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SPACES EVERY QUOTIENT OF WHICH IS METRIZABLE
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(Communicated by Dennis Burke)

ABSTRACT. We characterise those topological spaces for which every quo-

tient image is metrizable. This supplements the earlier known results in this

direction, in a fairly complete manner.

0. Introduction. Metrizability of quotients of metric spaces has been studied

by many mathematicians [1, 2, 6, 7]. In an elementary course in general topology

we learn that every continuous image in Hausdorff space of a compact metric space

is metrizable [8]. In [7], Willard proved that every closed continuous image of a

metric space X in Hausdorff space is metrizable if and only if the set of all limit

points of X is compact. We consider the following problem. What are all topological

spaces every Hausdorff quotient space of which is metrizable? To our surprise, the

condition on the space turns out to be the same as that of Willard. We prove

that every quotient of a metric space X in Hausdorff spaces is metrizable if and

only if the set of all limit points of X is compact. In the process we give plenty of

equivalent conditions for this.

1. The main theorem. We first fix some notation and terminology. Let X

be a topological space. The set of all limit points of X is denoted by X1. By the

term map we always mean a continuous map. Let Y be any other topological space

and /: X —■> Y be any map onto Y. We say that / is compact-to-one (respectively

finite-to-one, n-to-one) if f~x(y) is a compact (respectively a finite, having at most

n points) subset of X for all points y in Y, and in these cases Y is called a compact-

to-one (respectively finite-to-one, n-to-one) image of X. For / : X —* Y and A C X,

we say that A is saturated with respect to /, if /_1(/(a)) C A for all a in A. All

spaces considered in this article are assumed to be Hausdorff spaces and all maps are

assumed to be continuous from Hausdorff spaces to Hausdorff spaces. A quotient

space which is also a Hausdorff space is called a Hausdorff quotient space or simply

a Hausdorff quotient, oj denotes the first infinite ordinal number and N denotes

the set of all natural numbers.

EXAMPLE. We now see a simple example of a metric space which has a non-

metrizable quotient. Let A = {0,1, \, \,... }. Define X = Nu{0}x/lcR2 and

Y = {(x, y) € A x A : x = 0 implies y = 0}. Define a map q : X —► Y as follows:

' (l/n,0) if z is (0,1/n) or (n,0),

l(X) =  {    (l/m! l/n)      if x ig (m; l/n)i   m ^ 1)

(0,0) if x is (0,0).
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Give the usual topology for X and the quotient topology induced by q for Y.

One can verify that Y is not even first countable. Y with this topology is denoted

by S2 throughout this article (see also [3]). We exploit properties of S2 directly

and indirectly at many places below.

A metric d on a metric space X is called normal if d(A,B) = inf{d(a,b): a G A,

b G B} > 0 for every pair A, B of disjoint closed subsets of X. The following

theorem will be useful in the proof of our main theorem.

THEOREM 1.1 [4]. Suppose X is a metric space. Then there exists an equiva-

lent normal metric on X if and only if X1 is compact.

Now we prove the first set of equivalent forms to the metrizability of every

Hausdorff quotient of a metric space. Hereafter we write simply "quotient" for

Hausdorff quotient space.

THEOREM 1.2. Let X be a metric space. Then the following conditions are

equivalent:

(1) Every quotient of X is metrizable.

(2) X is the union of a compact subspace and a discrete subspace.

(3) X1 is compact.

(4) oj2 cannot be embedded as a closed subspace in X.

PROOF. (1) =» (2). Suppose X cannot be written as a union of a compact

subspace and a discrete subspace. We know that X\X* is a discrete subspace and

hence X1 is not compact. Choose a sequence {xn} C X1 such that xm ^ xn for

every m ^ n and {xn : n G N} does not have a limit point in X. So {xn : n G N} is

a closed subspace of X. Since x\ is in X1, there exists a sequence {yn} C X such

that ym / yn for every m ^ n and yn —+ X\. Define a new space Y by identifying

xn with yn for every n > 1 and giving the corresponding quotient topology to Y.

Then one can verify that Y contains a copy of S2 (see the proof of Theorem 2.2)

which is not metrizable. So Y is not metrizable. This proves that (1) => (2).

(2) => (3). Suppose X = A U B where A is a discrete subspace and S is a

compact subspace. We may assume that An B = 0.

Claim. B contains X1.

On the contrary, if Ad X1 ^0, say, x is in A D X1, there exists an open subset

U C X such that U n A = {x}. Clearly, U\{x} is a closed subset of B which fails

to be compact since x is a limit point of U. This contradiction proves our claim.

