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Abstract

An analytical solution, based on a higher order shear and normal deformation theory, is presented for the cylindrical flexure of pie-
zoelectric plates. The primary displacement terms are expanded in thickness coordinate and an exact nature of electric potential is
obtained in actuator and sensing layers. The electric potential function is evaluated by solving a second order ordinary differential equa-
tion satisfying electric boundary conditions along thickness direction of piezoelectric layer. A unidirectional composite plate attached
with distributed actuator and sensor layers is analyzed under electrical and mechanical loading conditions and comparison of results
with exact solution is presented. Results for non-piezoelectric plates are also compared with elasticity and other solutions of cylindrical
bending.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Materials with property to change shape and size when
electrically charged and the reversal behavior is utilized in
the controlling mechanism of the structures. Piezoelectric
layers are embedded or attached to the elastic layers in
patches or in a distributed form. Such structures are called
as smart/intelligent or adaptive structures.

Tiersten [1] defined material constitutive relations of lin-
ear piezoelectricity. The equations of linear piezoelectricity
are coupled with the charge equation of electrostatics by
means of piezoelectric constants. Earlier Mindlin [2] pre-
sented approximate theory for the vibrations of piezoelec-
tric plates.

Ray et al. [3] developed exact solutions for a mono-lay-
ered piezoelectric polymer polyvinyledene fluoride (PVDF)
plate, under electric potential and mechanical loading.
Numerical results are evaluated for thick and thin single
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piezoelectric layer. Ray et al. [4] further established elastic-
ity solutions for smart unidirectional composite plates
under cylindrical bending. Heyliger and Brooks [5] also
presented exact solutions of plates with two different layers
of piezoceramics, two layers of angle-ply piezopolymers
and three layers of cross ply piezopolymers under cylindri-
cal bending. Later Saravanos and Heyliger [6] presented a
classified review of the analytical solutions presented by
various investigators in the mechanics of the laminated
piezoelectric structures. Exact plane strain solution for a
piezoelectric orthotropic flat panel under mechanical, ther-
mal, and electric loading is obtained by Dube et al. [7].
Shang et al. [8] also obtained exact plane strain solution
for piezoelectric layers under thermal excitation. Dumir
et al. [9] presented first order Reissner and Mindlin
[10,11] plate (FOST) and classical Kirchhoff plate (CPT)
solutions for hybrid plates in cylindrical bending under
thermoelectric loading. Vel and Batra [12] used Eshelby–
Stroh formulation to analyze cylindrical bending of lami-
nated composite plate with segmented actuators and
sensors for different boundary conditions under dynamic
state. Static and dynamic response of adaptive angle-ply
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laminates in cylindrical bending is studied by Chen et al.
[13] using state space approach. Saravanos [14] discussed
finite element (FE) formulation based on mixed theory.
In this theory, elastic displacements are modeled by equiv-
alent single layer (ESL) theory and electric potential is by
layerwise (LW) approach. Similar approach is proposed
by Ballhause et al. [15] who have presented statics and
dynamics of piezoelectric plates. Piezoelectric plate ele-
ments based on Reissner–Mindlin assumptions is presented
by Kogl and Bucalem [16] and Carrera [17]. Mannini and
Gaudenzi [18] investigated a stress concentration problem
in the smart composite using higher order FE model. An
iterative FE solution is presented by Gaudenzi and Bathe
[19] and is applied in the linear analysis of piezoelectric
beam and non-linear analysis of an aluminum cantilever
beam attached with piezoceramics. Roccella and Gaudenzi
[20] used quadratic variation of electric potential through
the thickness suggested by [19] in the formulation of piezo-
electric plate model. Gaudenzi [21] developed a higher
order beam model and also discussed the edge effect at
the free boundary of the adaptive structure.

