FLEXURAL ANALYSIS OF LAMINATED COMPOSITES USING
REFINED HIGHER-ORDER C° PLATE BENDING ELEMENTS
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A finite element formulation for flexure of a symmetrically laminated plate based on a higher-order
displacement model and a three-dimensional state of stress and strain is presented here. The present
higher-order theory incorporates linear variation of transverse normal strains and parabolic variation of
transverse shear strains through the plate thickness, and as a result it does not require shear correction
coefficients. A nine-noded Lagrangian parabolic isoparametric plate bending element is described. The
applications of the element to bending of laminated plates with various loading, boundary conditions,
and lamination types are discussed. The numerical evaluations also include the convergence study of
the element used. The present solutions for deflections and stresses are compared with those obtained
using the three-dimensional elasticity theory, closed-form solutions with another high-order shear
deformation theory, and the Mindlin’s theory. In addition, numerical results for a number of new
problems, not available in the literature, are presented for future reference.

1. Introduction

Multilayered composites are important structural materials in weight sensitive aerospace
applications, where high strength-to-weight and stiffness-to-weight ratios are desired. Such
composites, idealized as orthotropic lamina, are bonded together to form a laminate and are
used as structural components. The finite element formulation provides a convenient method
of solution for such laminated composites having complex geometry and arbitrary loading as
well as support conditions.

Analysis of such a laminate in the past has been based on one of the following two types of
plate theories:
® The classical lamination theory based on Kirchhoff hypothesis.

o First-order shear deformation theories.

In both theories it is assumed that the laminate is in a state of plane stress. The classical
lamination theory [1,2], which is an extension of the classical thin plate theory [3,4] to
iaminated plates, neglects the effects due to transverse shears and normal strain in the
thickness direction. It was soon realised that these effects are more significant for laminated
composite plates than for isotropic plates due to high ratio of in-plane modulus to transverse
shear modulus. Further, it was also observed that the classical thin plate theory based on the
so-called Kirchhoff hypothesis is computationally inefficient (C' continuous) from the Point of
view of simple finite element formulations [5, 6]. The errors in such a theory natura!ly increase
as the plate aspect ratio (a/h < 10) decreases. For instance, in plates with aspect ratio less than
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ten and high degree of orthotropy, Ashton and Whitney [7] have reported enormous
discrepancy in the results of the classical thin plate theory.

The shear deformation theories which include transverse shear deformation can be classified
on the basis of the assumed fields as (i) stress-based theories and (ii) displacement-based
theories. Reissner [8] and Mindlin [9] are the two pioneers to provide first-order shear
deformable theories based on the assumed stresses and displacements variation through the
thickness of the plate, respectively. Medwadowski [10] has extended Reissner’s theory to
orthotropic plates. Yang, Norris and Stavsky [11], on the other hand, have extended Mindlin’s
theory to heterogeneous plates.

The foregoing theories provide a first-order basis for the consideration of the transverse
shear deformations effect on the behaviour of isotropic, orthotropic, and heterogeneous plates
and these also yield a C° continuous finite element formulation for the numerical analysis but
have certain limitations:

@ The transverse shearing strains/stresses are assumed constant through the plate thickness
and a fictitious shear correction coefficient is introduced.

@ The nonzero transverse shear stresses on the bounding planes of the plate are contradictory
to the basic requirements for the equilibrium.

® The classical contradiction whereby the plates are assumed to be in a state of plane
stress/strain remains unresolved.

Reissner [12] and Lo, Christensen and Wu [13, 14] have presented a theory for plates based on

assumed higher-order displacement field. Kant [15] has derived an isotropic version of the

complete governing equation of such a theory based on the minimum potential energy

principle and has also compared it with Mindlin theory through extensive numerical studies. A

C’ finite element formulation of this higher-order theory is presented by Kant, Owen and

Zienkiewicz [16]. In this theory, the in-plane and the transverse displacements are expanded

in the powers of the thickness coordinate (z) by Taylor series and the truncations are effected

at the third and the second degrees, respectively. The theory thus incorporates:

® Quadratic variation of the transverse shearing strains (y,, and ¥,.) through the plate
thickness, avoiding the introduction of a shear correction factor.

® Linear variation of the transverse normal strain (e,) through the plate thickness

@ Consideration of the complete three-dimensional Hooke’s law.

Pandya and Kant [17] have extended this theory for generally orthotropic plates. The present

work is a further development of this theory for flexure of symmetrically laminated anisotropic

composite plates.

Recently, Bert [18] has presented an evaluation of various plate theories developed for
laminated composites. Phan and Reddy [19] have presented a finite element formulation of a
plate theory based on an assumed displacement field of Levinson [20] and Murthy [21] in
waich in-plane displacements are expanded as cubic functions of the thickness coordinate
while the transverse deflection is kept only a function of x and y as assumed in the classical
shear deformation theories. Hence, implicit in this development is the use of only a partial
comstitutive relation which ignores the contributions and effects of transverse normal stress
(0,)/strain (e,). The higher-order functions used in the definition of the in-plane displace-
ments are eliminared and expressed in terms of the usual physical lower-order displacement
functions of the classical shear deformable theories by conditioning that the transverse shear
stresses are zero on the bounding planes of the plates. The resulting formulation is seen to
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contain second-order derivatives of the transverse deflection (w) in the energy expression and
consequently the displacement-based finite element formulation requires the use of computa-
tionally inefficient C' continuous shape functions. Further, for laminated composite plates, the
evaluation of transverse shear stresses from the constitutive relations is not justified technically
as it violates the continuity of transverse shear stresses at the interfaces. In addition, it is noted
that for the laminated composite plates, the feasible and accurate prediction of transverse
shear stresses are cumbersome [22] and can only be obtained from the stress equilibrium
equations which satisfy both the requirements of zero transverse shear stresses on the
bounding planes of the plate as well as transverse shear stress continuity at the interfaces.

