  h=L-%
If we further neglect the spin orbit interaction, and use the fact
RL+1DT = p DT+ 075
we get =iy ), RL+1T.
L,
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The above expression is identical to the absorption cross-section (0,4, calculated using
the optical model.

In general,
Opn™= Oghs — OCEr

and Oy = Osg+ OcE

where o g, oggare the compound elastic and the shape elastic cross-sections respectively.
Using the optical model we can calculate oggand o Experimentally what we measure
arec, ,and o . At these low energies in the forward angular region the elastic scattering
is dominated by the Coulomb scattering (hence has poor sensitivity to nuclear potential
variation) and at backward angles the contributions from compound elastic scattering
may be comparable to the shape elastic scattering. Hence the conventional method of
determining the optical model parameters through elastic scattering differential cross-
section measurement is not suitable at these low proton energies. However, as ocg is
negligible as compared to Gy at low proton energies and above the neutron threshold,
the optical parameters are best determined by analyzing the o, , data with the valid
assumption g, , ~ aps (J ohnson et al 1977, 1979; Kailas et al 1975, 1979) or performing
a full Hauser-Feshbach calculation for o, ,. There are several instances where o, , data
obtained using both the polarized (Drenckhahn et al 1980) and the unpolarized protons
(Schrils et al 1979) have been used along with the g, , data to constrain parameters in a
better way.

The optical model analysis can be carried out in a fully phenomenological or fully
microscopic approach. However, a semi-phenomenolo gical/semi-microscopic ap-
proach is sometimes sufficient to bring out the physics involved and at the same time
provide the parameters for further calculations. In the present review we have generally
followed the phenomenological approach and in §4, the microscopic interpretation of
the phenomenological parameter is also considered.

3.2 Phenomenological analysis

In the phenomenological approach for determining the optical model parameters one
can think of several possibilities:— fit data for a given Arand E, (individual), fit data
over a small region of Arand/or E,range (regional) or fit for a large range of Arand E,
(global). Each of the above methods has certain merits depending on the interest one
has. The first approach gives the best description fora given Ay and E, and is in general
valid for this case only. The regional approach can throw light on the behaviour for a
range of E/A with respect to parameter variations. This is suitable for interpolation of
parameters in the given range and also to look for special features over a small domain
of A/E. The global approach can give the overall behaviour of the parameters with A,
and E, variations and is more useful for a general understanding in terms of nucleon-
nucleus interaction.

In carrying out the phenomenological analysis in this low energy region, the optical
model used consisted of a real part which has a Woods-Saxon form and an imaginary
part which has conventionally a derivative Woods-Saxon ot Gaussian form. (Hodgson
1971). The optical potential at energy E, is given by '

V(rE)=— Ve(E) fo (r, Rg, ap) t+ida W,(E) g,(r, Ry, a)+V,(r, R,
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where Vr = depth of the real potential
W, = depth of the imaginary potential

fi= /(1 +exp[ (-~ Ro)ag])
g1= < [Vl +explr— R/a])]

Ry = Ryyx A7
Ry = half value radius; a, = diffuseness parameter

V¢ = Coulomb potential taken as potential for a uniformly charged sphere

where
V,=Zre*/r forr>R,
Zye? 5
and V, = >R [3—(/R.)*] forr<R,.

i
In the present discussion we have not included the spin-orbit potential as the calculated
0,45 values are rather insensitive to this component of the potential. In principle one can
vary all the various parameters associated with the real and the imaginary parts
simultaneously and obtain a fit to the data. In this way we will not be able to study the
various systematic features associated with the parameters.

Further, as the parameters are correlated it is desirable to keep certain parameters
fixed using other criteria and vary only the relevant and the sensitive ones to best fit the
data. Following this approach we can hope to learn more about the parameter
systematics. Several attempts have been made in the past to look at the correlation of
the various parameters in analyzing the o, , data (Johnson et al 1979; Flynn et al 1985;
Viyogi 1983). Based on these experiences, it is possible to keep the parameters at
predetermined values and vary only a few parameters. This is the approach followed by
Johnson et al (1979) and Kailas et al (1979). In the present review we will basically
follow the above approach in dealing with the various parameters. It may be mentioned
that over the years our knowledge of the microscopic nucleon-nucleus optical model
has advanced considerably (Von Geramb 1979, 1985) so it is possible and feasible to
make use of certain features of the microscopic result to fix the parameters in carrying
out the phenomenological analysis.

In the following sub-sections we deal with each parameter individually and describe
in what way its value has been fixed determined from the analysis of (p, n) data.