In this paper, a higher order shear and normal deforma-
tion theory (HOST8) is developed for the analytical solu-
tion of piezoelectric plates under plane strain condition.
Eight degrees of freedom are used to expand primary dis-
placement field whereas exact variation of electric field is
obtained in the piezoelectric layers by solving the govern-
ing second order ordinary differential equation satisfying
electrical boundary conditions in the thickness direction.
Results are compared with exact solutions [4]. Kant [22],
Manjunatha and Kant [23,24], Kant and Swaminathan
[25], have contributed extensively to the development of
higher order shear and normal deformation theories.
Recently, Kant et al. [26] developed a novel semi-analytical
methodology using mixed variables, by maintaining the
fundamental elasticity relations between stress, strain and
displacements. The method satisfies the requirements of
the through thickness continuity of transverse stresses
and displacements. Results are presented for laminates sim-
ply supported on all edges and under cylindrical bending.
Kant et al. [27–29] also presented a new partial discretiza-
tion mixed FE formulation for general laminates with any
Fig. 1. Geometry of piezoelectric plate simply (diaphragm) supported on tw
boundary conditions. Present results for non-piezoelectric
plates under plane strain condition are compared with
the elasticity [35], semi-analytical [26,30], partial FE [27–
30] and Reissner and Mindlin [10,11] (FOST) solutions.
2. Coupled plane strain formulation

2.1. Displacement model

A rectangular smart plate structure is shown in Fig. 1.
The length of the plate is denoted by a along x direction
and y side is infinite. The geometrical configuration of
the plate is such that the thickness dimension is along z

direction. The top and bottom layers of the plate are of pie-
zoelectric materials, which act as distributed actuator and
sensor. The core of the plate called, substrate, is purely
elastic and has any number of elastic layers.

Displacement components u(x,z) and w(x,z) at any
point in the plate are expanded in a Taylor’s series to
approximate the two- dimensional (2D) elasticity problem
as a one-dimensional (1D) plate problem in cylindrical
bending. The assumed displacement fields are as follows:
Model: HOST8

uðx; zÞ ¼ u0ðxÞ þ zhxðxÞ þ z2u�0ðxÞ þ z3h�xðxÞ
wðx; zÞ ¼ w0ðxÞ þ zhzðxÞ þ z2w�0ðxÞ þ z3h�z ðxÞ

ð1Þ

Model: FOST

uðx; zÞ ¼ u0ðxÞ þ zhxðxÞ
wðx; zÞ ¼ w0ðxÞ

ð2Þ

The following strain vector [e] is given by strain displace-
ment relationship as per classical theory of elasticity:
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2.2. Constitutive equations

The linear constitutive relations for a single piezoelectric
layer couples the elastic and electric fields as given below
[1].

frg ¼ ½C�feg � ½e�fEg
fDg ¼ ½e�tfeg þ ½g�fEg

ð4Þ

Eq. (4) can be further expanded for ith layer of the plate as
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where r,C, e,e,E,D and g are, stress vector, elastic constant
matrix, strain vector, piezoelectric constant matrix, electric
field intensity vector, electric displacement vector and
dielectric constant matrix. The elastic constants are
expressed in terms of material constants as

C11 ¼
E1ð1� m23m32Þ

D
; C22 ¼

E2ð1� m13m31Þ
D

; C44 ¼ G12

C12 ¼
E1ðm21 þ m31m23Þ

D
; C23 ¼

E2ðm32 þ m12m31Þ
D

; C55 ¼ G23

C13 ¼
E1ðm31 þ m21m32Þ

D
; C33 ¼

E3ð1� m12m21Þ
D

; C66 ¼ G13

D ¼ ð1� m12m21 � m23m32 � m31m13 � 2m12m23m31Þ
The electric field intensity vector E is related to electro-

static potential n in the Lth layer as
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The piezoelectric constant matrix [e] and the dielectric
matrix [g] for polyvinyledene fluoride (PVDF) commonly
known as PVDF polymer are given in [31,32] and the Max-
well’s charge equilibrium equation [33] can be written as

oDx
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þ oDy
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þ oDz

oz
¼ 0 ð7Þ

Considering the problem as a plane strain problem,
strain quantities in y direction are zero (ey = cxy = cyz = 0).
The strain displacement relationship of Eq. (3) becomes
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Eqs. (9) and (10) show the expansion of elastic (e) and
piezoelectric (pz) stress vectors
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where Cij are elastic constants corresponding to plane
strain state in x–z plane.

