# A Facile Synthesis of 3-Cyclopropyl- and 5-Cyclopropyl-isoxazoles $\dagger$ 

Okram Mukherjee Singh,*a H. Junjappa ${ }^{\text {b }}$ and H. Ila ${ }^{\text {b }}$<br>${ }^{a}$ Department of Chemistry, Manipur University, Canchipur - 795003, Manipur, India<br>${ }^{\text {b }}$ Department of Chemistry, IIT Kanpur-208016, U.P, India

The regioselective synthesis of isomeric isoxazoles 3-(2-arylcyclopropyl)-5-methylthio- and 5-(2-arylcyclopropyl)3 -methylthio-isoxazoles is described.

Cyclopropyl ketones $\mathbf{1}$ which can be prepared in quantitative yields by the addition of dimethyloxosulfonium methylide to the corresponding $\alpha$-cinnamoyl ketene dithioacetals in the presence of phase transfer catalyst ${ }^{1}$ have been reported as useful precursors for functionalized cyclopentanones, ${ }^{2 a, b}$ cyclopent $[a]$ indenes ${ }^{2 c}$ and 11-oxosteroids. ${ }^{2 d}$ Their synthetic applications as 1,3 -dielectrophilic intermediates to obtain various heterocycles by reacting with various binucleophiles have also been reported. ${ }^{3}$ In continuation of these studies we now report a highly regioselective synthesis of both 3 -cyclopropyl and 5-cyclopropyl isoxazoles 2 and 3 by reacting cyclopropyl ketones 1 with hydroxylamine hydrochloride under different reaction conditions.


## Scheme 1

When $\alpha$-bis(methylthio)methylene cyclopropyl ketones 1a-e were reacted with hydroxylamine hydrochloride (4 equiv.) in the presence of NaOMe (4-6 equiv., $\mathrm{pH} 7-9)^{4}$ and refluxed in methanol the corresponding 3-(2-arylcyclo-propyl)-5-methylthioisoxazoles $\mathbf{2 a - e}$ were obtained in $80-90 \%$ overall yields as colourless needles $\left(\mathrm{CHCl}_{3}\right.$-hexane). The structures of $2 \mathrm{a}-\mathrm{e}$ were confirmed with the help of spectral and analytical data (see Experimental section). In these reactions regioisomeric products 3 were not detected even in traces. On the other hand, the $\alpha$-bis(methylthio)methylene cyclopropyl ketones 1a-e when reacted with $\mathrm{NH}_{2} \mathrm{OH}$ in sodium acetate-acetic acid-ethanol-water and refluxed with benzene ( $\mathrm{pH} 2-3$ ), ${ }^{5}$ gave the corresponding isomeric isoxazoles 5-(2-arylcyclo-propyl)-3-methyithioisoxazoles 3a-e in 50-60\% overall yields. In these reactions small quantities of regioisomeric isoxazoles 2 ( $<10 \%$ ) were also detected. The isomeric

[^0]isoxazoles $\mathbf{2}$ and $\mathbf{3}$ have very similar $R_{\mathrm{f}}$ values (EtOAc-hexane, 1:4) and their separation was achieved by column chromatography.

Isomers $\mathbf{2}$ and $\mathbf{3}$ were clearly distinguished by comparing their melting points, IR and NMR spectral data. However, the firmest distinction between the isomers was obtained ${ }^{4 a}$ from the mass spectrum fragments arising from loss of the substituents at the 5 -position of the isoxazole ring.

## Experimental

All melting points are uncorrected. The IR spectra were obtained (KBr disk) on a Perkin-Elmer-297, ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian EM-390 spectrometer, mass on a JEOL D-300 mass spectrometer and elemental analytical data were obtained from a Heraueus CHN-O-Rapid analyzer.

3-(2-Arylcyclopropyl)-5-methylthioisoxazoles 2a-e.-Hydroxylamine hydrochloride $(0.04 \mathrm{~mol})$ was added to $\mathrm{NaOCH}_{3}(0.06 \mathrm{~mol})$ in absolute methanol $(30 \mathrm{ml})$ and stirred for 10 min . Cyclopropyl ketone $1(0.01 \mathrm{~mol})$ was added and the mixture was refluxed for $10-12 \mathrm{~h}$. Methanol was evaporated under reduced pressure and the residue was poured into ice-cold water. It was extracted with chloroform ( 100 ml ), washed with water $(200 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield the cyclopropyl isoxazoles 2 as pale coloured solids. Recrystallization from ethanol gave the analytically pure products.

