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Abstract

A higher-order refined model with seven degrees of freedom per node and cubic axial, quadratic transverse shear and linear
transverse normal strain components is presented for the transient dynamic analysis of composite and sandwich beams. This
shear correction coefficient free theory considers each layer of the beam to be in a state of plane stress. A special lumping
scheme is employed for the evaluation of the diagonal mass matrix and a central difference predictor scheme is used to solve the
dynamic equilibrium equation. The excellent performance of the higher-order model in comparison with the first-order theory is
clearly brought out through numerical experiments. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The C' finite-element formulation based on Euler—
Bernoulli theory has been extensively applied to the
linear and non-linear dynamic analysis of beams and
frames [1-4]. The first-order shear deformation theory
of Timoshenko [5] has been the basis of many aniso-
parametric beam elements [6-9] till the advent of C’
beam element by Hughes et al. [10]. Both these types
of elements have been used for the transient dynamics
of frames for ascertaining their relative performance by
Kant and Marur [11].

The limitations of the classical and first-order theory,
the development of the second- [12], third- [13] and
fourth-order [14] theories along with the need for a
refined theory have been discussed in detail in [16].

The higher-order theory of Kant and Gupta [15]
considered both the transverse shear and normal
strains along with isoparametric elements for the
bending and vibration studies of isotropic beams. This
theory was then extended to the vibration problem of
laminated beams [16]. Subsequently, the dynamic
response of sandwich and composite beams was ¢valu-
ated with higher-order models [17]. However, this
study considered only the transverse shear strain
component.

As the transverse normal strain effect becomes vital
with the depth of the cross-section becoming larger, a
higher-order flexural theory with cubic axial, quadratic
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transverse shear and linear transverse normal strain
components is proposed for the transient dynamic
analysis of laminated beams. Each layer of the beam is
considered to be in a state of plane stress with the
constitutive equation derived from the reduction of the
3D stress—strain relationship of an orthotropic lamina.

2. Higher-order model

The higher-order displacement model, based on
Taylor’s series expansion [18] of the displacement
components, is given by,

u(x,z,1) = uo(x,1) + 20, (x,1) + Zui(x,1)

+20%(x.1) (1)

w(x,2,t) = wo(x,1) +20.(x,0) + Zwi(x.0) 2)

where u, and w, are axial and transverse displacements
in the x—z plane at time 7, 6, is the rotation of the
cross-section about the y-axis and ug, 0% 0. and w; are
higher-order terms arising out of the Taylor series
expansion and defined at the neutral axis.

The total energy of a system can be given by

L=T-TI, (3

N=U-W, 4



2 S. R. Marur, T. Kant/Composite Structures 41 (1998) 1-11

where U is the internal strain energy, W, is the work
done by the external forces, and T is the kinetic energy.
The strain energy can be expressed as

U=U;+U, (5)

where U, is due to flexure and transverse normal strain
and U, is due to transverse shear strain.
Equation (3) can be rewritten as

1 1
L =5 Ju’pu dv—[ 3 js'a dv— JM’F dVJ (6)

where u=[uw], i=[uw], ¢ = [e&y..], 0 =[o.0.1,.] and
F=[f.f.]' and the nodal displacement vector is

d= [uowoﬂ,\-uﬁ‘UTH;Wﬁ’ (7)

The generic displacement vector can be expressed
as

MZ_Z_([d (8)
where
1 0 z 22 2 0 0
Z, =
= |:01000z12:| ©)

The bending and transverse normal strains are
given as

e= b0+ e+ K+ KF (10)

s.=e0+ 2K, (11)
where

[ee¥e oK K¥K ] = [ug 1l 0.0, O07F 2w (12)
and taken together as

e=les] =28 13)
where

1 720z 2 0

Z=[0 010 0 z] (14)
and

£=[60eTe. K KK ] (15)

Similarly, the shear strain can be expressed as

Vo=@ +7P*+2K ., (16)
where

[pd*K ]

= [(wo .+ 0w+ 30D(0... + 2ug)] (17)

and can be expressed in the matrix form as

Ve =L (18)
where

Z. =172 (19)

’\1_7‘:_ = [¢¢*K\’Z][

The stress—strain relationship of an orthotropic
lamina in a 3D state of stress can be given as [19]

o* = Q¥ ¢* 1)
where
o*=[0,0,6.7,7,7.| (22)
& = [6887,0Vx] (23)

and Q™ is given by eqn (Al) in the Appendix.