The electric displacement vector (D) is also expanded in
the following equations with Dy = 0 as:
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2.3. Governing equations of equilibrium

The equations of equilibrium are derived by using the
principle of minimum potential energy. In analytical form
it can be written as

dðU þ V Þ ¼ 0 ð12Þ

where U is the total strain energy due to deformation, V is
the potential of the external loads and U + V = p is the to-
tal potential energy and d is the variational symbol. Substi-
tuting the appropriate energy expressions in the above
equation, the final expression can be written asZ þh=2

�h=2

Z
l
ðrxdex þ rzdez þ sxzdcxzÞdxdz�

Z
l

qþ0 dwþdx

" #
¼ 0

ð13Þ
where wþ ¼ w0 þ ðh=2Þhz þ ðh2=4Þw�0 þ ðh3=8Þh�z is the
transverse displacement at top surface of the plate. qþ0 is



T. Kant, S.M. Shiyekar / Computers and Structures 86 (2008) 1594–1603 1597
the transverse load applied at top of the plate. Integrating
Eq. (13) by parts and collecting the coefficients of
du0; dw0; dhx; dhz; du�0; dw�0; dh�x ; dh�z , the following equations
of equilibrium are obtained:
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The two components of stress resultants, in terms of
elastic and piezoelectric stress components, are defined by

Me
x ¼

Xn

L¼1

Z ZLþ1

ZL

re
xzdz; Mpz

x ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
x zdz

Me�

x ¼
Xn

L¼1

Z ZLþ1

ZL

re
xz

3dz; Mpz�

x ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
x z3dz

Me
z ¼

Xn

L¼1

Z ZLþ1

ZL

re
zzdz; Mpz

z ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
z zdz

Qe
x ¼

Xn

L¼1

Z ZLþ1

ZL

se
xzdz; Qpz

x ¼
Xn

L¼1

Z ZLþ1

ZL

spz
xzdz

Qe�

x ¼
Xn

L¼1

Z ZLþ1

ZL

se
xzz

2dz; Qpz�

x ¼
Xn

L¼1

Z ZLþ1

ZL

spz
xzz

2dz

Se
x ¼

Xn

L¼1

Z ZLþ1

ZL

se
xzzdz; Spz

x ¼
Xn

L¼1

Z ZLþ1

ZL

spz
xzzdz

Se�

x ¼
Xn

L¼1

Z ZLþ1

ZL

se
xzz

3dz; Spz�

x ¼
Xn

L¼1

Z ZLþ1

ZL

spz
xzz

3dz

N e
x ¼

Xn

L¼1

Z ZLþ1

ZL

re
xdz; Npz

x ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
x dz

N e�

x ¼
Xn

L¼1

Z ZLþ1

ZL

re
xz

2dz; Npz�

x ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
x z2dz

N e
z ¼

Xn

L¼1

Z ZLþ1

ZL

re
zdz; Npz

z ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
z dz

N e�

z ¼
Xn

L¼1

Z ZLþ1

ZL

re
zz

2dz; Npz�

z ¼
Xn

L¼1

Z ZLþ1

ZL

rpz
z z2dz

ð15Þ
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Eq. (16) defines the total stress resultants, i.e. the addition
of elastic and piezoelectric stress resultants. It is to be noted
that both elastic and piezoelectric fields are indeed coupled
through the constitutive relations (Eq. (4)) and this auto-
matically gives rise to definition of elastic and piezoelectric
stress resultants given above by Eq. (15).