3.3 Real potential parameters

3.3a Depth: The real potential as mentioned before is assumed to have a Woods-
Saxon form and is taken as local in character. Hence the depth ¥ (E) can be expressed
as :

- VR(E) = VR(O)_. VECEp:

where Vg is the energy coefficient. To take into account the isoscalar and the isovector
components of the proton and the target nucleus interaction explicitly, VR(0) is
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represented as

N,—Z
I/IS+———-T—;1—__ZVIV
«ir

where Vg is the isoscalar component and Vyy is the isovector component. Implicitly we
have assumed that energy dependence (if any) of both V;gand ¥}y has been included in
the energy coefficient Vg Having defined the various terms, we go on to discuss the
actual determination of the various components of the parameter Ve

3.3b Energy coefficient: As the nucleon-nucleus optical potential is non-local in
character to facilitate the calculation in solving the Schrodinger equation it is the
normal practice to use the equivalent local potential. This leads to the energy-dependent
term Vgcin the real potential. The energy coefficient Vg takes care of not only the non-
local to local transformation but also includes the contribution due to the intrinsic
energy dependence of the optical potential (Sinha et al 1973). From phenomenological
analysis spanning a range of proton energies between 3 and 60 MeV, various values of
Vg have been obtained. In figure 2, the Vg values of Perey (1963), Becchetti and
Greenlees (1969), Menet et al (1971) and Johnson and Kernell (1970) have been plotted
asa function of E,— E (Fermi energy E; = —8MeV)values. The horizontal error bars
indicate the ranges over which the Vg values have been determined and the V. values
themselves have been plotted at the respective mean E values. An empirical fit to the V¢
versus E,— Ep data yielded

Voo = 1267 exp[—0:0343 (E, — E)] MeV.

It is thus found that Vg varies rather nonlinearly with E,. This effect is most
pronounced at low energies and this is often referred to as the anomalous variation of
the real part (Eck and Thompson 1975; Gyarmati et al 1979; Kailas et al 1979; Bauer et
al 1982). Further discussion on this feature will be made in §4. It is enough for the
present to note that Ve ~ 0-85 for E, ~ 4MeV, roughly the average of the energy
range of our interest.

t
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Figure 2. Variation of energy coefficient, Vgc as a function of E,—Ep MeV, with
Ep ~ -8 MeV. The continuous line is the fit to the Vgc data with the expression 1267
exp (— 00343 (E—Ep) (MeV)). The dotted line is the calculation with the non-locality
parameter, d ~ 1 fm.



Proton-nucleus optical model potential 147

3.3c Coulomb correction term: It is to be remembered that there are differences
introduced in the optical potential for the neutrons and the protons due to the Coulomb
field of the nucleus. Besides the addition of the trivial Coulomb potential V,(R,) for the
protons, one also has to use an effective energy (E,— (¥,)) when the proton moves
through the Coulomb field of the protons inside the nucleus and ( ¥,), the Coulomb
field averaged over the size of the nucleus

6Ze*
[(K)ﬁ‘s‘ ;e }

In view of this

Vi (E) = Vr(0) = Vic (E,— (VD)
= V¢ (0)— VECEp+ Vec<V.>

Z
= Vp(0) = VecEp+ Ve 11

ce :11;/'5
e’ 6
(Vee= VEC‘RT“’Si R, = RoAIT/S)-

*0

V. is the Coulomb correction term. Typically V= 04 when V.= 030 (Perey
1963). Some attempts have been made to determine V¥, from the Vg (E) values of the
proton and the neutron obtained at the same E (E = E, = E,) for nuclei *°Ca and 2*Si
(Rapaport 1982), and determined ¥V = 0-5+0-07. In conventional analysis one
normally uses a value of 0-4-0-5 for V... The value of ¥, ~ 0-5 obtained by Rapaport is
for E > 10 MeV. The point to note here is that V, is dependent on Vg and hence as
pointed out §3.3b that if Vi, is very large at low energies, V,, will go up proportionately
to large values. If Ve ~ 0-85, V. ~ 11. So to be consistent with the large value of Vi,
in carrying out the analysis at low E, values one should use a larger value of V. Even
though Kailas et al (1979) used a larger V. value, they did not usea larger value of ¥, in
their analysis. Viyogi (1983) used a value of V¥, ~ 11 consistent with the value of
Vec ~ 0-85 in reanalyzing the (p, n) data for A, = 40-140.