An extremely important aspect in the design and manufacture of the fibre-reinforced
laminates is the prediction of its failure mode(s) under the given set of load conditions. The
delamination mode of the failure is now recognized as the most critical one [23]. This type of
failure mode is due to interlaminar stresses 7,,, 7,,, and also o, which is not considered by
Reddy [19], Levinson [20], and Murthy [21]. We believe the present formulation has the
potential to predict all the six components of stresses and displacement components accurate-
ly. In order to demonstrate the accuracy and efficiency of the present finite element technique,
solutions of problems for which analytical solutions {22, 24] are available are selected so that a
comparison between the analytical and numerical solutions could be made. In addition,
numerical results are presented for various other boundary conditions and loading cases, some
of which may serve as bench marks for future investigators.

2. A higher-order theory for composite laminates

The development of the present theory starts with the assumption of the displacement field
in the following form:

Ux, y, 2) = 20,(x, y) + 20, (x, y) ,
V(x, y, 2) = 26,(x, y) + 2°0, (%, y) , (1)
W(x, y, z) = w(x, y) + zzw*(x, y),

in which the various terms have the usual meaning except the terms 6 *,0 : , and w* which are
the corresponding higher-order terms in the Taylor-series expansion and are defined at the
reference plane in the present theory [15, 16].

By substitution of these relations into the strain-displacement equations of the classical
theory of elasticity [1] the following relationships are obtained:

_ 3% —_ 3pr* =
e,=2z2K +2K, , e, =2K +2K, , e,=2zK,,

)

* 2 *

*
Yoy = Zny + Z3ny ’ Y =@t ZZ‘P)’ ’ Y =0T Z0x
in which

[K..K,, K, ]' =[6,/0x, 86,/3y, 3,/ 3y + 86,/9x]',
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[K: s K: s K:y, K]= [a():/ax, ao;"/ay, 80:/ay + 30:/61:, 2w
(2a)
[‘an (Py]t = [aW/ax + ox, aw/ay + oy]! ,

[ex ‘P;':]t =[ow*/ax + 30, aw*/ay + 30;]' .

The stress-strain relationship for the /th layer (lamina) of the composite laminate has the
following form:

(0, [Qu Qi Q15 G O 0 (&, )

gy Qp Qn Qn Q0 0 0 &

1%\ _ Qi Qi Qxn Qs 0 0 { £, \ (3)
Tey Ou Qu Qi Q4 0 0 Yay | ©

Tyz 0 0 0 0 Qss Oss|| %-

(Txz) L0 0 0 0 Qse Q66_  Yaz)

This may be wr¥ten in a compact form as
o= Qe, (3a)

where o and € are stress and strain vectors, respectively, with reference to plate axes (x, y, 2)
(see Fig. 1). The stiffness matrix O with reference to plate axes is obtained frem the stiffness
matrix C with reference to fibre axes (1-2-3) by using the coordinate transformation matrix 7'
from the relation,

Q=1ICT". 4)

The elements of matrices C, Q, and T are defined in Appendices A, B, and C, respectively.

T
155

Fig. 1. Geometry of a four-layer symmetric laminate.



177

Integration through thickness of (3) with strain terms given by (2) gives the plate
constitutive relations. The constitutive relations involving bending moments are given by

M=DK, (5)
in which
_ * ® *
M_(Mx’ My’ xy? Mx’My’Mxy’ Mz)t’
* * *
K= (Kx’ Ky’ xy? Kx b4 Ky ’ ny’ I<z)t ’
PQllHl Q12Hl Q14Hl Q11H2 QIZHZ Q14H2 Q13Hl- {:til;er
Q22Hl Q24Hl Q12H2 Q22H2 Q24H2 Q23H1
n Q44Hl Q14H2 Q24H2 Q44H2 Q34H1
D, = gl 0.H, 0,H, Q,H, 0,H, s (5a)
Q22H3 Q24H3 Q23H2
. Q44H3 Q34H2
| Symmetric 0,:H,_
where
n = No. of layers in 2 laminate ,
s s (5b)
Hl = %(hl - h1+1 ’ Hz = %(hf - hfn ’ H3 = %(h:’ - h;’+1 .
The elements of the moment vector M are defined as follows:
%*
M, M, P
* n hy x 3
M, M;|=> 9% |[z,z°]dz, (5¢)
* 1=1 141 Ty
M, M,
n hy
M=>| oZdz. (5d)
1=1 Jhy+1
The constitutive relations involving shear forces are given by
0=De, (6)
where
0=(0..0,,05,.0)), ¢=(.9,9¢::9,)
[0 Gl Qo Q]
= 55 setl1 sstly 6a
D, El OsH, QsH, ’ (62)

Symmetric Q,;H,
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in which H = (h, — h,,,) and H,, H, are already defined. The components of the shear force
vector 0 are defined as follows:

& %)-3 L [z ree

3. Finite element discretization

We follow the standard finite element discretization procedure in which the total solution
domain 0 is subdivided into ‘ME’ subdomains (elements) {2,, {2,, ..., O such that

(d) = 21 ‘@), @)

where IT and II° are the total potential of the system and the element, respectively. We
further express

(d)=U°-W°*, (8)

in which U° and W° are the internal strain energy and the external work done expressions,

respectively, and d is the vector of dependent displacement variables in the problem and is
defined in the present case as:

d=(w,6,,0,w*,0,,0,). 9)

In the C° finite element theory the continuum displacement vector within the element is
discretized such that

d= gl N(x, y)d, , (10)

in which the term N/(x, y) is the interpolating (shape or basis) function associated with node i,
d, is the value of d corresponding to node i, and ‘NE’ is the number of nodes in the element.
Equation (10) ensures that the approximate d is not only continuous within the element but
over the entire domain since the same value of d is used for all the elements at the common
nodes. Thus C° formulation makes the relation (7) a true one.