3. Analytical solution

Following are the boundary conditions used for two
opposite infinite length simply (diaphragm) supported
edges

At edges x ¼ 0 and x ¼ a : w0 ¼ 0; hz ¼ 0;

Mx ¼ 0; Nx ¼ 0; w�0 ¼ 0; h�z ¼ 0;

M�
x ¼ 0; N �x ¼ 0

Navier’s solution procedure is adopted to compute dis-
placement variables. Displacements, which satisfy the
above boundary conditions exactly, can be assumed as
follows:
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The procedure to obtain through thickness electric
potential nm(z) is explained in the following section.
3.1. Electrostatic potential

The constitutive relationship between elastic and electric
fields is expressed in Eq. (4) and the relationship between
electric field intensity vector E and electrostatic potential
n is stated in Eq. (6). Substituting Eq. (6) in second of
Eq. (4), and expanding electric displacement vector D in
x,y and z directions, Eq. (11) is obtained, which represents
the relationship between electric displacements, electro-
static potential and elastic strains.

The elastic strains are already described for plane strain
state in Eq. (8). Thus the final form of Eq. (11) will contain
higher order terms of elastic displacements.

Following second order ordinary differential equation
(ODE) is obtained by substituting the final form of Eq.
(11) in 3D charge equilibrium equation given by Eq. (7)

gmn00mðzÞ � kmnmðzÞ þWm ¼ 0 ð18Þ
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where the coefficients of above ODE are

gm ¼ a2g33

km ¼ p2g11

Wm ¼ aðe31pðhxm þ 2zu�0m
þ 3z2h�xm

ÞÞ

The above coefficients are in terms of higher order elastic
displacements and the closed form solution of the above
ODE is obtained by applying electric boundary conditions
along z direction for actuator and sensor as:

Actuator function: Applying two through thickness elec-
tric boundary conditions for actuator layer, first at top
interface between substrate and piezoelectric layer, electric
potential is zero (z = h/2, nm = 0) and second is, at top of
the smart plate, there is a prescribed amplitude of electric
potential (z = H/2, nm = Vt), where H is the total thickness
of plate and h is thickness of the substrate.

The solution of actuator function is obtained as follows:
na
mðzÞ ¼

� 4 wm cosh
ð2H�h�2zÞ

ffiffiffiffi
km

p
4
ffiffiffiffi
gm
p

� �
þ ðV tkm � wmÞ cosh

ðh�2zÞ
ffiffiffiffi
km

p
4
ffiffiffiffi
gm
p

� �� �
cosh

ðHþhÞ
ffiffiffiffi
km

p
2
ffiffiffiffi
gm
p

� �
þ sinh

ðHþhÞ
ffiffiffiffi
km

p
2
ffiffiffiffi
gm
p

� �� �
sinh

ðh�2zÞ
ffiffiffiffi
km

p
4
ffiffiffiffi
gm
p

� �� �

km cosh
H
ffiffiffiffi
km

pffiffiffiffi
gm
p

� �
� cosh

h
ffiffiffiffi
km

pffiffiffiffi
gm
p

� �
þ sinh

H
ffiffiffiffi
km

pffiffiffiffi
gm
p

� �
� sinh

h
ffiffiffiffi
km

pffiffiffiffi
gm
p

� �� �
ð19Þ
Sensor function: Similarly applying two through thickness
electric boundary conditions for sensor layer, first at bottom
interface, electric potential is zero (z = �h/2, nm = 0) as
Dirichlet boundary condition. The second boundary condi-
tion is prescribed at bottom of smart plate, i.e. electric
displacement is zero (z = �H/2, Dz = 0), as Neumann
boundary condition. Using above mixed boundary condi-
tions, the solution of sensor function is obtained as follows:
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where Cm ¼ e31pðu0m þ zðhxm þ zðu�0m
þ zh�xm

ÞÞÞ.
The electric boundary conditions show that the sub-

strate layer is grounded.
Eqs. (19) and (20) give the exact, closed form solution

for electrostatic potentials na
mðzÞ and ns

mðzÞ for both actua-
tor and sensor layers, respectively, in terms of higher order
elastic displacements.

The above electrostatic potential satisfies all the bound-
ary conditions, constitutive relationship, which couples the
elastic and electric fields and 3D charge equilibrium equa-
tion and is thus free from any assumptions.