3.3d Isoscalar and isovector components: It is in principle possible to determine
isoscalar Vi and isovector V;, components of V; using the following expression for
proton nucleus system,

No—Z Z
T T+V T

VE=Vis+V .
R 1S v A, w4173

If V'} is determined for a number of target nuclides specified by Z,and A, the above
expression can be used to calculate Vjgand Vy. Alternatively this expression can be
combined with the expression corresponding to the neutron-nucleus system

Ni—Zr

T

n .
R-I/IS—V}V
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for the same target (or targets) and same energy, then we can determine

Z
Vis= %[(V§‘+ V- Vwﬁ:],

1 Z,
and Vi=—r——<| Vi=VR -V “ﬂ?]

Of course, for the protons one will have to fix the V. term by the procedure discussed in
§3.3c. It can be seen that the latter approach will yield more reliable values of Vigand Vyy
components, as the P2 — V% differences are much larger than the V2 changes observed
as a function of (N —Z)/A values of the targets.

Viyogi (1983) following the former approach reanalyzed most of the (p, n) data for
nuclei lying between A ~ 40-130, starting with V. ~ 0-85and hence with ¥ ~ 1-13. He
has obtained for the various targets (first approach), Vs ~ 55 MeV and Vyy ~ 22 MeV.
In the present work we have determined Vjgand Vyycomponents by the latter approach
and by combining the proton- and the neutron-nucleus parameters of Johnson et al
(1979) and Smith et al (1984) respectively for Ay~ 100. The V' values of Smith et al
(1984) have been first corrected for the differences in the geometry parameters, Ry, ap,
of Smith et al and those of Johnson et al as follows:

n2a?
{ V;;R;[l + 2“]} Smith et al
yn = Ry

R = 2] .
{Ri[l +—P£ } Johnson et al.
R

In table 2, the ¥ %and the corrected ¥} values are listed. Combining these two and using
the values of Ve ~ 032 and ¥, ~ 0-45 as quoted in the work of Johnson et al (1979),
we obtain, Vi ~ 55 MeV and ¥y ~ 26 MeV. It must be mentioned that the determi-
nation of V;gand V;y strongly depends on the values of ¥, which in turn depends on the
value of Vgc. Using the values of Ve ~ 0-85,and V. ~ I'1,in the above analysis we get
(table 2) Vg ~ 52 MeV, V}y ~ 1 MeV. It can be seen that the determination of Visis less
sensitive to Vg variations. But the ¥y value is drastically affected by the choice of V.

Following yet another technique, Flynn (1983) obtained the value of V}y for protons
interacting with °°Zr at sub-Coulomb proton energies, from the observed isospin
splitting of the 3, , single-particle resonance. He has described the splitting by the Lane -

Table 2. V;gand V', components of V.

N—-Z Vi V& Vis Vv Vec
Ar — (MeV) (MeV) (MeV) (MeV) (MeV)
89y 0124 623 529 55 26 032
93Nb 0118 623 532 52 1 085
103Rp 0126 627 502
107,1094 9 0130 62:9 - 517

15In 0148 63-4 50-6
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model with ¥y ~ 31'4 MeV. He has also shown that the Vy determined is strongly
dependent on the value of Vy-assumed. He gets a value of V;y ~ 31 for Vi ~ 0:32. The
values of Viy ~ 16 for Vgc~ 1 and Vy ~ 20 for Vg ~ 0-85 are also given by Flynn
(1983).

A survey of the literature values (Rapaport 1982) of V;y obtained by various methods
at slightly higher energies for protons and neutrons, yields an average value around
20MeV. It may be remarked that the V}, value deduced exclusively from neutron
optical model parameters lies between 20 and 30 MeV (Rapaport 1982; Smith et al
1984). In this method of determination of V}y, as the V term is absent, one does not
have the associated uncertainties which generally bother the proton analysis.

. Hodgson (1984) detailed the various methods of deducing V;y at higher energies and
suggested that the real part can have an A-dependent term and neglect of this will
appear as spurious (N — Z)/A4 dependence. So he suggests that one should have Vi
= VL + V3 for protons and V;y = V'§, — V§, for neutrons where ¥, = trueand V3§,
= gpurious isovector components and by analyzing suitable data it may be possible to
separate an A, dependence from an asymmetry dependence. He has quoted values of
VE ~21+3MeVand V§, = 3+ 3 MeV. As the contribution of the isovector potential
to the total potential is small, its determination from phenomenological analyses has a
large uncertainty and this will be dependent on how well the total potential is
constrained by the analysis. '

From the above discussion, it is clear that there are some problems associated with
the determination of the ¥}y component, using the proton data. The ¥y values range
between 1 and 30 MeV depending on the Vg values. Using exclusively the neutron data,

~ we get Vjy values lying between 20 and 30 MeV. The V;5 component is perhaps better

determined and its values is around 53-54 1-5MeV.

