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ON  SCATTERED  SPACES1

V.   KANNAN  AND   M.   RAJAGOPALAN

Abstract. We show that each O-dimensional Hausdorff space

which is scattered can be mapped continuously in a one-to-one way

onto a scattered O-dimensional Hausdorff space of the same weight

as its cardinality. This gives an easier and a new proof of the fact

that a countable regular space admits a coarser compact Hausdorff

topology if and only if it is scattered. We also show that a 0-

dimensional, Lindelöf, scattered first-countable Hausdorff space

admits a scattered compactification. In particular we give a more

direct proof than that of Knaster, Urbanik and Belnov of the fact

that a countable scattered metric space is a subspace of [1, fi), and

deduce a result of W. H. Young as a corollary.

1. A problem of Banach is to characterise all topological spaces which

admit a weaker compact Hausdorff topology. Katetov [3] gave a partial

solution to this problem by showing that among countable spaces they

are precisely the scattered spaces. His approach does not throw enough

light on the cardinal invariants attached to such a space. We prove a

theorem below, in the second section, a relation between scatteredness

and weights of topological spaces. This gives a new proof of Katetov's

theorem mentioned above. This relates to a study of scatteredness and the

problem of existence of scattered compactifications of scattered completely

regular spaces. Many mathematicians are interested in this problem

(to mention one see Semadeni [9] and Ryll-Nardzewski and Telgarsky

[8]). In the first section of this paper we show that a scattered, O-dimen-

sional, first-countable, Hausdorff Lindelöf space admits a Hausdorff

scattered compactification. This can be achieved by an application of

the results of Knaster-Urbanik [4] and Mazurkiewicz-Sierpinski [5].

However our proof is elementary.

Definition 1. A topological space X is called scattered if given a

nonempty set A^X there is an element x0e A which is isolated relative

to A.
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Definition 2. Let X be a topological space. Let A<=-X. We define

A°=A; A1 = {x\x E A and x eclL4 — {x})}. If a is an ordinal and A" has

been defined then we put A"+1=(A")1. If oc is a limit ordinal and Aß has

been defined for all ordinals /?<<x then we put A" = f]ß<a Aß. If a is an

ordinal we call A" the ath derivative of A. A topological space X is said

to have a derived length if X"=0 for some ordinal a. In this case the

derived length of X is defined as the least ordinal a so that X"=0. It is

noted as o.(X).

The following theorem can be deduced from the results of [4], [5], [9]

and a theorem of Young (see Corollaries 3, 4). However our approach

is easier and hence we feel it worthwhile to present our proof of this

result.

Theorem 1. A first-countable O-dimensional Lindelöf Hausdorff space

X is scattered if and only if it admits a scattered compactification.

Proof. If X admits a scattered compactification then X is clearly

scattered. So we assume that X is scattered and we exhibit a scattered

compactification for X. For this we note that since A' is Lindelöf X"=0

for a countable ordinal a. Now it is easy to see that such a space is heredi-

tarily Lindelöf. Now two cases arise.

Case (i). a is a limiting ordinal. Then a is a limit of an increasing

sequence a1<a2<- • -<a„<* • • of countable ordinals. Then each X— X"'

can be written as a countable disjoint union (Jj=i ^a 0I clopen sets Vtí.

Putting

Wi =     U     Vjk

we get

U wt = x.
i=i

It is also clear that a(H-,<)<aiVi-*l, 2, 3, •• -, and X={jT=x(Wl-Wi_x)

where W0= 0 and each Wi—Wi_x is clopen in X. By induction we can

assume that each Wt— Wi_x has a scattered compactification Kt. Then the

one-point compactification of the disjoint union of the A'/s is easily

verified to be a scattered compactification of X.

Case (ii). a is a discrete ordinal > 1 and hence a. = ß+1 for some ordinal

ß. Then Xß is countable and discrete. So there exists a countable disjoint

collection Vx, V2, ■ • ■ , V„, • ■ ■ of clopen sets in X so that ViC)Xß is a

singleton for each ; and Xß<= \J?=X V,. Now putting V=\J™=X Vi we can

separate the two disjoint closed sets X— V and Xß by open sets ¡7 and W,

where W^> X— V. Write W as a disjoint union (Ji=i W7, of clopen sets W¡
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and put
n/2

Fn = Wnl2 -\JVi   if n is even

and
{n-DI2

Fn = Vin+xm -   U   Wi   if n is odd
2 = 1

taking Ui="i ^¿=0 when n=l. Then X=(J"=iFn and the F„'s form a

pairwise disjoint collection of clopen sets. By the induction assumption

each F2n admits a scattered compactification G2n. Now consider some F¿

where i is odd. Let Fir\Xß={ai}. Then the first axiom is satisfied at af.