In the present analyses the nine-noded quadrilateral from the Lagrangian family of
two-dimensional C° continuous isoparametric elements with six degrees of freedom per node
as per (9) is developed. With the generalized displacement vector d known at all points within
the element as per (10), the generalized strain vector £ at any point is expressed as follows:
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where

The elasticity matrix D is obtained by combining (5) and (6) as follows:

(=1

-
it
-

L]
i
Me
(=}

9
é=2 Bd,,
i=1

é=(K.K,K,.K,,K,,K

p=[2:

0D,

].

N,

—t 0
P
ay
dy odx
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0 0
0 0
0 0
N, 0
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0 0

xy?
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(11a)

(11b)

(11¢)

(12)

Upon evaluating the matrices D and B as given by (11) and (12), respectively, the element

stiffness matrix can be readily computed using the standard relation,

+1 p+1
K= f_l L B:DB|J|d¢ dy .

(13)

The computation of element stiffness matrix is economized by explicit multiplication of the
matrices B;, D, and B; instead of carrying out the full matrix multiplication of the triple
product and due to symmetry of the stiffness matrix, only the blocks K, lying on one side of
the main diagonal are formed [25].
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The consistent load vector P due to distributed load p can be written as:

+1 pe+1
P= f_l L N'p|J|dédn. (14)
The total potential energy II for the present theory [16] is given by
m=4[ #5aa-| (pr+pi)w+ thiw)da, (15)

where p; and p, are the transverse distributed loads on the positive and negative extreme
z-planes, respectively, and h is the total thickness of the plate. The generalized stress
component vector @ is given by ‘

- * * T ok * %
0' = (Mxv My, Mxy, Mx 2 My b Mxy9 Mz’ Qx’ Qy, Qx 9 Qy )t . (16)

Equation (14) for consistent load vector takes the following form suitable for numerical
integration when transformed in the context of the energy expression (15) for the present
theory:

g g
P=2 X W,WJINS:,21(p; +p;), (17)

1
a=1b=1 4

L 0 )

OO O =

where W, and W, are weighting coefficients, g is the number of numerical quadrature points in
each direction and J is the standard Jacobian matrix.

The consistent load vector for a sinusoidal transverse load acting on top surface of the plate
is obtained by the following substitution in (17):

sin n—? , (18a)

+ .. mmx
p z = p mn Sln
p. =0, (18b)
where a and b are the plate dimensions, x and y are the Gauss point coordinates, and m and n

are the usual harmonic numbers.

4. Numerical examples

A computer program incorporating the present higher-order theory is developed for the
analysis of a symmetrically laminated composite plate. All the computations on the present
theory are supported by Mindlin’s theory [26]. In all the numerical examples, except for the
convergence study, a quarter plate is discretized with four of the nine-noded Lagrangian
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quadrilateral elements. The selective integration scheme based on Gauss-Legendre product
rules, namely 3X3 and 2 X2, has been employed for flexural and shear contributions,
respectively, for the computation of the element stiffness matrix. Mindlin’s theory computa-
tions are with a shear correction factor of 2. For the present higher-order as well as Mindlin’s
theory, single values presented for transverse shear stresses represent the one obtained from
equilibrium equations. To study the difference in shear stresses obtained from equilibri:im
equations and the constitutive relation, both the values are presented for few examples. The
values given within parentheses refer to those obtained using the plate constitutive relations.
The boundary conditions for different types of supports considered in the present study with
the higher-order theory are as follows:

Simply supported (SS): w=6,=w*=0, =0; : (19a)
Just supported (JS): w=w*=0; (19b)
Clamped (CL): w=6=0=w*=0 =7, =0, (19¢)

Similar boundary conditions for Mindlin theory are obtained by omitting the higher-ordcr
displacement terms with asterisks.

The deflections and stresses presented are nondimensionalized with the help of the
following multiplying factors for uniform pressure (p,) or sinusoidal transverse load (p,):

100+°E 2
m, = . m2=L5, m3=_h"‘- (20)
Pod Po@ Pod

Multiplying factors for central point load (P) can be obtained by replacing po.a’ by P.
The material properties considered for all the numerical examples are:

E,_E_ G _Cu_ G

G2 _
E-E Z " E, 0.5, 0.2,

25, E,

(21)

v, = =13=025.

Unless otherwise specified within the table(s) the locations (i.e. x-, y-, and z-coordinates)
for critical values of displacements and stresses for the present evaluations are as follows:

Transverse displacement (w): (0.5a,0.5a4,0) ; (22a)
In-plane normal stress (o,): (0.4718a,0.4718a, 3h) ; (22b)
In-plane normal stress (o,): (0.4718a, 0.4718a, top/bottom interface) ; (22¢)
In-plane shear stress (7,,):  (0.02824,0.0282a, 3h); (22d)
Transverse shear stress (7,,): (0.0528a,0.44724,0) ; (22¢)

Transverse shear stress (7,,): (0.4472a,0.0528a, 0); (22f)
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The locations for critical values of stresses for elasticity and closed-form solutions presented
for comparisons are at the nearest nodal points.
The various examples considered are as follows.

