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Abstract 

A higher-order refined model with seven degrees of freedom per node and cubic axial, quadratic transverse shear and linear 
transverse normal strain components is presented for the transient dynamic analysis of composite and sandwich beams. This 
shear correction coefficient free theory considers each layer of the beam to be in a state of plane stress. A special lumping 
scheme is employed for the evaluation of the diagonal mass matrix and a central difference predictor scheme is used to solve the 
dynamic equilibrium equation. The excellent performance of the higher-order model in comparison with the first-order theory is 
clearly brought out through numerical experiments. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

The C’ finite-element formulation based on Euler- 
Bernoulli theory has been extensively applied to the 
linear and non-linear dynamic analysis of beams and 
frames [l-4]. The first-order shear deformation theory 
of Timoshenko [5] has been the basis of many aniso- 
parametric beam elements [6-91 till the advent of C” 
beam element by Hughes et al. [lo]. Both these types 
of elements have been used for the transient dynamics 
of frames for ascertaining their relative performance by 
Kant and Marur [ 111. 

The limitations of the classical and first-order theory, 
the development of the second- [12], third- [13] and 
fourth-order [14] theories along with the need for a 
refined theory have been discussed in detail in [16]. 

The higher-order theory of Kant and Gupta [15] 
considered both the transverse shear and normal 
strains along with isoparametric elements for the 
bending and vibration studies of isotropic beams. This 
theory was then extended to the vibration problem of 
laminated beams [16]. Subsequently, the dynamic 
response of sandwich and composite beams was evalu- 
ated with higher-order models [17]. However, this 
study considered only the transverse shear strain 
component. 

As the transverse normal strain effect becomes vital 
with the depth of the cross-section becoming larger, a 
higher-order flexural theory with cubic axial, quadratic 

transverse shear and linear transverse normal strain 
components is proposed for the transient dynamic 
analysis of laminated beams. Each layer of the beam is 
considered to be in a state of plane stress with the 
constitutive equation derived from the reduction of the 
3D stress-strain relationship of an orthotropic lamina. 

2. Higher-order model 

The higher-order displacement model, based on 
Taylor’s series expansion [18] of the displacement 
components, is given by, 

U(X,zJ) = uo(x,r) + zH,(x,t) + Z2&XJ) 

+ z’BT(x,r> (1) 

w(x,z,t) = W”(XJ) + z@(x,t) + z’w@,t) (2) 

where CL,) and w,, are axial and transverse displacements 

in the X-Z plane at time t, 8, is the rotation of the 
cross-section about the y-axis and uz, O,*, 0; and WC are 
higher-order terms arising out of the Taylor series 
expansion and defined at the neutral axis. 

The total energy of a system can be given by 

L=T-rI, (3) 

n=lJ-w, (4) 
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where U is the internal strain energy, W, is the work 
done by the external forces, and T is the kinetic energy. 

The strain energy can be expressed as 

c/,,=lJ,+I/, (5) 

where U, is due to flexure and transverse normal strain 
and LJ, is due to transverse shear strain. 

Equation (3) can be rewritten as 

where u = [uw]‘, & = [titi]‘, E = [eXaZ~.J’, 0 = [rrY,aZrX,,]’ and 
F = [f,f,]' and the nodal displacement vector is 

d=[uowo61,u;O~tl,w~' (7) 

The generic displacement vector can be expressed 
as 

u = Z,,d (8) 

where 

z= 10 z z* z7 0 0 
_rl 

0 1 0 0 0 z z2 (9) 
L A 

The bending and transverse normal strains are 
given as 

E,= ~,~+z*&+zK,+z~K~ 

c; = E;" + zK, 

where 

(10) 

(11) 

[wk&X:Krl = lt10.,~O*..,e;e,,,H~,2~~ 

and taken together as 

E = [E&J’ = zt: 

(14 

(13) 

where 

z= 
1 z? 0 z z7 0 

00100z 1 (14) 

(15) 

Similarly, the shear strain can be expressed as 

y,;=~+z=q!Y++zK,; (16) 

where 

= [(w”.< + WW:., + 30X@,,, + 261 

and can be expressed in the matrix form as 

YK = Zr:?,; 

(17) 

(18) 

where 

z,; = [ lzZzl’ (19) 

:,rI; = 144”Kr;l’ 

The stress-strain 
lamina in a 3D state 

c* = Q”E* 
- 

where 

relationship of an orthotropic 
of stress can be given as [19] 

(21) 

CT* = [~,~~o:Z,,T,;T,;]’ (22) 
c* = [C,F,&;J,&~yx;]’ (23) 

and Q* is given by eqn (Al) in the Appendix. 
Bysetting a,, z~, and rYZ equal to zero in eqn (21), 

and deriving a,, CJ, and rXZ from that [20] to model the 
plane stress situation for the 2D beam bending 
problem, results in the stress-strain relation as, 

C=pc (24) - 

where 

CJ = [Cr,(T,rJ’ (25) 

E = [ E,E,Y ,,I’ (26) 

(27) 

(28) 

and the expansion of O_ and LIXZ are available in eqns 
(A2)-(A5). 