3.3e Geometrical parameters for the real potential. Traditionally one used a Woods-
Saxon form for the real part as it is expected to closely follow the nucleon distribution
inside the nucleus. A quick look at the literature values of the geometrical parameters of
Rzand ag (Perey 1963; Becchetti and Greenlees 1969; Gianniani and Ricco 1976) reveal
they vary between 1-17 and 1-25fm and 0-57-0-75fm respectively. Perey (1963)
obtained 1-25 fm and 0-65fm for Ry and a, respectively. Becchetti and Greenlees
(1969) determined Ry, and ag to be 1-17 fm and 0-75 fm respectively. Gianniani and
Ricco get 1-25 fm and 0-57 fm respectively for Ry, and ag. In our work carried out at
sub-Coulomb energies we have used the values of Becchetti and Greenlees (1969).
Giannini and Ricco (1976) showed that in the transformation from non-local to local,
besides V, R also becomes energy-dependent. They show that R decreases by 1 fm as E
increases from 0 to 60 MeV. For a small energy range with which we are concerned we
need not worry about the energy dependence of R.

It has been argued by Finckh (1980) that R need not be always expressed as R, A+
There can be other dependence on A4 such as 494! instead of 4}/>. He shows that the
anomalous variation of ¥, with E can be, to a considerable extent, compensated by a
proper choice of the A, dependence of the half-value radius.

It has been argued (Hodgson 1985; Srivastava et al 1983) that due to the density
dependence of the nucleon-nucleon interaction, Ry and a; can be expressed as

R:=1277T A23 —318+124 A}3 —0-38 4773
&~ 144 A3 fm?  for A > 40,
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@ = 053+ 0057 A7 '
~ 053 fm? for A, > 40.
’F rom the above
Ry~ 1'18fm; Qp~ 073 fm
(Rr = Roz A7?).

These values are very close to the values of Becchetti and Greenlees (1969) and are
also the ones we have used in our earlier analysis (Kailas et al 1979). However, Johnson
et al (1979) and Flynn et al (1985) use Ry ~ 12 fm and a, ~ 072 fm. Viyogi (1983)
used R,y ~ 117 fm and a, ~ 0-6 fm in his global analysis.

3.3f Summary: We have summarized in table 3, the real potential parameters, suitable
for the sub-Coulomb energy region, obtained by the various groups.

3.4 Imaginary potential parameters

At low energies it is conventional to take the imaginary potential to have a derivative
Woods-Saxon or Gaussian form, as the absorption is expected to be predominantly in
the surface of the nucleus. It is also generally assumed that the imaginary part is local in
nature whereas the real part is known to be non-local. For the geometry of the
imaginary part, Becchetti and Greenlees (1969) obtained Ry, = 1-32 fm and a, = 0-51
+07 (N;— Z5)/Arfm from their systematic analysis. Kailas et al (1979) assumed R,
= 132 fm and a, = 0-58 fm in carrying out the analysis of the (p, n) data and searched
only on the depth W, to fit the data. No energy dependence on W, has been included in
this work. Johnson et al (1979) kept Ry, = 1:3 fm and searched on W, and a, Again no
energy dependence for W, has been considered. The average value of a; ~ 0-4 fm has
been obtained by them. Viyogi (1983) from the global analysis gets a value of a,
= 0-84-0-00265 A, fm. He used a value of Ry, = 1-306 fm. He also does not include the
energy dependence for W,. Flynn et al (1985) get values of R, and a, close to those of
Johnson et al (1979). They have however used energy-dependent W, and show that W,

Table 3. Real potential parameters.

-Kailas et al Johnson et al :
(1979) (1979) Viyogi (1983)

45< A< 80 89 < A, <130 40 < Ap< 130

Vic(MeV) 085 032 085

Voo (MeV) 0-40 045 113

5 ) " " »

Vv (Me

R (fm) 1-17 1:20 1-17

ag (fm) 075 073 0-60

N,-Z Zy
Vr= VIS+_I'Z;—Z Vvt Vocz;ﬁ‘ VecEr

Ry = Rog
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increases linearly as W, ~ W{0)+1-7 EMeV. They find that, extrapolation of W, to
higher energies leads to W, matching with the values determined from analysis at higher
energies.

In priniciple, it is possible to express W, as.

Ny—Z Zr
WiE) = Wis+ == Wiyt Wee 27z + Wec E,,

where the various terms have meanings similar to those defined for the real part. It has
been pointed out by Rapaport (1982) that ¥, should include the Coulomb correction
term, W, similar to that found for the real part. However, as W, increases with increase
of energy in contrast to ¥y which decreases with increase of energy, the sign of W,, will
be opposite to that of V.. He has determined W, by combining appropriate proton and
neutron optical parameters for *°Ca. His result is

We= —(1-0028E,)05.