EXAMPLE 4.1. A simply supported square laminated cross-ply plate (0°/90°/90°/0°) made
up of four equally thick laminas subjected to a sinusoidal transverse load is considered for
convergence study. The numerical results are presented and compared in Tables 1 and 2 for
side-to-thickness ratios (a/h) of 10 and 100, respectively. The convergence of centre deflec-
tions is shown graphically in Fig. 2. It is clear from this figure that the 2 X 2 mesh in a quarter
plate gives sufficiently accurate prediction of displacements and hence the stresses. It is
advised to use refined mesh for better transverse shear stress predictions.

Table 1
Convergence of deflections and stresses in a simply supported four layer cross-ply (0°/90°/90°/0°) square laminate
under sinusoidal transverse load (b, = }h, i=1,...,4 and a/h =10)

Mesh size

in quarter
Source plate wXm, o.,Xm, g,Xm, T,Xm, T,Xm; 71,,Xm,
Present higher-order theory 1x1 0.72402 0.5701 0.3944  0.02705 (8%8‘3) (g};‘gg)

(0.2756)  (0.1552)
2x2 0.7185  0.5676  0.3948  0.02728 "\ 5=gy 0.1715

(0.2803)  (0.1578)
3x3 071809 0.5635 03924  0.02725 oeer 01834

(0.2818) (0.1587)
4x4 0.71801 0.5619 0.3914  0.02723 0.2956 0.1877

Higher-order shear deformation - 0.7147  0.5456 0.3888  0.02680 0.2640 0.1531
theory [22]
3D elasticity [24] - 0.7370  0.5590 0.4010 0.02750 0.3010  0.1960
Table 2
Convergence of deflections and stresses in a simply supported four layer cross-ply (0°/90°/90°/0°) square laminate
under sinusoidal transverse load (h, = }h, i=1,...,4 and a/h = 100)
Mesh size
in quarter
Source plate wxm, o,Xm, o,Xm, 1,Xm, T,Xm; 7,Xm;
. 0.2710 0.09922
Present higher-order theory 1x1 0.43659 0.5411 0.2718 0.02148 (0‘2045) (0.08562)
(0.3046)
2%x2 0.43&?114)0.5442 0.2734  0.02154 "G 3554 0.1240

(0.3109) (0.1136)
3x3 043443 05418 02723 0.02144 03 01391

(0.3130) (0.1144)
4x4 0.43439  0.5406 0.2717 0.02140 0.3288 0.1350

Higher-order shear deformation - 0.4343  0.5387 0.2708 0.02130 0.2897 0.1117
theory [22]

3D elasticity [24] - 0.4347  0.5390 0.2710 0.02140 0.3390 0.1390
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Fig. 2. Convergence of centre deflection (w X m,) with the mesh refinement for a four equal layer cross-ply
(0°/90°/90°/0°) square laminate under sinusoidal transverse load.

EXAMPLE 4.2. To validate the present higher-order theory and Mindlin’s theory through
comparisons with three-dimensional elasticity solution and closed-form solutions of various
plate theories, a simply supported square laminated cross-ply plate (0°/90°/90°/0°) made up of
four equally thick laminas subjected to a sinusoidal transverse load is considered. The
numerical results are presented in Table 3 for thin to moderately thick plates. This compara-
tive study proves the accuracy of the present higher-order theory to predict the displacements
as well as the stresses. The central transverse deflection variation with the aspect ratio (alh) is
presented in Fig. 3. The variation of in-plane normal stress in the fibre direction (o) with the
aspect ratios for the present higher-order and Mindlin’s theory is presented in Fig. 4.
Similarly, the results for a simply supported square laminated cross-ply plate (0°/90°/0°) made
up of three equally thick laminas subjected to uniform pressure and a central point load are
presented in Tables 4 and 5, respectively. The variation of central transverse deflection and
in-plane normal stress (o) in fibre direction with the aspect ratios is presented in Figs. 5 and
6, respectively, for the uniform pressure loading. Similar results for the central point load are
also presented in Figs. 7 and 8.
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Table 3 . . .
Deflections and stresses in a simply supported four layer cross-ply (0°/90°/90°/0°) square laminate under sinusoidal

transverse load (b, = 3h, i=1,...,4)

Source alh wxm, oXm, o,Xm, T,Xm, T ,Xm; T, Xm,

0.2062)  (0.2393)
Present higher-order theory 4 1.8744 0.7163 0.6250 0.04537 (0.2023) (0.2610

0.1132)  (0.1590)
Mindlin theory 1.7054 0.4121 0.5829 0.03084 (0.2389 0.2473
3D elasticity [24] 1.9368 0.7200 0.6630 0.04670 0.2190 0.2920
Higher-order shear deformation 1.8937 0.6651 0.6322  0.04400 0.2064 0.2389
theory [22]
First-order shear deformation 1.7100 0.4059 0.5765 0.03080 0.1398 0.1963
theory [22]

0.2756 0.1552
Present higher-order theory 10 0.7i85 0.5676 0.3948 0.02728 (0.2702) (0_1715)

0.1348 0.1047
Mindlin theory 0.6613 0.5063 0.3653 0.02415 (0.2819) (0.1600)
3D elasticity 0.7370 0.5590 0.4010 0.02750 0.3010 0.1960
Higher-order shear deformation 0.7147 0.5456 0.3888 0.02680 0.2640 0.1531
theory
First-order shear deformation 0.6628 0.4989 0.3615 0.02410 0.1667 0.1292
theory

0.3046 0.1114
Present higher-order theory 100  0.4346 0.5442 0.2734 0.02154 (0_301 4) (0_1240)

0.1444 0.0836
Mindlin theory 0.4322 0.5416 0.2704 0.02135 (0.2921) (0.1231)'
3D elasticity 0.4347 0.5390 0.2710 0.02140 0.3390 0.1390
Higher-order shear deformation 0.4343 0.5387 0.2708 0.02130 0.2897 0.1117
theory
First-order shear deformation 0.4337 0.5382 0.2705 0.02130 0.1780 0.1009
theory

EXAMPLE 4.3. A simply supported seven-layer cross-ply square plate (0°/90°/0°/90°/0°/
90°/0°) subjected to a sinusoidal transverse load is considered first. The results obtained are
compared with the three-dimensional elasticity solutions in Table 6. In addition, new results
with just supported and clamped boundary conditions are presented in Tables 7 and 8,

respectively. In this example, the total thickness of zero-degree layers and the ninety-degree
layers is the same.