So F¿ can be written as a disjoint union {a¡)^J\Jk=x Sk where each Sk<^Fi

is clopen in F¿. By the induction assumption each Sk admits a scattered

compactification Yk. Then taking Y to be the one-point compactification

of the free union of the Yks with at as the point at oo we get a scattered

compactification of Gf of F¿. Then take Y to be the one-point compacti-

fication of the free union of the G„'s where «=1,2, • • • . Then Y is the

required compactification.

It is clear that if a=l then X admits a scattered compactification. So

the theorem is true.

Corollary 2. Every countable metric space X can be written as a

disjoint union A KJB of two of its subspaces where B is homeomorphic to

a subspace of [1, O] where Ci is the first uncountable ordinal and A is a

closed subspace which is homeomorphic to the space of all rationals or

empty.

Proof. Take A to be fiN-l-*] x" and B=X—A. Then A = 0 or is

homeomorphic to the rationals (see [2] and [10]). B is scattered and

hence admits a scattered compactification by Theorem 1 which is, in

fact, a countable compactification by following the proof of Theorem 1

carefully. So by results of [5] B is a subspace of [1, Q].

Remark. The study of how A and B fit together to make up the space

X is difficult. For some study on this see [7].

Corollary 3 (Knaster and Urbanik and Belnov). For a count-

able space X the following are equivalent:

(a) X is scattered and metrizable.

(b) X is a subspace of [1, D).

(c) X admits a complete metric.

(d) X admits a countable compactification.

We omit the proof since it follows easily from Corollary 1.

Corollary 4 (Young).   A scattered subset of the real line is a Gô.
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2. Topologies coarser than scattered topologies. It is an unsolved

problem of Banach to characterise all topologies which admit a coarser

compact Hausdorff topology. Katetov [3] gave a partial solution to this

problem by proving that among countable regular spaces, these are

precisely the scattered topologies. Here we prove two theorems concerning

the weakening of scattered topologies which, together with Theorem 1,

give a different proof of the result of [3].

Let 2£ denote the class of all zero-dimensional scattered Hausdorff

spaces. The following theorem asserts that each member of 2£ admits a

weaker topology belonging to !% and satisfying some more conditions.

Theorem 5. For each X e 2£', there exists Y e 3£ and a continuous

bijection e:A—<-F such that

(i) e(X")= Y" for each ordinal a.

(ii) The weight of Y does not exceed its cardinality.

Proof. Since X is scattered, for each x in X there is a unique ordinal

a such that x e Ara\Ya+1, that is, such that x is isolated in Xa. Since Xis

zero-dimensional, there exists then a clopen neighborhood Vx of X such

that Vxf\X"={x}. Define a function fx from X onto the two-element

discrete space {0, 1} by fx(Vx) = {l} and fx(X\Vx) = {0}. Thus to each x

in X we have defined a two-valued continuous function fx on X. Let

F={fx\xeX}.
We now show that this family F of functions on X separates points of

X. Let x and y be any two distinct elements of X. Now two cases are

possible. There may exist an a such that both x and y are isolated in Xa

or there may not. If the first case holds then the function fx separates x

and j». For, fx(x)=l andfx(y)=0. In the latter case, there exists a least

ordinal a such that only one of the two elements belongs to Xx+1, say x.

Then y e XX\XX+1 and x e Xx+1. Now VyC\X!I={y}. Therefore x £ Vv

and sofy(x)=l, but fy(y)=0. Thus/„ separates x and y. Thus we have

proved that F separates elements of X.

Define a map e:X^{0, 1}F by (e(x))f=fy(x) Vx e X and V/,eF

Clearly the map e is continuous. It is one-to-one since F separates points

of X. Let Y be the range of e. Then Y is obviously zero-dimensional and

Hausdorff. Also,

the weight of Y is = the weight of {0, 1}^

= cardinality of F

= cardinality of X

= cardinality of Y.

We complete the proof by showing that this map e has the property that

e(X*)= Y" for each ordinal a.
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We use transfinite induction on a. To prove the result for a=l, we

show that e takes isolated points to isolated points.

If x e A'is isolated, then Vx must be {x} and sofx vanishes at all points

other than x. It follows that e(x) has nonzero entry only in the coordinate

corresponding tofx and that e(y) has zero entry there for all other elements

y. Consequently e(x) is an isolated point of Y. Conversely, if x is a non-

isolated point of A', then e(x) is also nonisolated in Y, since e is one-to-one

and continuous. Thus e(X')= Y'.