After the evaluation of electric potential functions, the
piezoelectric stress vectors are calculated from Eq. (10)
by substituting actuating electric function when voltage is
applied. Finally, piezoelectric stress resultants are evalu-
ated from second set of Eq. (15). Similarly elastic stress vec-
tors and elastic stress resultants are calculated from Eq. (9)
and first set of Eq. (15), respectively. Displacements are
obtained by solving linear algebraic equations by substitut-
ing total stress resultants from Eq. (16) in equilibrium
equations given by Eq. (14). Transverse shearing stress
(sxz) and normal stress (rz) are evaluated by integrating
the equilibrium equations of elasticity as per
sL
xz ¼ �

Xn
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Z ZL

ZL�1
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ox

� �
dz; rL
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Xn

L¼1

Z ZL
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osxz

ox

� �
dz
4. Numerical results

Results are presented for piezoelectric plate under cylin-
drical bending simply supported on two opposite infinite
edges. The laminate or substrate is unidirectional layer of
graphite/epoxy composite, where the piezoelectric material
is of PVDF, attached at top and bottom of the unidirec-
tional composite plate functioning as actuator and sensor.
The material properties for an elastic layer and PVDF are
as follows.

Elastic layer [4]
EL ¼ 172:5� 109 N=m2; ET ¼ 6:9� 109 N=m2;

GLT ¼ 3:45� 109 N=m2

mLT ¼ 0:25; mTT ¼ 0:25
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Table 1
Material properties for polyvinyledene fluoride/PVDF polymer

Property PVDF

e31 (c/m2) 0.0460
e15 (c/m2) 0.0000
e33 (c/m2) 0.0000
g11 (F/m) 0.1062 � 10�9

g33 (F/m) 0.1062 � 10�9

Poisson’s ratio 0.2900
Modulus of elasticity (N/m2) 2.0 � 109
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L and T are directions parallel and perpendicular to fiber
direction, respectively, and Table 1 shows the properties
of PVDF material [34].

The thicknesses of the sensor and actuator layers are
40 lm. Considering m = 1, the numerical results are evalu-
ated for

Case (i) : Singly sinusoidal mechanical load (q0 = 10 N/
m2) without applied voltage at top of actuator
(V = 0) and,

Case (ii) : Singly sinusoidal mechanical load (q0 = 10 N/
m2) with applied voltage at top of actuator
(V = 100).

The electrical boundary conditions are: at edges, x = 0
and a, electric potential are zero and also the laminate is
not permitting any charge through the thickness, thus
edges and core substrate are grounded.

The results are non-dimensionalized as

�u 0;� z
H

� �
¼ 100ET

q0S4H
ðuÞ; �w

a
2
;� z

H

� �
¼ 100ET

q0S4H
ðwÞ

�rx
a
2
;� z

H

� �
¼ rx

q0S2
; �rz

a
2
;� z

H

� �
¼ rz

q0

�sxz 0;� z
H

� �
¼ sxz

q0

Results are compared with 3D exact solution [4] for piezo-
electric plate. For non-piezoelectric plate of a unidirec-
tional orthotropic plate (00) with fibers oriented in x

direction, results are compared and normalized with elas-
ticity solution [35]. Figs. 2a–2d show the results of displace-
ments and stresses for an orthotropic laminate subjected to
sinusoidal transverse mechanical load. Reissner and Mind-
lin [10,11] (FOST) theory is also parallely formulated to
compare the results for non-piezoelectric unidirectional
plate under transverse mechanical loading. Table 2 shows
the comparison of present theory with elasticity, semi-ana-
lytical, partial FEM and FOST solutions.