EXAMPLE 4.4. Just supported and clamped boundary conditions often occur in many
practical situations. Similarly, uniform pressure and central point load are commonly occur-
ring loading cases. Numerical results involving these boundary conditions and loading cases
are not available in the literature. With a view to providing numerical results for future
_references a square laminated cross-ply plate (0°/90°/0°) made up of three equally thick layers
is considered. The results for a just supported (JS) plate under transverse sinusoidal, uniform
pressure, and central point loads are presented in Tables 9, 10, and 11, respectively. Similar
results for a clamped plate are presented in Tables 12, 13, and 14.
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Fig. 3. Effect of plate side-to-thickness ratio (a/h) on the centre deflections (w X m,) of a simply supported
[0°/90°/90°/0°] cross-ply square laminate under sinusoidal transverse load.
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Fig. 4. Effect of plate side-to-thickness ratio (a/h) on the in-plane normal stress (o, X m,) in a simply supported
[0°/90°/90°/0°] cross-ply square laminate under sinusoidal transverse load.
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Table 4
Deflections and stresses in a simply supported three layer cross-ply (0°/90°/0°) square laminate under uniform

pressure (h, = 1h,i=1,...,3)

Source alh  wxm, o,xm, o,Xm, T,Xm, T.,Xm, 71,.Xm,
Present higher-order theory 4  2.8765 1.1094 0.7244 0.09463  0.4113 0.3345
Mindlin theory 2.6559 0.6650 0.6625 0.06956  0.4798 0.3030
Higher-order shear deformation 2.9091 - - - - -
theory [22]
First-order shear deformation 2.6596 - - - - -
theory [22]
Present higher-order theory 10  1.0968 0.8739 0.3945°  0.05499  0.5202 0.1972
Mindlin theory 1.0211 0.7851 0.3844"  0.04804  0.5367 0.1850
Higher-order shear defcimation 1.0900 - - - - -
theory
First-order shear deformation 1.0219 - - - - -
theory
Present higher-order theory 100  0.6713 0.8191 0.3134*  0.04137  0.5552 0.1477
Mindlin theory 0.6701 0.8190 0.2923*  0.03967  0.5648 0.1480
Higher-order shear deformation 0.6705 - - - - -
theory
First-order shear deformation 0.6697 - - - - -
theory

* Maximum value occurs at (0.4718a, 0.2218a, Lh).
Table 5
Deflections and stresses in a simply supported three layer cross-ply (0°/90°/0°) square laminate under central point
load (h, = 3h, i=1,...,3); locations for maximum values of shear stresses are as follows: °: (0.2782a, 0.2782a,

3h); °: (0.0282a, 0.2218a, 3h); *: (0.0282a, 0.2782a, 1h); °: (0.3028a, 0.4472a, 0.0); *: (0.4472a, 0.3028a, 0.0)
°: (0.0282a, 0.2218a, 3h); “: (0.0282a, 0.2782a, 1h); °: (0.3028a, 0.4472a, 0.0); *: (0.4472a, 0.3028a, 0.0)

Present higher-order theorv 4  21.7089 6.1631 4.2306 0.1806° 1.9165°  2.4840"
Mindling theory 15.6905 2.8150  4.3819 0.1103 1.9815°  2.4830°
Present higher-order theory 10 5.3434 4.8390  3.1400 0.1015°  1.7950°  2.1420°
Mindlin theory 4.3989 3.2290  3.1890 0.08237°  2.1210°  2.2150'
Present higher-order theory 100 2.1593 3.6320 2.4510 0.08081°  2.3550° 1.8890"
Mindlin theory 21177  3.5010  2.3840 0.07795¢  2.490° 1.8760"
Table 6

Deflections and stresses in a simply supported seven layer cross-ply (0°/90°/0°/90°/0°/90°/0°) square laminate
under sinusoidal transverse load (h, = }h, hy, = 1h)

Present higher-order theory 4 1.5334 0.6275 0.5530 0.03212 0.1944 0.1995
Mindlin theory 1.5341 83_6’% 828% 88%%%(8} 0.2093  0.2220
3D elasticity [24] 1.7906  _ 0: 6450 _ 0: 6100 0:03 470 0.2190  0.2360
Present higher-order theory 10  0.6159 0.5494 0.4482 0.02324 0.2277  0.1915
Mindlin theory 0.6114 0.5159 0.4457 0.02162 0.2292  0.1972
3D elasticity [24] 0.6594 0.5480 0.4570 0.02370 0.255 0.219

Present higher-order theory 100  0.4332 0.5439 0.4084 0.02149 0.2412  0.1831
Mindlin theory 0.4315 0.5412 0.4060 0.02136 0.2413  0.1823
3D elasticity [24] 0.4334 0.5390 0.4050 0.02130 0.2720  0.2050

Classical plate theory [24] - 0.4331 0.5390 0.4040 0.02130 0.2720 0.2050
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[0°/90°/0°] cross-ply square laminate under uniform pressure.
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Table 7