It can be seen that W, is energy-dependent and it will vanish for E ~ 35 MeV from
where W} becomes almost energy-independent for E, upto ~ 100 MeV. Viyogi (1983)
made an attempt to obtain the W, from analysis of (p, n) data. However, he has to fix
the isovector part of W, using some other criterion. He finds a value of W, which is
about four times the value quoted above (Rapaport 1982) which is from an analysis at
slightly higher E, values. The situation is less clear as regards the isovector component
of the i 1mag1nary part, particularly in the low proton energy region.

Without going into further details regarding the various components of W,, we will
go on to discuss the overall behaviour of W, after fixing R, and a, at suitable values.
Johnson et al (1979) found the W, values determined from their fits to the (p, n) data
varied rather anomalously with A4, for 4, = 89-130. (figure 3). Similarly, Kailas et al
(1979) found that W, varies anomalously but less strikingly as compared to that of

1 I T I T I I T

28|

IMAGINARY POTENTIAL
VARIATION WITH Ay ~

40 50 B0 70 80 90 100 NC 120 130

Figure 3. Variation of the imaginary potential W, with the target mass number Ap. The
continuous line is the curve drawn the phenomenological W, values to guide the eye. The filled
squares are calculations based on the relation W, oc [B(E2) ]ﬁ/AT The filled triangles are
related to level density of residual nuclei for E, ~ 4 MeV. The open triangles are due to 2p — 1h
state density calculation of Grimes (1980) (as discussed in the text).
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Johnson et al (1979) for A, = 45-80, (figure 3). The work of Johnson et al (1979) has
been extended by the Kentucky Group (Flynn et al 1979, 1982, 1985; Hershberger et al
1980; Schrils et al 1979) who carried out systematic investigation of more nuclei in this
mass region and analyzed (p, p) excitation function data along with the (p, n) data. They
also confirm the findings of Johnson et al (1979). The Erlangen group (Fiegel et al 1980,

‘Drenckhahn et al 1980) have also looked into some nuclei in this mass region. They

combine the (p, p) angular distribution of analyzing power data at selected energies
along with the (p, n) excitation function data. They find that the analyzing power data
determine only the product W, a;; however, the (p, n) data do not have this ambiguity.
By combining the two kinds of data they are able to determine W, and 4, individually.
They also end up with a, ~ 0-4 fm and W, values for Sn and Ag nuclei consistent with
those of Johnson et al (1979) and Flynn et al (1985).

The main point to note is that the W, values are in general small as compared to the
values obtained at higher energies. Further the W, values vary rather anomalously with
the A, variation. It has been noted by Viyogi (1983) that if real potential is fixed
according to §3.1 and with Ry, and g, given by him, he does not find the anomalous
variation of W, with A, in the mass region A 89-130 to be as dramatic as found by
Johnson et al (1979). It is implied that the W, determination is sensitive to the value of
Vg In §4, we discuss further the anomalous variation of W, with A;. In table 4, the W,
values determined by the several groups (Johnson et al 1977, 1979; Kailas et al 1979;
Viyogi 1983) are listed. The corresponding Vg values as mentioned earlier are listed in
table 3.

4. Discussion

4.1 Real potential

In §3 it was mentioned that the most striking feature of ¥ is the observation of the
large value of Vg at lower E, values. It may be pointed out that this anomalous
variation of ¥, with E near the Fermi energy has been noticed, both for the protons and
the neutrons (Finlay et al 1985). A few attempts have been made to understand this
observation of enhanced Vg values in terms of the effects of non-locality and channel
coupling between the incident nucleons and collective states of the target nucleus
(Mahaux et al 1986, Mahaux and Ngo 1981, 1982, 1983; Hodgson 1984; Gyarmati et al
1979, 1981; Eck and Thompson 1975; Kailas et al 1979). It may be remarked that for the
heavy ions the second order correction to ¥ due to the energy dependence of W} is very
significant (Mahaux et al 1986) at energies near the Coulomb barrier.

To investigate the effect of the non-local nature of the potential we write following
Eck and Thompson (1975)

Vec/Vr = Y&
+1
YR = VR +2h23 ENBc:
1+ exp [ (rr— Ryp)/ag] md?
1 .
TR= |[E—B.> 0.
Va+

md?*
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Table 4. Imaginary poten- (b) 89 < Ay < 130 Johnson et al 1979; Ry, = 1-30 fm;
tial parameters. (R; = Ry;A¥3. *Johnson et al (1977a)

(a) 45 < A;< 80 Kailas er al (1979);

Ry;=1-32fm; R;=Ry; A} a,=058 fm Wi 9 W, oq

Ar (MeV)  (fm) Ar  (MeV) (fm)

Wi 89 5 040 113 153 038
Ap (MeV) Ap (MeV) o s o 113 153 038
45 14 61 04 103 97 039 115 139 041
48 22 65 143 105 264 042 116 16 041
51 37 71 12:4 107 22:5 042 122 11-5 , 0-42%*
54 19 75 115 109 213 042 124 1009 042+
59 22 80 40 110 234 0-40 128 124 038
11 180 0-40 130 123 045

(c) 40 < Ar < 130;  Viyogi  (1983);
Ry; = 1-306 fm; a; = 0-58 fm.