Figs. 3a and 3b show normalized in-plane displacement
(u) under case (i) and case (ii) for a/H = 4 and 10, respec-
tively. The reversal bending of the elastic layer caused by
actuator shows the opposite nature of the in-plane
displacement. Variation of normalized transverse displace-
ment (w) along the thickness of the thick plate (a/H = 4) is
shown in Fig. 4a for both types of loading. Fig. 4b shows
more electric potential is required for the reversal bending
of thin plate (a/H = 100) and displacement of the thin plate



Table 2
Comparison with other plane strain solutions of non-piezoelectric
unidirectional laminate subjected to transverse singly sinusoidal mechan-
ical load

S Source rx

(a/2, h/2)
rx

(a/2, �h/2)
sxz

(max)
w

(a/2, 0)

4 Present HOST8 0.8920 �0.8497 0.4258 1.9443
[�0.954] [0.188] [�1.662] [�0.241]

Semi-analyticala 0.9006 �0.8481 0.4328 1.9489
[0.000] [0.000] [�0.046] [�0.005]

Partial FEMa 0.8204 �0.7710 0.4759 1.9906
[8.844] [�9.091] [9.907] [2.134]

FOSTb 0.6079 �0.6079 0.4774 1.756
[�32.50] [�28.32] [10.254] [�9.90]

Elasticityc 0.9006 �0.8481 0.4330 1.9490
10 Present HOST8 0.6541 �0.6587 0.4679 0.7311

[�0.728] [0.549] [�0.085] [�0.109]
Semi-analyticala 0.6569 �0.6551 0.4683 0.7319

[0.000] [0.000] [0.000] [0.000]
Partial FEMa 0.6432 �0.6414 0.4788 0.7306

[�2.085] [�2.091] [2.242] [�0.177]
FOSTb 0.6079 �0.6079 0.4774 0.6921

[�7.459] [�7.205] [1.943] [�5.437]
Elasticityc 0.6569 �0.6551 0.4683 0.7319

20 Present HOST8 0.6194 �0.6212 0.4750 0.5514
[�0.145] [0.161] [�0.021] [�0.09]

Semi-analyticala 0.6203 �0.6202 0.4751 0.5519
[0.000] [0.000] [0.000] [0.000]

Partial FEMa 0.6070 �0.6068 0.4820 0.5499
[�2.144] [�2.160] [1.452] [�0.362]

FOSTb 0.6079 �0.6079 0.4774 0.5401
[�1.999] [�1.983] [0.484] [�2.138]

Elasticityc 0.6203 �0.6202 0.4751 0.5519
50 Present HOST8 0.6097 �0.6100 0.4770 0.5008

[0.032] [0.082] [0.020] [�0.07]
Semi-analyticala 0.6095 �0.6095 0.4769 0.5012

[0.000] [0.000] [0.000] [0.000]
Partial FEMa 0.600 �0.600 0.4847 0.5000

[�1.558] [�1.558] [1.635] [0.239]
FOSTb 0.6079 �0.6079 0.4774 0.4975

[�0.262] [�0.262] [0.104] [�0.738]
Elasticityc 0.6095 �0.6095 0.4769 0.5012

[ ] % Error w.r.t elasticity solution.
a Pendhari [30].
b Reissner and Mindlin [10,11].
c Pagano [35].
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Fig. 2d. Comparison of normalized variation of transverse shear stress
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u (0, z) 

-1.5 -1.0 -0.5

-0.50

-0.25

0.00

0.25

0.50

PVDF/0o/PVDF

 Exact [4]
 Present HOST8 

a/H = 10

V =100
z/

H

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Fig. 3b. Comparison of normalized variation of in-plane displacement ð�uÞ
for a unidirectional piezoelectric plate (a/H = 10) subjected to coupled
singly sinusoidal mechanical loading and electric potential (V = 100).
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is almost zero for V = 500. Figs. 5a and 5b show through
thickness variation of in-plane normal stress (rx) for a/
H = 4; it show opposite nature of stress at top and bottom
of the substrate when subjected to voltage. Normalized
-2 -1 0 1 2 3
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Fig. 4a. Comparison of normalized variation of transverse displacement
ð�wÞ for a unidirectional piezoelectric plate (a/H = 4) subjected to singly
sinusoidal mechanical loading (V = 0) and coupled singly sinusoidal
mechanical loading and electric potential (V = 100).
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Fig. 4b. Comparison of normalized variation of transverse displacement
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singly sinusoidal mechanical loading and electric potential (V = 0, 100,
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-1.0 -0.5 1.0