Deflections and stresses in a just supported seven layer cross-ply (0°/90°/0°/90°/0°/90°/0°) square laminate under
sinusoidal transverse load (k, = 3k, hy, = }h); locations for maximum values of shear stresses are as follows:
®: (0.2218a, 0.2218a, 1h); °: (0.2218a, 0.125a, 3k); *: (0.19724, 0.4472a, 0.0); °: (0.4472a, 0.19724, 0.0)
Source alh

wXxXm, g.Xm, o,Xm, Ty XM, Tz XMy T, X M,
Present higher-order theory 4 15421 0.6475 0.5677 0.02622° 0.2021 0.2073
Mindlin theory 1.5495 0.4824  0.5241 0.01669° 0.2266 0.2279
Present higher-order theory 10  0.6196 0.5623 0.4562 0.0209" 0.2264° 0.1906°
Mindlin theory 0.6188  0.5255  0.4531  0.01923°  0.2286°  0.1949°
Pr.eseqt higher-order theory 100 0.4354  0.5595 0.4207 0.01901° 0.2343° 0.1738°
Mindlin theory 0.4343  (0.5581 0.4192 0.01873° 0.2324° 0.1713¢
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Fig. 8. Effect of plate side-to-thickness ratio (a/h) on the in-plane normal stress (o, X m,) in a simply supported
[0°/90°/0°] cross-ply square laminate under central point load.

Table 8

Deflections and stresses in a clamped seven layer cross-ply (0°/90°/0°/90°/0°/90°/0°) square laminate under
sinusoidal transverse load (k, = §h, hy, = 4h); locations for maximum values of stresses are as follows: °: (0.0282a,
0.4718a, 1h); ©: (0.4718a, 0.0282a, 5k); *: (0.125a, 0.125a, 1 h); : (0.125a, 0.2218a, 1h); ': (0.2218a, 0.22184, 1h);
£: (0.1972a, 0.4472a, 3 h); *: (0.1972a, 0.4472a, 0.0); ": (0.4472a, 0.0528a, h); *: (0.4472a, 0.1972a, 0.0)

Source ¢lh  wxm, a,xm, o,xXmy T,Xm, T,Xm; 7T,Xm,
Present higher-order theory 4 11636 05126  0.5108  0.01099’ 0.1976° 0.1822°
Mindlin theory 1.1978 0.2488 0.3193  0.004184° 0.1997 0.2407°
Present higher-order theory 10 02893 03721 03367 0.005676"  0.1923 0.2000
Mindlin theory 02859 02766  0.2942  0.004375'  0.2215° 0.2312°
Present higher-order theory 100 0.1097 0.3379 02610  0.005663°  0.2697 0.2122
Mindlin theory 0.1067  0.3297  0.2575  0.004622° 02723  0.2189°
Table 9

Deflections and stresses in a just supported three layer cross-ply (0°/90°/0°) square laminate under sinusoidal
transverse load (h, = 3h,i=1,...,3); locations for maximum values of shear stresses are as follows: ®: (0.2218a,
0.2218a, 1h); ©: (0.2218a, 0.125a, 1h); °: (0.1972a, C.4472a, 0.0); °: (0.4472a, 0.19724, 0.0)

Source alh wxm, o Xm, @,Xm, T,Xm, T,Xmy T, Xm,
Present higher-order theory 4 19359 0.8113 05179  0.03906°  0.2683 0.1900
Mindlin theory 1.8157 0.4693  0.4986  0.02710°  0.3195 0.1744
Present higher-order theory 10 07229 0.6078  0.2754  0.02528°  0.3270°  0.1004°
Mindlin theory 0.6773 05316  0.2588  0.02247°  0.3386°  0.09211°
Present higher-order theory 100 04362 05604 0.1871  0.01918°  0.3442°  0.06125°

Mindlin theory 0.4345 0.5590  0.1858  0.01915°  0.3418°  0.05914°
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Table 10

Deflections and stresses in a just supported three layer cross-ply (0°/90°/0°) squareblaminate under uniform
pressure (h, = 1h,i=1,...,3); locations for maximum values of stresses are as follows: ": (0.4718a, 0.2218a, ¢ /);
°; (0.2218a, 0.2218a, 3h); °: (0.22184, 0.0282a, 1h); °: (0.1972a, 0.4472a, 0.0); *: (0.4472a, 0.1972a, 0.0)

Source alh wxm, oxXm, o,Xm, T,Xm, T,.Xm, T, Xm,
Present higher-order theory 4 29449 1.1681 0.7563 0.05954° 0.4440 0.3420

Mindlin theory 27325  0.7063  0.7194°  0.04084°  0.5120 0.3045

Present higher-order theory 10 1.1094 0.9013 0.4296°  0.03886°  0.5220 0.1859"
Mindlin theory 1.0375 0.8026  0.4161°  0.03435°  0.5392°  0.1717°
Present higher-order theory 100 0.6741  0.8480  0.3192°  0.03269°  0.5429°  0.1260"
Mindlin theory 0.6741  0.8519  0.3096°  0.03236°  0.5494°  0.1179"

Table 11

Deflections and stresses in a just supported three layer cross-ply (0°/90°/0°) square laminate under central point
load (h,= 3h,i=1,...,3); locations for maximum values for shear stresses are as follows: °: (0.2782a, 0.2782a,
5h); °: (0.2218a, 0.2218a, 3h); °: (0.2218a, 0.2782a, }h); °: (0.125a, 0.2218a, 3h); *: (0.3028¢, 0.4472a, 0.0); ®:
(0.4472a, 0.3028a, 0.0); %: (0.4472a, 0.44724, 0.0)