The internal strain energy due to flexure and trans- 
verse normal strain, after carrying out the integration 
across the cross-section becomes 

U, = ; 
j 

E% dx (29) 

where 

O=& 

The stress resultants are given by 

C= [N,N;N:M,M;MJ' 

and 

D=b : 
j 

h, 
Z’m dz 

L=’ I,,& 

which appears in a matrix form as, 

(30) 

(31) 

(32) 

and 0, and & are presented in eqns (A6)-(A8). 

(33) 
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Similarly, the internal strain energy due to transverse 
shear is 

(34) 

where 

?,; = &yxz 

The shear stress resultants are given by 

7,: = [QQ*S]’ 

and 

&=b F 
h, 

s 
Z:;D,,Z,; dz 

L=’ h,_, 

(35) 

(36) 

(37) 

and eqn (A9) gives the expansion of this matrix. 
The kinetic energy can be expressed using eqn (8) as 

T= f 
s 

Zfiildx 

and 

“=b ? 
h, 

s 
Z;P& dz 

L=’ h,-( 

(38) 

(39) 

where pt. is the mass density of a particular layer and is 
presented in eqn (AlO). 

The external work done is modified using eqn (8) as, 

W,= 
s 

d’F dx (40) 

where 

i-=&F (41) 

= LfxO, fZo, mxo, CO, d0, ml,, fit2 (42) 

Now, the total energy reappears with eqns (29), (34) 
(38) and (40) as 

(43) 

3. Finite-element modelling 

In isoparametric formulations, the displacements 
within an element can be expressed in terms of its 
nodal displacements as 

d=IJa, (44) 

where a, is a vector containing nodal displacement 
vectors of an element and is given by 

up = [d: did; . . . d;]’ (45) 

and l is the shape function matrix. 

Similarly, the flexural and transverse normal strain 
within an element can be written as 

E=Ba, 

and transverse shear strain as 

(46) 

YXi = &;a(, (47) 

where B and B, are strain displacement matrices. 

Table 1 

Data table 

No. Description Ref. 

I Modelling data 
Beam length = 30 in (762 mm) 

width = 1 in (25.4 mm) 

LID =5 

II 

III 

IV 

DATA- 1 

Load intensity = - 300 lb/in ( -52.556 N/mm) 

Number of elements employed = 4 cubic 

Boundary conditions 
u,,=w,,=u~=w~=O at x=0 and x=L 

Non-dimensiona1isingfactor.s 
LxO,z) = u(O,z)E,l( -4) 
a,(L/2,i) = o,(L/2,z)bl( - 4) 
Data types 
Face properties: 

Material: graphite/epoxy 

t, (top/hot) = 0.6 in (15.24 mm) 

E, = 0.1742E8 psi (0.12E6 N/mm*) 

E, = E, = 0.1147E7 psi (0.79E4 N/mm’) 

G, = 0.7983E6 psi (0.55E4 N/mm’) 

G,, = G,.; = G,, 
p = 0.1433E - 3 lb-sec*/in4 (1.58 kN-sec*/m4) 

Y = 0.3 

Core properties: 

Material: US commercial aluminium, honey- 

DATA-2 

DATA-3 

comb 0.25 in cell size, 0.007 in foil. 

t, = 4.8 in (121.92 mm) 

GYZ = 0.1021E5 psi (70.35 N/mm’) 

GxZ = 0.2042E5 psi (140.7 N/mm*) 

p = 0.3098E - 5 lb-sec’/in“ (34.15 N-sec*/m4) 

t,/t, = 8 

No. of layers of c/s = 10 

Lamination scheme: 0/30/45/60/tore/60/45/30/0 

Lamination scheme: 0/90/tore/0/90 

Rest are same as DATA-l. 

t, = 1 in (25.4 mm) 

E, = 0.762E8 psi (0.525E6 N/mm*) 

E, = E, = 0.3048E7 psi (0.21E5 N/mm’) 

G, = 0.1524E7 psi (0.105E5 N/mm*) 

G,,.= G,;= G,; 

p = 0.72567E -4 lb-secz/in4 (800 N-secz/m4) 