By setting g,, 7, and t,, equal to zero in eqn (21),
and deriving o,, ¢, and t,, from that [20] to model the
plane stress situation for the 2D beam bending
problem, results in the stress—strain relation as,

c=0Q¢ (24)
where

o=[0.0.7..) (25)

e=[e8.] (26)
B 0

o=| 2 0 ] (27)
L0 0 D,
[ 00 0. ]

D = - - Dx' = 3 28

27| 0. sz:I Be:=10n] (28)

and the expansion of D and D,, are available in eqns
(A2)-(A3).

The internal strain energy due to flexure and trans-
verse normal strain, after carrying out the integration
across the cross-section becomes

1
U,= - JE’& dx (29)
2
where
a=DE (30
The stress resultants are given by
=[N, NNM MM (31)
and
_ NL hl,
D=b X | Z'DZd: (32)
L=1 hy,

which appears in a matrix form as,

Q=[Q-Z' Q] (33
Q(' Qf

and D,, and Dy are presented in eqns (A6)—(AS8).
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Similarly, the internal strain energy due to transverse
shear is

1

U.r = 5 Jv’y;z%xz d-x (34)
where

%xz = _D_xz?xz (35)

The shear stress resultants are given by

T.=[QQ*SI (36)
and

) v (™

sz =b X Z:‘szszz dz (37)

L=t Jn_,

and eqn (A9) gives the expansion of this matrix.
The kinetic energy can be expressed using eqn (8) as

1
T= 5 Jd'@d dx (38)
and
NL
m=b X Zup1Z,dz (39
L=y, _,

where p; is the mass density of a particular layer and is
presented in eqn (A10).
The external work done is modified using eqn (8) as,

W,= Jd'l_’ dx (40)
where

F=z\F (41)

= [fan sz’ My, f;ko, m;‘:O’ mzoa f;kO]' (42)

Now, the total energy reappears with eqns (29), (34),
(38) and (40) as

L=1/2 fd’@d dx— [1/2 fsa dx
+1/2 jmn dx— f d'F dx} (43)

3. Finite-element modelling

In isoparametric formulations, the displacements
within an element can be expressed in terms of its
nodal displacements as

d=Na, (44)

where a, is a vector containing nodal displacement
vectors of an element and is given by

a,=[d\dsds... &) (45)

and N is the shape function matrix.

Similarly, the flexural and transverse normal strain
within an element can be written as

£=Ba, (46)
and transverse shear strain as

Vo= Bt (47)
where B and B,, are strain displacement matrices.

Table 1
Data table

No. Description Ref.

1 Modelling data
Beam length = 30 in (762 mm)
width = 1 in (25.4 mm)
L/ID=5
Load intensity = —300 Ib/in (—52.556 N/mm)
Number of elements employed = 4 cubic
II Boundary conditions
Ho=wo=us=wh=0at x=0and x=L
111 Non-dimensionalising factors
#0,2) =u(0.2)E_/(—q)
o (L12.2)=0 (LI2,2)bI(—q)
v Data types
DATA-1 Face properties: [23]
Material: graphite/epoxy
t; (top/bot) = 0.6 in (15.24 mm)
E, = 0.1742E8 psi (0.12E6 N/mm’)
E,=FE,=0.1147E7 psi (0.79E4 N/mm?)
G,, = 0.7983E6 psi (0.55E4 N/mm?)
G=G,.=G,;
p = 0.1433E — 3 Ib-sec?/in* (1.58 kN-sec’/m*)
v=10J3
Core properties: [24]
Material: US commercial aluminium, honey-
comb 0.25 in cell size, 0.007 in foil.
t.=4.8in (121.92 mm)
G,. = 0.1021ES psi (70.35 N/mm?)
G,, = 0.2042E5 psi (140.7 N/mm?)
p = 0.3098E — 5 Ib-sec’/in* (34.15 N-sec’/m*)
tjt;=8
No. of layers of ¢/s = 10
Lamination scheme: 0/30/45/60/core/60/45/30/0
Lamination scheme: 0/90/core/0/90
Rest are same as DATA-1.
t, =1in (25.4 mm) [25]
E, =0.762ES8 psi (0.525E6 N/mm?)
E,=E,=0.3048E7 psi (0.21E5 N/mm?)
G,, = 0.1524E7 psi (0.105E5 N/mm?)
G.,=G,.=G,;
p =0.72567F — 4 Ib-sec?/in* (800 N-sec’/m*)
v=0.25
No. of layers of c/s =6
Lamination scheme: 0/90/0
No. of layers of c/s = 8
Lamination scheme: 0/45/—45/90
Rest are same as DATA-3.
\'% Note
HOBT: Higher-order beam theory
FOBT: First-order beam theory of Timoshenko