Ay (MeV) Ap (MeV)
41 1
45 2
48 68
49 5 93 65
51 6 9% 75
55 65 98 122
59 2 103 9
61 1 105 8
65 1.5 107 85
68 11-5 109 88
71 10-5 110 7
75 100 115 62
80 132 120 76
89 2 124 65
: 1286 - 85
130 7

In the above B, is the Coulomb barrier height, d, the non-locality parameter and m the
nucleon mass. V,(r) = ¥V, (r) exp — [+ k(r)d]? is the relation connecting the local ¥,
and the non-local ¥V, potential k(r) = local wave number. d is the range of a Gaussian,
effective nucleon-nucleon interaction generatmg V(). rp = classical turning point for
head-on collision: ~

Z,e* Ve
rr 1+exp[(rp,—Rp)/ag]

Using the ¥V, values given in Perey (1963), Menet et al (1971), Becchetti and Greenlees
(1969) and Johnson and Kernell (1970) and with d ~ 1fm, Vg values have been
computed using the above expressions (figure 2). It can be seen from figure 2 that these
values closely reproduce the trend of the V. values obtained from phenomenological
analyses. This analysis shows that the large variation in Vg with E at low energiesisa

E =
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consequence of using a local potential to approximate a non-local potential and not in
disagreement with the values determined at higher energies (Eck and Thompson 1975; ‘
Kailas et al 1979).

We have also determined the ratio of the effective mass m* and the nucleon mass m,
which will vary with energy as a result of non-locality of the potential. Defining
m*/m = 1/(1+ V) (Eck and Thompson 1975) we find, m*/m reduces from ~ 0-8 at
E, ~ 45MeV (Vgc ~ 022)to ~ 0-5at4 MeV (Ve ~ O -85). These values agree with the
ﬁndmgs of Mahaux and Sartor (1986). In addition to the contribution of non-locality to
the energy dependence of ¥, we have also investigated the contribution due to the
coupling of W, with ¥,. Mahaux et al (1986) have given the relation

AV, (E) = J Z’ (EE) dE'

(P refers to a principal value integral).

As W, starts increasing at low energies, and reaches a saturation value around 6 MeV
(Flynn et al 1985) it is expected that the contribution to V' due to W, energy dependence
is significant at low energies. Using the relation that

Wo
W, (E ———-——-—-EE
(B) = gy (B~ )

with E, ~ 1 MeV and E, ~ 6 MeV and W, ~ 12:5MeV (Flynn et al 1985), the second
order contribution to ¥, (Mahaux et al 1986) is

AVo(B) = (—”—;ﬂ) (EaIn |E, |~ By ln|Ey))

where

E—E, E—E,
E—£ 4 BTEE

E,=

It works out to a maximum correction of 270 MeV and E ~ 3 and 4 MeV.

In order to bring out the respective contributions to ¥} arising due to the non-
locality effect as well as due to energy dependence of W,, we have made the following
analysis: The V values obtained at several energies (Johnson and Kernel 1970; Perey
1963; Becchetti and Greenlees 1969; Menet et al 1971) have been converted to
equivalent ¥, V5 using the relation

2a2
R
VE = Re

EQ - |
3 mlag,

R 152

with Ry, = 117 A'/* fm and agq = 075 fm. These values are plotted in figure 4 as a

functlon of E, values. In the same figure the AVy(E) values obtained between

1SE,S6 accordmg to the dispersion relation are also plotted. As the correction to ¥,

from the energy dependence of W, vanishes beyond E, ~ 6 MeV, it is safe to assume
that the energy dependence of ¥ for E, > 10 to 60 MeV is entirely due to the non-
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locality effect. With this assumption the ¥, values at the average values of E, ~ 16, 30
and 45 MeV, have been fitted with an expression

Ve~ 65exp[—0-385(E, — E;) 1.

This is shown as the continuous curve in figure 4. The ¥/, values obtained from an
extrapolation of the above expression to low energies are supposed to represent the
contribution due to the non-locality effect. The change in ¥ with E, works out to ~ 0-8
to 0-9 MeV per MeV change of E,. It is seen from the figure that the continuous curve
solely due to the non-locality effect, can reproduce the phenomenological data in the
low energy region very well. This agreement can be considered accidental as it has
already been shown that the contribution due to coupling effect is significant at low
energies. To conclude, we can say that for low energies, both the above mentioned
effects need to be considered and it is not possible to estimate reliably their respective
contributions from the present work.