1’ = 0.25 

DATA-4 

V 

No. of layers of c/s = 6 

Lamination scheme: O/90/0 
No. of layers of c/s = 8 

Lamination scheme: O/45/ - 45/90 

Rest are same as DATA-3. 
Note 
HOBT: Higher-order beam theory 

FOBT: First-order beam theory of Timoshenko 

~31 

[241 

v51 
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The non-zero elements of &j corresponding to a 
particular node i can be given as 

B,, = BN = Bu = BM = A’,,,; Bxi = N,; Be, = TN, (48) 

and of L3, as 

B12 = B2, = Bj6 = N,,,; B,-, = N,; B3z, = 2N,; Bzs = 3N, (49) 

With eqns (44), (46) and (47), the total energy can 

be rewritten as 

L= liZa:,[N’inN dx +2~:+% dx 

+ li2r:?::?._ dx-a:,j& dx] (50) 

Applying the Hamilton’s principle on L, we get the 
equation of motion as, 

Mil+ P = j-(r) (51) 

where 

M= 
1 

N’mN dx -- (52) 

P = [&% dx + i&i,: dx (53) 

45 

40 

- HOET 

---- FOBT 

\ 
I--\ 

; ‘! 
I 

/ 

: 

I 

: 

; 

\ 

: 

: 

: 

:’ 

J 

,f(t) = (54) 

Fig. 2. In-plane displacement of symmetric sandwich beam (Data-l) 

TIME ( x 102 SEC ) 

4 B 12 16 20 24 

I - HOBT 

Fig. 1. Midspan transverse deflection of symmetric sandwich beam 

(Data-l). 

-9 ---- FOBT 

Fig. 3. Shear force variation of symmetric sandwich beam (Data-l). 
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The consistent mass matrix is evaluated as, 

&4, = “c” W,N%NJJ( 
g=l (55) 

where LG is the (Total) Number of Gauss Points (four 
in this case), W, is the weighing coefficient and r] is the 
determinant of Jacobian. 

If the total mass of an element can be given by, 

ml= 
s 

P dv (56) 

T,ME ( X &SEC 1 

0.5 r 

and the sum of diagonal coefficients, corresponding to 
any translational degree of freedom, of the consistent 
mass matrix given by eqn (55) is termed as Cm,, then 
the specially lumped mass matrix can be obtained [21] 
by scaling all the diagonal elements of the consistent 
mass matrix as 

i&, = i&i.m,lCm,, (57) 

and making all the off-diagonal terms of the consistent 
mass matrix as zero. 

The internal resisting force vector can be evaluated 
as 

(58) 

- HOBT 

--- FOBT 

Fig. 4. Bending moment variation of symmetric sandwich beam 

(Data-l). 

where NG is four for bending and MG is three for 
shear term evaluation. 

- HOBT 

----- FOBT 

Fig. 5. In-plane displacement distribution of symmetric sandwich 

beam at t = O.llE-2 set (Data-l). 

z/h 
- HOBT 

Fig. 6. In-plane stress distribution of symmetric sandwich beam at t = O.llE-2 set (Data-l). 
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TIME ( x lo+ SEC ) 

4 8 12 16 20 24 

- HOBT 

---- FOBT 

Fig. 7. Midspan transverse deflection of unsymmetric sandwich beam 

(Data-%). 

4.0 - HOBT 

N ---- FOBT 

,o 
- 45 

0 4 6 12 16 20 24 

Fig. 8. In-plane displacement of unsymmetric sandwich beam Fig. 10. Bending moment variation of unsymmetric sandwich beam 
(Data-2). (Data-2). 

4 12 16 20 24 

FOBT 

Fig. 9. Shear force variation of unsymmetric sandwich beam 

(Data-2). 
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z/h 

- HOBT 

---- FOBT 

t 
c (o,z) 

I 
-160 40 60 120 160 

Fig. 11. In-plane displacement distribution of unsymmetric sandwich 

beam at t = O.llE-2 set (Data-2). 

The consistent load vector due to a uniformly distri- 
buted transverse load q at the top surface of the beam 
is given by 

f(t)= Rz WY’FIJI (59) 

where 

F = [O, q,o, 0, 0, qh/2, qh2/4] 

and KG is three. 

(60) 

The governing equation of motion is solved using the 
central difference predictor technique [22] to obtain 
the response history at different time steps. 

4. Numerical experiments 

In order to test the proposed higher-order model, 
beams with both sandwich and composite constructions 
subjected to transverse dynamic loadings are 
considered in this study. Isoparametric cubic elements 
are employed to discretize the beam. All the experi- 

Fig. 12. In-plane stress distribution of unsymmetric sandwich beam at Fig. 14. In-plane displacement of symmetric composite beam 

I = O.llE-2 set (Data-2). (Data-3). 