So X1 is compact, being a closed subspace of B.

(3) => (1). Suppose X1 is compact and / : X —» Y is a quotient map onto Y.

Denote the set f(X1 ) by Yj. We use, for convenience, the same symbol K to denote

the same space as subspace of different spaces. This does not create confusion

because the subspace topology is the same in all these cases. D\ denotes the set

{x G X\XJ : f(x) G Ki} and D2 denotes (X^1)^. Note that X = X1tíDltíD2

where IsJ denotes the disjoint set union. We denote the set Ki tí D\ tí D2 by Xi and

define a function gi : X —* Xt as follows:

/ f(x)    if x ls hi -X^i

1 x otherwise.

Provide X. with the quotient topology induced by gx.  Then we claim that g\ is

a closed map.   For, let K c X be a closed subset.   Then, K = K\tí K2 where
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Kx c X1 and K2 nX1 = 0. g^\gi(K)) = g^'^K^U K2 = gT^g^K^UK

is closed in X because g\(K\) is closed in Xi. Therefore, g\ is a closed map. Now

by Willard's theorem [7], Xi is metrizable. Since X\ c K1, X* is compact and

hence by Theorem 1.1, there exists a normal metric d on Xi. Now, let X2 be the

subspace Ki U £>2 of Xi. Define g2 : Xi —► X2 as follows:

f /(x)    if x is in Di,
92(x) = \ ,, .

( a: otherwise.

It is not difficult to see that the quotient topology induced by g2 and the subspace

topology on X2 coincide. For every point y in f(D2), f~l(y) C D2. We use

the same notation f~l(y) as a subset of X2 also. Since d is a normal metric, for

every y in f(D2) there exists xy in f~x(y) such that (¿(z^Ki) < 2d(/~1(2/),Ki).

Let Z>3 = {zy: t/ G f(D2)} and X3 be the subspace Ki W £>3 of X2. We define

93 : X2 —> K as follows:

( \ _ / -^x)    if x is in -02'

\ i otherwise.

For any point x in X3, [z] denotes the subset ¡73" * (33(2)) and for any subset A C X3,

[A] = g^1 (93(A)). We claim that a subset F c X3 is closed in X3 if and only if

[F] is closed in X2. Since [F] n X3 = F, F is closed in X3 whenever [F] is closed

in X2. Now, suppose F is closed in X3 and x is in [F]. To show that z is in [F].

Note that z is in [F] if z is an isolated point in [F]. So we assume that z is not

an isolated point in [F]. Observe that z is in Ki. If every neighborhood of x meets

[F] n Ki = F n Ki at infinitely many points, then z is in F n Ki = F n Ki (because

K is compact and F is closed) C [F]. Suppose z has a neighborhood Ux such that

UxC\Yi — {x}. For a given e > 0, let Be(x) denote the e-ball around x in X2.

Choose x' in Be(x) n f/x (which is infinite) such that x ^ x' and d(x',x) < e/2.

Then by the choice of D3, d(xftx>),x) < e and therefore Xfrxi) is in Be(x). Hence

Xf(X') is in B£(x) n F, showing that B£(x) n F is nonempty for all e. So z is in

F = F C [F]. This completes the proof that [F] is also closed whenever F is closed.

Now, let h denote the restriction of 93 to X3. We claim that h : X3 —+ K is a

homeomorphism. h is one-one and onto. Let F be closed in K. Then /_1(F) is

closed in X and saturated with respect to g2ogx. So g2(gi(f~l(F))) is closed in X2

and hence h~Y(F) = !?2(ffi(/_1(F))) n X3 is closed in X3. Thus h is continuous.

If [F] is closed in X2, then gTl(g2l([F])) is closed in X. Since g^1 (g2l([F])) is

saturated with respect to /, f(gï1(g2l([F]))) = h(F) is closed in K. Hence h is a

homeomorphism. This proves that K is metrizable because X3 is.

(3) => (4). Suppose X1 is compact. If oj2 is embedded in X as a closed subspace,

then {oj.n: n G N} is an infinite discrete closed subspace of X1. This contradicts

the hypothesis that X1 is compact and thus (3) => (4) is proved.

(4) => (3) can be proved by a reverse argument of the proof of (3) => (4).

2. Some more equivalent forms. In this section, we give many more equiv-

alent forms of the statements of Theorem 1.2. A topological space K is called a

Frcchet space if for any subset A C K, y is in A if and only if there exists a sequence

in A converging to y. We exploit properties of S2 to obtain many more equivalent

forms of the property that "every quotient of the space is metrizable".
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THEOREM 2.1.   For a metric space X, the following conditions are equivalent:

(a) Every quotient of X is metrizable.