Compound 2a. Needles, $\mathrm{mp} 99{ }^{\circ} \mathrm{C}$, yield $78 \%$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr})$; 1602, 1546, 1413; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.23-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.15-2.39$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 5.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.20-7.40(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; m / z: 231\left(\mathrm{M}^{+}, 50 \%\right), 184\left(\mathrm{M}^{+}-47,100\right), 156\left(\mathrm{M}^{+}-75\right.$, 25) (Found; C, 67.6; H, 5.5; N, 6.16. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NSO}$ requires $\mathrm{C}, 67.53$; H, 5.62; N, 6.06\%).

Compound 2b. Mp $150{ }^{\circ} \mathrm{C}$, yield $80 \% ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1600$, 1500,$1430 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.10-1.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.85-2.20(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.72(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; 6.70$ $(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{ArH}) ; m / z: 261\left(\mathrm{M}^{+}\right.$, $65 \%$ ), $214\left(\mathrm{M}^{+}-47,100\right), 186\left(\mathrm{M}^{+}-75,30\right)$ (Found; C, 64.21; H, 5.6; $\mathrm{N}, 5.52 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 64.36 ; \mathrm{H}, 5.74 ; \mathrm{N}, 5.36 \%\right)$.

Compound 2c. Mp $100^{\circ} \mathrm{C}$, yield $72 \% ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1600$, 1530,$1420 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.25-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.10-2.36(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 5.90 ( $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ ), 6.75-6.85 (3H, m, ArH); (Found; C, 61.60; H, 5.72; $\mathrm{N}, 4.81 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 61.83 ; \mathrm{H}, 5.88 ; \mathrm{N}, 4.81 \%$ ).

Compound 2d. Mp $105^{\circ} \mathrm{C}$, yield $70 \%$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1601$, 1500, 1450; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.15-1.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.87-2.26(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$, 6.90-7.01 (4H, m ArH); m/z: $245\left(\mathrm{M}^{+}, 35\right), 198\left(\mathrm{M}^{+}-47,75\right), 170$ $\left(\mathrm{M}^{+}-75,17\right)$ (Found; C, 68.42; H, 6.1; N, 5.65. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NSO}$ requires C, $68.57 ; \mathrm{H}, 6.12 ; \mathrm{N}, 5.71 \%)$.

Compound 2e. Mp $120^{\circ} \mathrm{C}$, yield $75 \%$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1602$, 1545,$1415 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.21-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.10-2.35(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 5.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.05(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, $\mathrm{ArH}), 7.25(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{ArH}) ; m / z: 265\left(\mathrm{M}^{+}, 65 \%\right), 218$ $\left(\mathrm{M}^{+}-47,100\right), 190\left(\mathrm{M}^{+}-75,41\right)$ (Found; C, 58.82; H, 4.6; N, 5.15. $\mathrm{C}_{13} \mathrm{H}_{12}$ ClNOS requires C, $58.86 ; \mathrm{H}, 4.52 ; \mathrm{N}, 5.28 \%$ ).

5-(2-Arylcyclopropyl)-3-methylthioisoxazoles 3a-e.-Cyclopropyl ketone $\mathbf{1}(0.01 \mathrm{~mol})$ was dissolved in a mixture containing benzene $(100 \mathrm{ml})$ and acetic acid $(100 \mathrm{ml})$. After stirring for 10 min , a mixture of hydroxylamine hydrochloride ( 0.04 mol ), $\mathrm{NaOAc}(0.03 \mathrm{~mol})$ in ethanol $(55 \mathrm{ml})$ and water $(10 \mathrm{ml})$ was added. The reaction mixture was refluxed for $8-10 \mathrm{~h}$. After evaporating the organic solvents under reduced pressure, the residue was dissolved in water $(100 \mathrm{ml})$. It was extracted with $\mathrm{CHCl}_{3}(100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated
under reduced pressure to give crude products of $\mathbf{3 a - e}$. The crude products were purified by passing through column chromatography using EtOAc-hexane ( $1: 1$ ) as eluent.