Fig. 13. Midspan transverse deflection of symmetric composite beam 

(Data-3). 

ments are carried out on a pentium machine with DOS 
in double precision. 

4.2. Sandwich beams 

A symmetric sandwich beam with properties as 
described in DATA-l (Table 1) is considered first. The 
higher-order transverse displacement is almost three 

PO I- - HOBT 

FOBT 
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Fig. 17. In-plane displacement distribution of symmetric composite 

beam at t = 0.3EP3 set (Data-3). 

Next, an unsymmetric sandwich beam is considered 
(DATA-2). The higher-order transverse and in-plane 
displacements are 3 and 1.6 times, respectively, higher 
than those of the Timoshenko theory (Figs 7 and 8). 

Fig. 15. Shear force variation of symmetric composite beam (Data-3). 

times greater and the in-plane displacement is 1.2 
times more than those of the first-order theory (Figs 1 
and 2). While the amplitude of the higher-order shear 
force is marginally higher, the higher-order bending 
moment is marginally lower than that of the 
Timoshenko theory (Figs 3 and 4). However, in both 
cases, the higher-order period is nearly 70% more than 
the first-order period. The in-plane displacement and 
stress distribution of the higher-order theory clearly 
brings 
shown 

out the non-linear variation across the depth as 

in Figs 5 and 6. -0 500 1 

Fig. 18. In-plane stress distribution of symmetric composite beam at 

Fig. 16. Bending moment variation of symmetric composite beam Fig. 19. Midspan transverse deflection of unsymmetric composite 

(Data-3). beam (Data-4). 
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Fig. 20. In-plane displacement of unsymmetric composite beam 

(Data-4). 

The period of the higher-order shear force and 
bending moment is 83% more than their first-order 
counterparts (Figs 9 and 10). The non-linear nature of 
the in-plane displacement and stress distribution of the 
higher-order theory can be observed in Figs 11 and 12. 

4.2. Composite beams 

In the case of the symmetric composite beam 
(DATA-3) the transverse displacement, shear force 
and bending moment (Figs 13, 1.5 and 16) by both 

Fig. 21. Shear force variation of unsymmetric composite beam 

(Data-4). 

Fig. 22. Bending moment variation of unsymmetric composite beam 

(Data-4). 

theories are very close. The higher-order in-plane 
displacement is 1.26 times higher than that of the first- 
order theory (Fig. 14). The non-linear variation of the 
higher-order in-plane displacement and stress and the 
linear variation of the Timoshenko theory are depicted 
in Figs 17 and 18. 

In the case of the unsymmetric composite beam 
(DATA-4) also, the transverse displacement, shear 
force and bending moment (Figs 19, 21 and 22) by 
both theories are quite close and the higher-order 
in-plane displacement is 15% higher than the first- 
order predictions (Fig. 20). While the in-plane 
displacement across the depth by the higher-order 
model is non-linear (Fig. 23), the in-plane stresses by 
both theories are very close (Fig. 24). 

Fig. 23. In-plane displacement distribution of unsymmetric composite 
beam at t = 0.35E - 3 set (Data-4). 
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Fig. 24. In-plane stress distribution of unsymmetric composite beam 

at t = 0.35E - 3 set (Data-4). 

5. Conclusions 

A higher-order model, which incorporates both the 
transverse shear and transverse normal strain, for the 
transient dynamics of laminated beams is presented in 
this paper. With the adaptation of a constitutive 
relationship, reduced from the 3D stress-strain 
relation of an orthotropic lamina, even cross-ply 
laminates could be analysed using the 2D beam formu- 
lation itself. It can be observed from the experiments 
that the higher-order model is quite effective for the 
analysis of sandwich constructions. In the case of 
composites, though global responses of the beam are 
identically predicted by both these theories, the 
in-plane displacement and stress distribution across the 
depth by the higher-order model clearly brings out 
their non-linear variation, establishing its superior 
computational potency over the first-order theory. 
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Appendix 

1 0 0 0 0 0 0 0 0 QTs Q:s Q;, Q&. 

(AlI 



[ 

HI 0 Hz Hs Hz, 0 0 

H, 0 0 0 Hz H, 

NL 
H3 H4 HS 0 0 

m=b E pL H5 H6 0 0 
L=, 

Sym. H, 0 0 

Hj Hq 

H5 I 
where 

Hk=(h:-h:_,)lk,k=l . ..7. 

and NL stands for the (Total) Number of Layers of the cross-section. 
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