4.2 The imaginary potential

The most striking feature of the analysis has been the observation of the anomalous
variation of W, with 4. From figure 3 it can be seen that W, goes through maxima for
Ay values 52, 67 and 103 and minima for A, ~ 42, 61, 84 and 120. In order to see whether
these values follow any systematic pattern we have plotted in figure 5 the maxima
(minima) number against A}/, It is found that the maxima and minima data can be
respectively fitted with the expressions

Mgy = 204 A7° - 5:49,
n_ =204 AL3 —6:06.

This behaviour perhaps indicates the presence of some kind of shell or size effect. The
minima around A, ~ 42, 61, 84 and 120 would be due to proton shell (sub-shell)
closures for Z, ~ 20, 28, 40 and 50.

Various other explanations have been proposed to understand the observed
behaviour of W, It has been shown (Hjorth et al 1968) that W, and the B(E2) values are
related as

1/2
St = x4y BEA
Ar

where J,,/A = volume integral of

167 R*a, W, nla?
w =222 G T
1< Ay I: * 3Ry

and x and y are constants. B(E2) connects the first excited state and ground state
involving a I change of 2. The B(E2) values have been taken from the nuclear data sheets
for the various nuclei. For protons we have shown that except for Cu, Ga and AS—the
anomalously behaving nuclides—the average increase of W, with A; is explainable in
terms of the relationship mentioned above (figure 3). This is an interesting result as it
shows that the absorption per unit size (J,,/A) is proportional to the softness of the core
and hence brings the connection between the imaginary potential and nuclear structure
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o _.——z--Coupling correction
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Figure 4. Equivalent potential ¥ §Q plotted as a
function of E,—EyMeV (Ep~ —8MeV). The 26 3.0 34 38 Y 42 48 50 5.4
straight line is the fit to the data with the expression Ar 3

VEQ = 65—-0385x (E-~Ep)MeV  for E-Ej

> 20MeV. The dashed curve is the second order  Figure5. Positions (or the number) of the maxima
contribution to the real part due to the energy  (minima) of W} as a function of A} (= R). The
dependence of W}, calculated as discussed in the text.  straight lines are the fits to the data.

of target nucleus. Another interesting possibility is to look for the correlation between
the level density of the proton plus target systems (Grimes 1980) and for the residual
nuclei (Kailas et al 1979). In figure 3 we have shown these correlations also, where W,
values are suitably normalized to the level density. Grimes (1980) pointed out that the
2p-1hstate densities are the ones to be used and not the actual level densities. It may be
pointed out that for neutrons also, Smith et al (1984) found anomalous variation in the
mass number range 4, ~ 89-130. Hodgson (1985) has shown that the level density
explanation works well here also. Grimes (1980) also showed that the variation of W,
with A, in terms of 2p-1h state density is pronounced at E, ~3MeV and is less
prominent at a higher proton bombarding energy of 6 MeV. This prediction is
confirmed in the recent phenomenological analyses of Flynn e al (1985) who used
energy-dependent W,. At higher energies above the Coulomb barrier the anomalous
variation of W, is totally absent (Careda et al 1982). It can be concluded that W, is
sensitive to nuclear structure effects and this effect is most pronounced at low energies
and becomes progressively less pronounced at high energies. To sum up the variation of
W, with A is dependent on the shell structure of the nuclei, the deformation of the
target nuclei and the coupling to the collective states.

4.3 Strength function analysis

In order to show not only the goodness of the fitting procedure followed but also to
bring out any possible nuclear size effects, strength functions are generally calculated.
(Schiffer and Lee 1958; Johnson et al 1977, 1979; Kailas et al 1979; Flynn et al 1985;
Bilpuch et al 1976; Matsuzaki and Arai 1983). The proton strength function at energy
E, is defined as ‘

¢, n R
S, ~S,, = P.1
P pn 4n2k"22(2l+1)P,
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where P, is the Coulomb penetration factor for protons calculated at R ~ 145 4}/,
The average strength functions (SFN) for the various nuclei from their respective
excitation functions are plotted in figure 6 for E, ~ 4 MeV as a function of 4,. In this
figure the proton strength function values obtamed by Schiffer and Lee (1958) have also
been included. It is interesting to note that the curve goes through maxima for 4, ~ 51,
68 and 103 similar to the observation for W, versus 4, curve. The maxima observed for
A, ~ 51 and 68 may correspond to the d wave and s wave size resonances predicted by
Schiffer and Lee (1958). According to Johnson et al for E, ~ 6 MeV, p wave resonance
is observed for Sn isotopes. As the contribution of the various [ values changes with E,
and A, it is possible that we get a peak around 4, ~ 103, though less prominent, and it
might be due to the p wave size resonance. As noted above the behaviour of SFN with
Ay is very similar in character to the variation of W, with A4, (figure 3).