Compound 3a. Mp $60^{\circ} \mathrm{C}$, yield $58 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1620,1537$, $1400 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.32-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.15-2.39(2 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 5.88(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.30-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ : $231\left(\mathrm{M}^{+}, 75\right), 105(100)$ (Found; C, 67.3; H, 5.7; N, 6.01. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NSO}$ requires $\mathrm{C}, 67.53 ; \mathrm{H}, 5.62 ; \mathrm{N}, 6.06 \%)$.

Compound 3b. Mp $100^{\circ} \mathrm{C}$, yield $60 \%$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1612$, 1520,$1430 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.10-1.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.85-2.20(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.85(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; 6.70$ $(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{ArH}), 6.90(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{ArH}) ; m / z: 261\left(\mathrm{M}^{+}\right.$, 70), $135(100)$ (Found; C, 64.61; H, 5.0; N, 5.6. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 64.36; H, 5.74; N, 5.36\%).

Compound 3c. Mp $70^{\circ} \mathrm{C}$, yield $52 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) ; 1613,1540$, $1420 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.35-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.10-2.36(2 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.80$ ( $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ ), 6.70-6.80 (3H, m, ArH); (Found; C, 61.45; H, 5.86; N, 4.9. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 61.83 ; \mathrm{H}, 5.88 ; \mathrm{N}, 4.81 \%$ ).

Compound 3d. Mp $60^{\circ} \mathrm{C}$, yield $50 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr})$; 1615, 1532 , $1435 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.25-1.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.87-2.20(2 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 5.85(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.90-7.0$ (4H, m ArH); m/z: 245 ( $\mathrm{M}^{+}, 70$ ), 119(100) (Found; C, 68.30; H, 5.9; $\mathrm{N}, 5.66 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NSO}$ requires $\left.\mathrm{C}, 68.57 ; \mathrm{H}, 6.0 ; \mathrm{N}, 5.71 \%\right)$.

Compound 3e. Mp $67^{\circ} \mathrm{C}$, yield $57 \%$; $v_{\max } / \mathrm{cm}^{-1} ; 1615,1535,1425$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.15-1.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.05-2.20(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.46$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 5.85(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.0(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{ArH}), 7.20$ (2H, d, $J=9 \mathrm{~Hz}, \mathrm{ArH}$ ); m/z: 265 (M ${ }^{+}, 75$ ), 139(100) (Found; C, 58.6; $\mathrm{H}, 4.75 ; \mathrm{N}, 5.0 . \mathrm{C}_{13} \mathrm{H}_{12}$ ClNOS requires C, $\left.58.86 ; \mathrm{H}, 4.52 ; \mathrm{N}, 5.28 \%\right)$.
O.M.S. thanks MASTEC (DST) for the award of a young scientist fellowship.

Received, 16th November 1998; Accepted, 16th March 1999 Paper E/8/08909D

## References

1 A. Merz and G. Mark, Angew. Chem., Int. Ed. Engl., 1973, 12, 845.

2 (a) B. Deb, C. V. Asokan, H. Ila and H. Junjappa, Tetrahedron Lett., 1988, 29, 2111; (b) B. Deb, H. Ila and H. Junjappa, J. Chem. Res., 1990, (S) 356; (M) 2728; (c) P. K. Patra, V. Sriram, H. Ila and H. Junjappa, Tetrahedron, 1998, 54, 531; (d) B. Patro, B. Deb, H. Ila and H. Junjappa, J. Org. Chem., 1992, 57. 2257.

3 Okram, M. Singh, H. Ila and H. Junjappa, Indian J. Chem., Sect. B, 1997, 36, 1056; 1123.
4 (a) S. A. Lang, Y.-i Lin, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, vol. 6, ed. K. T. Potts, Pergamon Press, New York, 1984, pp. 6-7, 61-66; (b) A. R. Katritzky, P. Barczyski, D. L. Ostercamp and T. I. Yousaf, J. Org. Chem., 1986, 51, 4037; (c) C. Kashima, N. Yoshiwara, S. I. Shirai and Y. Omote, Chem. Lett., 1982, 1455; (d) M. L. Purkayastha, H. Ila and H. Junjappa, Synthesis, 1989, 20.
5 T. J. Doorenbos and L. Milewich, J. Org. Chem., 1966, 31, 3193.


[^0]:    * To receive any correspondence.
    $\dagger$ This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1999, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