Suppose as induction hypothesis that we have proved that e(Xß)= Yß

for each /?<a. If a is limiting, then

e(X*) = e( fi X") = fl e(Xß)   (since e is 1-1)
\ß<at       I ß<a

= fl Yß   (by induction hypothesis)
/3<n

= Y".

Now let a be nonlimiting. Then since e is 1-1 and continuous, we have

e(X*) = e(X*-1+1) S (e(X"-l)y = Y*-1+1 = Y".

To prove the reverse inequality, we show that e(X\X*)<= Y\Y". Now

eiX\Xa) = e(X\X"-1) U e(X"-l\X").

But

e(X\X"~l) c Y\Y*_1   (by the induction hypothesis and since e is 1-1)

c Y\Y".

If x e X'^X", then x is isolated in X*'1 and so/a.(x)= 1 andfxiy)=0 for

each y^x in X*-1. Therefore e(x) is isolated in eiX"~1)= Y. Thus

eix) e Fa-1\ Y'\

Thus we have shown that e(X")= Y* for every ordinal a. This in partic-

ular proves that Y is scattered and the proof of the theorem is complete.

Corollary 6. Let (X, t) be minimal (in the lattice of all topologies

on X) with respect to the property of being in 2£. Then the weight of (X, t) is

_ the cardinality of X.

Corollary 7. For each ordinal v.,let 2£adenote the class of all members

(X, t) of 2£ such that w(X) = oc. If(X, r) is minimal with respect to the prop-

erty of being in 2£x, then the weight of X does not exceed the cardinality

ofX.

Corollary 8. Let X be a countable space in 3?. Then there is a coarser

topology on X which is metrisable and scattered.
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The last corollary follows from Theorem 5 and the fact that every

regular second-countable space is metrisable.

Theorem 9. Let X be a subspace of a well-ordered space. Then X admits

a weaker compact Hausdorff topology.

Proof.    Let a=sup X. Define a map g: A"->-[l, a] as follows:

g(x) = y    if 3y e X\X such that y < x and ly, x] n X = {x},

= a   if a $ X and if x is the least element of X,

= x   otherwise.

lfyx and y2 are two elements of J^Jfsuch thatyx<y2<x, it follows that

lyx, x]nX must contain y2 in its closure. So, the above function g is well

defined.

We claim that g is one-to-one. Letg(x,)=g(x2). If this common value is

a, then either a e Xin which case x,=x2 = a, or a ^ Xin which case xx =

x2 = the least element of X. If this common value is y^a, then either

y e X in which case xx=x2=y, or y ^ A" in which case

x, = x2 = glb{x e X | x _ y).

Next we assert that if x1=x2 in X, then x1^ig(x2)_x2, provided none

of these points is the least element of X. This is immediate from the

definition of g. This observation leads to two important consequences:

First, except for the least element of X, the function g is strictly order

preserving. Secondly, if (x^) is an increasing transfinite well-ordered

sequence in X converging to x in X, then xß_x^g(xß)^xß for each non-

limiting ordinal ß and so (g(xß))-+x. This shows that the map g is

continuous.

Finally, we show that the range of g is closed in [1, a]. Let (g(xß))—>t

be a well-ordered strictly increasing transfinite sequence in g(X) con-

verging to t in [1, a]. We want to show that teg(X). If g(xßi)^g(xß2),

we easily see that g(xß )^xßi^g(xß2). Therefore the transfinite sequence

(xß) also converges to t in [1, a]. Therefore t e X.

If f=a and if a e X, then g(a) = <" so that t e g(X); if t = oc and if a ^ X,

then g(x0) = t where x0 is the least element of X, so that / e g(X).

Let '-¿a. If teX and if xx<t is another element of X, then there

exists x2e X such that Xj<x2<i (since t belongs to X). This implies that

g(t)=t so that teg(X). If t£X, then let x=glb{j e X\y^t}. Then

t=g(x), so that teg(X).

Thus g(X) is a closed subset of [1, a].

Thus g is a 1-1 continuous map from X onto a compact Hausdorff

space.
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Corollary 10 (Katetov [3]). A countable regular space admits a

weaker compact Hausdorff topology if and only if it is scattered.

Proof. One part follows easily from the facts that every countable

compact Hausdorff space is scattered and that any topology finer than

a scattered topology must be scattered. To prove the converse, let X

be a countable regular scattered space. Then X e 2£. Therefore by Corol-

lary 8, there is a weaker topology which is metrisable and scattered.

Call this new space Xx. Then by Corollary 3, Xx is homeomorphic to a

subspace of [1, Q). Again by Theorem 9, this subspace of [1, O) admits

a weaker compact Hausdorff topology. It follows that X admits a weaker

compact Hausdorff topology.
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