It is not clear whether there is any direct connection between these two observations.
The size resonances are generally characterized by three quantities, the energy of the
maximum, the absolute value of reduced cross-section (strength function) and the
width of the resonance. The position of the maximum mainly depends on the real
potential, the absolute cross-section and the width on the imaginary potential. As ¥,
and ¥ and hence the position of size resonances are related through the transmission
coefficient. (Preston 1965) it is possible in certain favourable situations, that W, and
strength function exhibit similar behaviour with respect to A, variation. This point
needs to be explored further.

4.4 Microscopic optical model

As considerable development has taken place in the microscopic approach to the
determination of the optical potential at low energies (Jeukenne et al 1977; Lejeune
1980; Giannini and Ricco 1976) it will be interesting to compare the phenomenological
values discussed here with the microscopic predictions. In general, the phenomenolo-
gical real potentials agree with the microscopic values and there are noticeable
differences for the imaginary part (Kailas et al 1979). It has been found that at higher
energies the microscopic imaginary potentials require an overall normalization of the

STRENGTH FUNCTION VARIATION
AT EP'-'AMeV WITH Ay
0.4~
0.3} \ f\k _,__’.o
SFN
0.2
(tm) A./A 2
o}
04|
A .
0.0 | | 1 | | | | ] ] |
40 50 60 70 80 S0 100 M0 120 130 140

At

Figure 6. Strength function (SFN) plotted as a function of the target mass number A, for
E, ~ 4 MeV. The open triangles are from Schiffer and Lee (1958). Their original values have
been divided by a factor of two to be consistent with the present definition of strength function.
The open circles are from Kailas et al (1979). The filled circles are from Johnson et al (1979).

The inverted triangles are from Flynn et al (1985). The continuous line is drawn to guide the
eye. ‘
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order 0-6 to 0-8, to bring them into agreement with the phenomenological values
(Lejeune and Hodgson 1978; Bhattacharya and Kailas 1983). The proton absorption
cross-sections have also been calculated using the microscopic potentials. At sub-
Coulomb energies, these cross-sections closely reproduce the experimental data (Kailas
et al 1982). :

In the present work, we have computed the microscopic optical potentials at
E, ~ 2 MeV for *!V + p system following Lejeune’s (1980) prescription and compared
them with the phenomenological values (Kailas et al 1979). In figure 7 we have plotted
Vi+ V. for the mlcroscoplc and the phenomenological cases for 51V 4 p system. In the
whole interaction region the two potentials agree fairly well.

We have also plotted in figure 7 the respective imaginary potentials. Here the
agreement is not as good as that found for the real part. The maxima and their positions
in the two cases do not agree. However the agreement is better for R > 5 fm. As pointed
out earlier the imaginary part requires normalization. In any case, the microscopic
model cannot reproduce the anomalous variation of the imaginary potential W, with
A,, as it is due to the nuclear structure effect which is not included in the present
microscopic calculation.

5. Conclusions

In the present work we have reviewed certain interesting features of low energy (which
in the case of protons becomes sub-Coulomb) optical model analysis. It turns out that
one should be cautious in extrapolation of parameters determined from analysis at high
energies and also interpolation of parameters between A values as some of the
parameters are known to behave rather anomalously with respect to E and A,
variations. We have brought out the fact that the energy dependence of the real part is in
part due to non-locality effect and in part due to coupling to collective states (energy
dependence of W,). However, from the present work, it has not been possible to
determine unambiguously their respective contributions in the low energy region. It has
been shown that W, variation with A can be understood in terms of mainly the nuclear
structure effects which dominate at low energies and become progressively less
important at higher energies. A comparison with the microscopic model reveals that the
real potential is in good agreement with the phenomenological value but the imaginary
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potential requires normalization. To constrain the uncertainties in the parameters
determined for 4, < 89, more extensive and accurate measurements are necessary.
Most of the analysis for this 4, region have been done with the assumption o,  ~ 7, ,
and hence detailed Hauser-Feshbach analysis will have to be carried out to make sure
the variation of parameters like W versus A is due to genuine effects and not due to
improper treatment of data. Even in the mass region between 89 < A, < 130, (p, p)
measurements for nuclei like '°*Rh are desirable to constrain the imaginary potential
parameters in a better way.
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