DATA-2

DATA-3

DATA-4
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The non-zero element.s of B corresponding to a as Hoa T
particular node i can be given as
---- FOBT
By =By=B;;=Bss=N,,; Byx=N;; B;=2N,; (48) a.0f
and of B, as
Bi2=By=By=N,; Bi=Ni Bu=2N;: Bs=3N, (49) e 7T s
. -~ / v / \
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Fig. 2. In-plane displacement of symmetric sandwich beam (Data-1).
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The consistent mass matrix is evaluated as,

LG
M.= T WN'mN)
g=1

(35)

where LG is the (Total) Number of Gauss Points (four
in this case), W, is the weighing coefficient and /] is the
determinant of Jacobian.

If the total mass of an element can be given by,

m,=

MIDSPAN BENDING MOMENT N Ib-in/in{ 4-45 N-mm/mm) X 104

-8

pdv

TIME ( X 107%SEC )

(56)

-—— HOBT

--- FOBT

Fig. 4. Bending moment variation of symmetric sandwich beam

(Data-1).

and the sum of diagonal coefficients, corresponding to
any translational degree of freedom, of the consistent
mass matrix given by eqn (55), is termed as Ym,, then
the specially lumped mass matrix can be obtained [21]
by scaling all the diagonal elements of the consistent

mass matrix as

L = Mg.md Xm,,

(57)

and making all the off-diagonal terms of the consistent

mass matrix as zero.

The internal resisting force vector can be evaluated

as

NG MG
P= X W, BGlJ|+ X WB.%.J|
g=1 g=1

(58)

where NG is four for bending and MG is three for

shear term evaluation.
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Fig. 5. In-plane displacement distribution of symmetric sandwich

beam at ¢ = 0.11E —2 sec (Data-1).

Fig. 6. In-plane stress distribution of symmetric sandwich beam at t = 0.11E —2 sec (Data-1).
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Fig. 7. Midspan transverse deflection of unsymmetric sandwich beam

(Data-2).
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Fig. 11. In-plane displacement distribution of unsymmetric sandwich
beam at ¢ = 0.11E —2 sec (Data-2).

The consistent load vector due to a uniformly distri-
buted transverse load g at the top surface of the beam
is given by

KG ~
fiy= X WN'F|J| (59)
g=1
where
F=]0, q,0,0,0,qh/2, qh2/4] (60)

and KG is three.

The governing equation of motion is solved using the
central difference predictor technique [22] to obtain
the response history at different time steps.

4. Numerical experiments

In order to test the proposed higher-order model,
beams with both sandwich and composite constructions
subjected to transverse dynamic loadings are
considered in this study. Isoparametric cubic elements
are employed to discretize the beam. All the experi-
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Fig. 12. In-plane stress distribution of unsymmetric sandwich beam at
t=011E -2 sec (Data-2).
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Fig. 13. Midspan transverse deflection of symmetric composite beam
(Data-3).

ments are carried out on a pentium machine with DOS
in double precision.

4.2. Sandwich beams

A symmetric sandwich beam with properties as
described in DATA-1 (Table 1) is considered first. The
higher-order transverse displacement is almost three
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Fig. 14. In-plane displacement of symmetric composite beam
(Data-3).