PVDF/0o/PVDF

 Exact [4]
 Present HOST8

a/H= 4

z/
H

V = 0

-0.50

-0.25

0.00

0.25

0.50

σ
x
 (a/2 , z)

0.0 0.5

Fig. 5a. Comparison of normalized variation of in-plane normal stress
ð�rxÞ for a unidirectional piezoelectric plate (a/H = 4) subjected to singly
sinusoidal mechanical loading.

z/
H

-300 -200 -100 0 100 200
-0.50

-0.25

0.00

0.25

0.50

PVDF/0o/PVDF

 Exact [4]
 Present HOST8 

a/H = 4

V =100

σ
x
 (a/2 , z)

Fig. 5b. Comparison of normalized variation of in-plane normal stress
ð�rxÞ for a unidirectional piezoelectric plate (a/H = 4) subjected to coupled
singly sinusoidal mechanical loading and electric potential (V = 100).

τxz (0, z) 
-100 0 100 200 300

-0.50

-0.25

0.00

0.25

0.50

V = 100z/
H

Exact [4]
 Present HOST8 

a/H = 10

PVDF/0 /PVDF

Fig. 6b. Comparison of normalized variation of transverse shear stress
ð�sxzÞ for a unidirectional piezoelectric plate (a/H = 10) subjected to
coupled singly sinusoidal mechanical loading and electric potential
(V = 100).

-1 6

-0.50

-0.25

0.00

0.25

0.50

V = 0

z/
H

τxz (0, z) 

 Exact [4]  
 Present HOST8 

a/H = 4

PVDF/0 /PVDF

0 1 2 3 4 5

º

Fig. 6a. Comparison of normalized variation of transverse shear stress
ð�sxzÞ for a unidirectional piezoelectric plate (a/H = 4) subjected to singly
sinusoidal mechanical loading.

0.00 0.25 0.50 0.75 1.00

-0.50

-0.25

0.00

0.25

0.50

PVDF/0
o
/PVDF

Exact [4]
 Present HOST8 

a/H = 10

V =0

z/
H

σ
z
 (a/2, z)

Fig. 7a. Comparison of normalized variation of transverse normal stress
ð�rzÞ for a unidirectional piezoelectric plate (a/H = 10) subjected to singly
sinusoidal mechanical loading.

T. Kant, S.M. Shiyekar / Computers and Structures 86 (2008) 1594–1603 1601
variation of transverse shear stress (sxz) subjected to
mechanical loading is presented in Fig. 6a. The thickness
of piezoelectric layer is small as compared to thickness of
elastic layer or substrate, nature of variation is not much
affected when compared with elasticity solution of non-pie-
zoelectric plate, illustrated in Fig. 2d.
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the length of the plate (x/a) for a unidirectional piezoelectric plate (a/
H = 10) subjected to coupled singly sinusoidal mechanical loading and
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Fig. 6b demonstrates transverse shear traction (sxz) at
top of the substrate or at interface for a/H = 4. The elastic
layer is subjected to heavy transverse shear stress at top
interface, when subjected to electric loading; the results
are in good agreement with exact solution [4].

Figs. 7a and 7b show normalized transverse normal
stress (rz) for a/H = 4 and 10 for both loading conditions.
Induced electric potential at the bottom of the sensor layer
is shown in Figs. 8a and 8b for a/H = 100 displaying posi-
tive gain and for a/H = 10 it shows negative gain for V = 0
and V = 100, respectively.
5. Concluding remarks

Higher order shear and normal deformation theory is
developed for smart laminated plates under cylindrical
bending. The main objective of the analytical solution
is to study the effect of electrical potential on piezoelec-
tric plates. A total of eight degrees of freedom in the pri-
mary displacement field is assumed. Exact electric
potentials in higher order terms of elastic displacement
fields are obtained. The results are obtained for displace-
ments, stresses and induced electric potential at bottom
of the sensor under mechanical loading with or without
application of electric potential. It is seen that present
higher order theory predicts results very close to that
of exact solution for smart unidirectional plates espe-
cially for transverse shear stress and induced electric
potential.
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