(b) Every quotient of X is first countable.

(c) Every quotient of X is a Fréchet space.

Statement (a) is equivalent to any of the following:

(d) every compact-to-one quotient of X is P,

(e) every finite-to-one quotient of X is P,

(f) every n-to-one quotient of X is P for all n in N,

where P stands for the property of being either 'metrizable ' or first countable ' or

'a Fréchet space'.

Every statement obtained by replacing 'quotient' by 'open continuous image' in

statements (b) to (f) is again equivalent to (a).

PROOF. The proof follows from the following facts:

(i) 52 does not satisfy P (where P is as in the statement) [3].

(ii) We can find an open, two-to-one, continuous image of X containing S2 when-

ever X1 is not compact (see the space K in the proof of (3) => (2) of Theorem 2.2).

(iii) Metrizable  =>  first countable  =>  a Fréchet space [3].

A quotient map q : X —► K onto K is called hereditarily quotient if the restriction

q¡A of q to A c X is again a quotient map for every saturated subspace A of X. q

is called pseudo-open if y is in Int q(U) for every open set U containing q~l(y).

Arkhangel'skii [1] has proved that a quotient map is hereditarily quotient if and

only if it is pseudo-open. See also [4],

THEOREM 2.2.   On a metric space X the following conditions are equivalent:

(1) Every quotient of X is metrizable.

(2) Every surjective quotient map from X is pseudo-open.

(3) Every surjective quotient map from X is hereditarily quotient.

PROOF. (1) ¿> (2). By Theorem 1.2, (1) implies that X1 is compact. Let

/: X —* K be a surjective quotient map and D — X\f~1(f(X1)). Denote by Xi

the set D U f(X1) and define g: X —► Xi as follows:

( x if x is in D,

y J (x)    otherwise.

Providing Xi with the quotient topology induced by g, one can prove that g

is a closed map by a similar argument as in the proof of Theorem 1.2. Define

h : Xi —> K as follows:

{/(x)    if z is in D,

z otherwise.

Then h is an open map onto K and / — h o g. Since both open maps and closed

maps are pseudo-open, we can prove that / is pseudo-open.

(2) =► (3) is known [1].

(3) => (1). If X does not satisfy (1), X1 is not compact by Theorem 1.2. So

we can choose an infinite discrete closed subset {zm : m = 0,1,2,... } of X1. Let

{Um : m = 0,1, 2,... } be a sequence of pairwise disjoint open subsets of X such
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that xm is in Um for all m.  For each m = 0,1,2,..., we can choose a sequence

{xm>n : n G N} c Um such that xmi„ converges to xm. Let

K=X\{xn: n = l,2,...}    and    f:X^Y

be defined as follows:
-,   , I   x0,n      It X = Xn,

fW = \ ,u       ■( x        otherwise.

Give quotient topology for K (induced by /).

Claim, f is not hereditarily quotient.

For, consider A = {xm,n : m, n — 1,2,... } U {x0}. A is saturated. If /|a were

a quotient map onto its image f(A), then /(xn) would have been isolated in f(A).

But /(xn) is not isolated in f(A). Thus the claim is proved. This proves (3) => (1).

REMARKS. 1. The statements (2) and (3) of Theorem 2.2 have some more

equivalent forms similar to those of Theorem 2.1. Each statement obtained by

replacing 'quotient map' in (2) and (3) by 'compact-to-one quotient map', finite-

to-one quotient map' etc. is equivalent to statement (1). Further the statements

obtained by replacing 'quotient maps' by 'open maps' in all the above cases are

also equivalent to (1).

2. In [4], the author has obtained a necessary and sufficient condition for every

quotient of a space to be hereditarily quotient. The reader shall note that our

conditions are entirely different from what is obtained in [4] because we consider

quotients in only Hausdorff spaces in the present article.

3. Arkhangel'skii discusses three general problems in his survey article [1]. The

first among them is the following: Under what circumstances can each space of a

given class A be mapped onto a space of a given class B by means of a mapping

belonging to a given class Ul When this is possible he writes ALB. Here we have

found a maximal subclass A of the class of all metric spaces in connection with

this problem for different classes L of maps such as open maps, quotient maps,

finite-to-one quotient maps, hereditarily quotient maps etc., and for classes B such

as metric spaces, first countable spaces and Fréchet spaces and showed that ALB

holds.
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