TIME (x 107* sEC)

'
&

—— HOBT

© 00 FOBT

@

SHEAR FORCE AT L=0, N Ib/in (O 1752 N/mm) X lO3

Fig. 15. Shear force variation of symmetric composite beam (Data-3).

times greater and the in-plane displacement is 1.2
times more than those of the first-order theory (Figs 1
and 2). While the amplitude of the higher-order shear
force is marginally higher, the higher-order bending
moment is marginally lower than that of the
Timoshenko theory (Figs 3 and 4). However, in both
cases, the higher-order period is nearly 70% more than
the first-order period. The in-plane displacement and
stress distribution of the higher-order theory clearly
brings out the non-linear variation across the depth as
shown in Figs 5 and 6.
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Fig. 16. Bending moment variation of symmetric composite beam

(Data-3).
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Fig. 17. In-plane displacement distribution of symmetric composite
beam at ¢ = 0.3E — 3 sec (Data-3).

Next, an unsymmetric sandwich beam is considered
(DATA-2). The higher-order transverse and in-plane
displacements are 3 and 1.6 times, respectively, higher
than those of the Timoshenko theory (Figs 7 and 8).
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Fig. 18. In-plane stress distribution of symmetric composite beam at
t =0.3E -3 sec (Data-3).
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Fig. 19. Midspan transverse deflection of unsymmetric composite
beam (Data-4).



S. R. Marur, T. Kant/Composite Structures 41 (1998) 1-11 9

a5
—— HOBT
a0k
---- FOBT
- ———
i 35L e N
° N\
/ AY
x / \
P ¥ \
€ 30 / \
£ 309 , .
v \
b ! \
Q /
N \
Z / \
£ 251 / \
/ \
z : \
- ’ \
Q20 / \
- A
- ! \
< / \
/ \
%|-5> / \
3 / \
L / \ /
2 / \ 7
z 1of / \ i
7] / \ Q
a ’ \ 4
G 4
o5 / 4
a ’ A 4
=z 7 \ 4
\ 2
7 AN
” 1 i L 1 L I 1 1
[} | 2 3 4 5 6 7 8 9

TIME (X 10% SEC)

Fig. 20. In-plane displacement of unsymmetric composite beam
(Data-4).

The period of the higher-order shear force and
bending moment is 83% more than their first-order
counterparts (Figs 9 and 10). The non-linear nature of
the in-plane displacement and stress distribution of the
higher-order theory can be observed in Figs 11 and 12.

4.2. Composite beams

In the case of the symmetric composite beam
(DATA-3), the transverse displacement, shear force
and bending moment (Figs 13, 15 and 16) by both
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Fig. 21. Shear force variation of unsymmetric composite beam
(Data-4).
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Fig. 22. Bending moment variation of unsymmetric composite beam
(Data-4).

theories are very close. The higher-order in-plane
displacement is 1.26 times higher than that of the first-
order theory (Fig. 14). The non-linear variation of the
higher-order in-plane displacement and stress and the
linear variation of the Timoshenko theory are depicted
in Figs 17 and 18.

In the case of the unsymmetric composite beam
(DATA-4) also, the transverse displacement, shear
force and bending moment (Figs 19, 21 and 22) by
both theories are quite close and the higher-order
in-plane displacement is 15% higher than the first-
order predictions (Fig. 20). While the in-plane
displacement across the depth by the higher-order
model is non-linear (Fig. 23), the in-plane stresses by
both theories are very close (Fig. 24).
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Fig. 23. In-plane displacement distribution of unsymmetric composite
beam at t = 0.35E —3 sec (Data-4).
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Fig. 24. In-plane stress distribution of unsymmetric composite beam
at t = 0.35E — 3 sec (Data-4).

5. Conclusions

A higher-order model, which incorporates both the
transverse shear and transverse normal strain, for the
transient dynamics of laminated beams is presented in
this paper. With the adaptation of a constitutive
relationship, reduced from the 3D stress—strain
relation of an orthotropic lamina, even cross-ply
laminates could be analysed using the 2D beam formu-
lation itself. It can be observed from the experiments
that the higher-order model is quite effective for the
analysis of sandwich constructions. In the case of
composites, though global responses of the beam are
identically predicted by both these theories, the
in-plane displacement and stress distribution across the
depth by the higher-order model clearly brings out
their non-linear variation, establishing its superior
computational potency over the first-order theory.
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where

H.=(hi—H_Dlkk=1...7,

and NL stands for the (Total) Number of Layers of the cross-section.