Source alh  wxm, o,Xm, @,xm, 1,Xm, 71.,xXm' 71_%Xm,
Present higher-order theory 4 21.9053 6.1825 4.2856  0.1748° 1.9268 2.4693¢
Mindlin theory 15.8403  2.9106 4.4363  0.1093° 1.9773 2.4690°
Present higher-order theory 10 54185 4.782 3.145 0.1123¢ 1.7960 2.1210®
Mindlin theory 44306  3.264 3.202 0.0899° 2.1090 2.2058
Present higher-order theory 100 21755  3.602 2.467 0.08714° 2.3260 1.857¢
Mindlin theory 2.1260  3.538 2.429 0.07811° 2.3080 1.8499

Table 12

Deflections and stresses in a clamped three layer cross-ply (0°/90°/ 0°) square laminate under sinusoidal transverse
load (h,= }h,i=1,.. ., 3); locations for maximum values of stresses are as follows:

(0.4718a, 0.0282a, 1h); °: (0.125a, 0.22184, 1h); °: (0.0282a, 0.2218a, Lk); °
0.125a, 3h); %: (€.1972a, 0.4472a, Lh); *

®: (0.0282a, 0.4718a, 1 h); ©:
: (0.2218a, 0.2218a, 1h); &: (0.2218a,
: (0.0528a, 0.4472a, 3 h); °: (0.1972a, 0.4472a, 0.0); *: (0.44724, 0.1972a,

0.0)
Source alh wxm, o xm’ e,xm’ T,xXm, 1,%xm, T,. X m,
Pr_eset!t higher-order theory 4 13146 0.6900 0.3754 0.01649¢ 0.1497° 0.2379
Mindlin theory 1.3376 0.2113 0.4735 0.01151° 0.2660 0.2853"
Pr-eseqt higher-order theory 10  0.3752 0.4909 0.2932 0.00918" 0.2622" 0.1877
Mindlin theory 0.3452 0.2784 0.2859 0.00704¢ 0.3325 0.1833"
Pr;ser}t higher-order theory 100  0.1081 0.3292 0.1352 0.00572" 0.3815 0.1007
Mindlin theory 0.1054 0.3162 0.1390 0.00478¢ 0.3760° 0.1123'
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Table 13

Deflections and stresses in a clamped three layer cross-ply (0°/90°/0°) square laminate under uniform pressure
(h,=13h, i=1,...,3); locations for maximum values of stresses are as follows: ®: (0.0282a, 0.4718a, 1h); ©:
{0.47184a, 0.02824, 1h); °: (0.02824a, 0.2218a, 3h); *: (0.125a, 0.125a, 1h); *: (0.2218a, 0.2218a, L h); &: (0.2218a,
0.125a, Lh); %: (0.0528a, 0.4472a, 1h); *: (0.1972a, 0.4472a, 0.0); °: (0.4472a, 0.1972a, 0.0)

Source alh wxm, o,Xxm’ o,xXm’ T,Xm, T,Xmy 71, Xm,
Present higher-order theory 4 1.8891 1.0306 0.5593 0.02523°  0.2374° 0.4013
Mindlin theory 1.9203 0.3106 0.7175 0.01765°  0.4150 0.4835°
Present higher-order theory 10 0.5247 0.7282 0.4596 0.01330°  0.3932° 0.3416
Mindlin theory 0.4829 0.3996 0.4600 0.00992°  0.5031 0.3431°
Present higher-order theory 100  0.1421 0.4537 0.2498 0.00799°  0.5516 0.2282
Mindlin theory 0.1388 0.4365 0.2548 0.00801®  0.5441° 0.2413°
Table 14

Deflections and stresses in a clamped three layer cross-ply (0°/90°/0°) square laminate under central point load
(h,=13h,i=1,...,3); locations for maximum values of shear stresses are as follows: °: (0.4718a, 0.375a, 1h); :
(0.2782a, 0.375a, 1h); : (0.375a, 0.375a, 1h); ©: (0.3028a, 0.4472a, 0.0); *: (0.4472a, 0.3028a, 0.0)

Source alh wxm, o,xm, o,Xm, T,Xm, T,Xmy T, Xm,
Present higher-order theory 4 19.5659 4.7988 3.4450 0.1628° 1.8290 2.5800
Mindlin theory 14.1203 1.6288  3.8025  0.08356° 1.9338 2.5950
Present higher-order theory 10 4.0740 3.5990 2.7470  0.09399° 1.8040 2.1340
Mindlin theory 3.1840 1.9480  2.7830  0.06656° 2.1550 2.1750
Present higher-order theory 100 0.8478 2.4280 1.7220  0.05089° 2.5030 1.6370
Mindlin theory 0.8186  2.2980 1.7100  0.05495° 2.4370 1.6800
Table 15

Effect of bidirectional layer thickness ratios (h,/h,,) on deflection and stresses in a simply supported square
laminate (0°/90°/90°/0°) under sinusoidal transverse load (a/h = 10)

h
0
Source L. wxm o, Xm, o,Xm, T,Xm, T,Xm; T,Xm,
90

0.6220 0.5251 0.4885 0.02284 0.1498 0.2758
0.6940 0.5427  0.4415 0.02588 0.2314 . 0.2108
0.7185 0.5676  0.3948 0.02728 0.2702 0.1715
0.7232 0.5859  0.3271 0.02799 0.3050 0.1303
0.7157 0.5917  0.2735 0.02803 0.3248 0.1048
0.6850 0.5902  0.1587 0.02735 - 0.3542 0.06527

0.7370 0.5590  0.4010 0.02750 0.3010 0.1960
- 0.5900  0.2880 0.02890 0.3570 0.1228

0.7125 0.5684 - - - 0.1033
0.7147 0.5456  0.3888 0.02680 0.2640 0.1531

Present higher-order theory

3D elasticity [24]

Higher-order shear deformation
theory [22]

N = DN = B DN NI e N S
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Fig. 9. Effect of bidirectional layer thickness ratio (h,/hy,) on the Centre deflections (wX m,) in a simply
supported [0°/90°/90°/0°] cross-ply square laminate under sinusoidal transverse load.
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Fig. 10. Effect of bidirectional layer thickness ratio (#o/hgq) on the in-plane normal stress (o, X m,) in a simply
supported [0°/90°/90°/0] cross-ply square laminate under sinusoidal transverse load.
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Fig. 12. Effect of bidirectional layer thickness ratio (k,/h,,) on the in-plane shear stress (r,, X m,) in a simply
supported [0°/90°/90°/0°] cross-ply square laminate under sinusoidal transverse load.
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Fig. 13. Effect of bidirectional layer thickness ratio (/,//,,) on the transverse shear stress (r,, X m,) in a simply
supported [0°/90°/90°/0°] cross-ply square laminate under sinusoidal transverse load.
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Fig. 14. Effect of bidirectional layer thickness ratio (ho’hg,) on the transverse shear stress (7,, X m,) in a simply
supported [0°/90°/90°/0°] cross-ply square laminate under sinusoidal transverse load.
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EXAMPLE 4.5. This example is selected to bring-out the effect of bidirectional layer
thickness ratios (k,/hy,) on the response of a simply supported four-layer cross-ply (0°/90°/
90°/0°) square plate under sinusoidal transverse load. The numerical results are presented in
Table 15 for a plate with aspect ratio of 10. The variations of centre deflection (w), in-plane
normal and shear stresses (o,,0,,7,,), and transverse shear stresses (7,,,7,,) with the
bidirectional layer thickness ratios are presented in Figs. 9-14, respectively.

5. Conclusions

A refined higher-order theory and Mindlin’s theory are used for flexural analysis of
symmetrically laminated square composite plates. A C° continuous finite element model of the
present higher-order theory is developed and validated by comparisons with the available
three-dimensional elasticity and the closed-form plate solutions. It is reasonably clear from the
convergence study that a two by two mesh with 9-noded Lagrangian quadrilaterals in a quarter
plate gives sufficiently accurate predictions of displacement and stresses for all practical
purposes. Numerical results are presented for various commonly used boundary conditions
and loading cases, some of which should serve as benchmarks for future investigators. The
result of Example 4.5 may be of importance to the designers in the field of laminated
composite constructions. The effects of neglecting shear deformation (as in classical lamina-
tion theory) and considering constant shear deformation (as in classical first-order shear
deformation Mindlin—~Reissner theories) on the response of laminated composite plates are
investigated for thin to moderately thick plates. In contrast to the classical shear deformation
theories, the present higher-order theory does not require shear correction coefficient due to
more realistic representation of the cross-sectional deformation. In addition, the present
theory includes the effect of direct normal stress in the thickness direction (o,) which is,
though negligible, very important to study the delamination mode of failure in laminated
composites. The basic foundations of this theory for the laminated anistropic composite plates,
the resulting C° finite element formulation, and most of the numerical results are being
presented for the first time.

Appendix A. Elements of matrix [C]
_E(1-, Vy3)

_ E (v, + v373,) _

Cu - A ’ Clz - A - C21 ’
Cy Es("ls';”u V33) =C,, Cp= E(1 _A”31 3) ’

+ E;(1-
Cyy = Ey(vy3 3 Y13 Vy) =C,, Cyu= 5( A”n”zl) ,

o

4= Gy, Css =Gy, Cs= G35
where

A=(1— vy — Vot — Vials — VieVna¥Va1 — Vi3V V1) 5
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E, E, _E

Vy, = = Vi Vi, = 7+ V.
21 12 » 32 23
El EZ

Appendix B. Elements of matn:ix [Q]

" Q,,=C,,C* +2(C,, +2C, ) C’S* + C,,S*,
0,,=(Cyy + Cp —4C,)C’S* + Cy(S* + CH =0, ,
Q,,=C,C*+ C,;8*= 0y,
0,,=(C,, — C,, +2C,)C’S — (C,, — C,, +2C,)S°C=Q,,,
Qi5=0,=0=05,= Q¢ >
Q,,=C,,S* +2(Cp, + 2'c4,,)s202 + C,C*,
Q,,=CpyS* + Cp,C? =0, ,
0,,=(C;, = Cy; +2C,,)S’C—(Cpp, — Cp +2C,)SC* = Q,, ,
Q25 = Qy=0= 05, = Q¢y »
Os3= Cy3,
03, =(C5, = C4)5C= Q43
Q35=03=0=053= 0,
Q.,=(C,, + C,, —2C,, —2C,,)§*C* + C,,(C* + §),
Q4= 04s=0=05,= Qg4 »
Q,s=C,,C*+ C,S”,
Q56 ={Css — Cg6)CS = Qs »

Q66 = CSSSZ + C66C2 .

Appendix C

lTl}e stresses/strains expressed in the fibre and the plate axes are related by the following
relation:

o, =To,, &, =T¢g,
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in which

o,=(0,,0,,0,,7,,7,,7,)

x x2 Fy? ¥z Txy? ‘yz9 Ixz) o

=( v
0, =(0y, 05, 03, T135 T3, T13) 5

— 1
£ = (Sx, €ys €25 Yays Vyz» yxz) ’

— t
&, = (&1, &, &35 V12> V23> Vi3) >

c® s> 0 25¢ 0 O
§2 ¢ 0 -25¢ 0 0O
r=| 0 0 1 0 0 0
= |-SCc sc 0 Cc*-5>0 oY)
0 0 0 0 C -S
. 0 0 o0 o s C]

where C=cosf, S=sin 0, and 0 = fibre orientation with respect to X-axis (anticlockwise
positive).
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