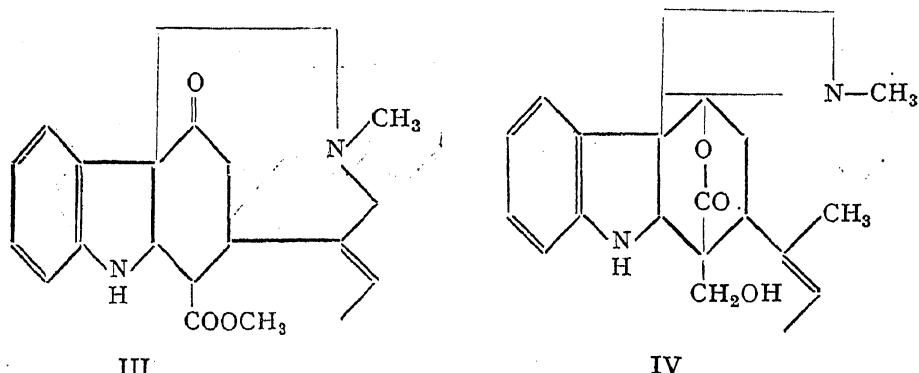

ULTRAVIOLET ABSORPTION SPECTRA OF DIHYDROINDOLE ALKALOIDS

BY T. R. GOVINDACHARI, F.A.S.C. AND S. RAJAPPA

(*Department of Chemistry, Presidency College, Madras*)

Received April 21, 1960

IT is well known that alkaloids having the dihydroindole chromophore exhibit in neutral solution, absorption maxima near about 250 and 300 m μ . Hodson and Smith¹ have observed that the nature of the spectra of these alkaloids in acid solution is dependent on the number of carbon atoms separating N_a and N_b. Thus the absorption maxima of eserine-type compounds undergo a hypsochromic shift of about 10 m μ on addition of acid, while those of hexahydro- β -carbolines are unchanged. The indoline absorption of compound (I) in which N_a and N_b are separated by more than three carbon atoms undergoes a dramatic change to benzenoid absorption on addition of acid. Bearing these observations in mind, it was proposed²⁻³ on the basis of ultraviolet absorption characteristics that echitamine contained a N_a-C-N_b system. Some further degradation experiments⁴ also appeared to support this proposal. Recently, Conroy and co-workers⁵ have proposed structure (II) for echitamine chloride, which satisfactorily explains all the experimental data, with the exception of u.v. absorption



characteristics. Echitamine chloride shows only indoline absorption even in strong acid and this has been attributed to steric hindrance to protonation at N_a. It was therefore of interest to examine the u.v. spectra of several products derived from echitamine (Table I) and some other dihydroindole alkaloids in acid solution.

TABLE I

Compound	Substituents at C_{16}	u.v. in 0.1 N acid	u.v. in 5 N acid
1. Echitamine	.. CO_2CH_3 , CH_2OH	Indoline	Indoline
2. Echitinolide	.. COO^- , CH_2OH	„	„
3. Lithium aluminium hydride reduction product of echitinolide	CH_2OH , CH_2OH	„	„
4. Alloechitamine ⁵	.. H,	CO_2CH_3	„ Benzenoid
5. Lithium aluminium hydride reduction product of alloechitamine	H,	CH_2OH	Benzenoid ..
6. Hemitoxiferine-I ⁶	.. H,	$-CH(OH)O^-$	„ ..

It is seen from the data recorded that ultraviolet absorption behaviour of compounds of the $N_a-C-C-C-N_b$ type (β -indole type alkaloids) is dependent on the number and nature of the substituents at C_{16} and also on the strength of the acid. For example, while alloechitamine (III) exhibits indoline absorption in 0.1 N HCl, and benzenoid absorption in 5 N HCl, the corresponding lithium aluminium hydride reduction product exhibits only benzenoid absorption even in 0.1 N acid. Compounds of the type of

echitinolide (IV) and its lithium aluminium hydride reduction product, bearing two substituents at C_{16} exhibit only indoline absorption in 5 N acid.

Ajmaline in which N_a and N_b are separated by only two carbon atoms, shows indoline absorption in 0.1 N acid and benzenoid absorption in 5 N acid. Finally, calycanthine⁷ in which N_a and N_b are separated by a single carbon atom exhibits indoline absorption even in strong acid.

The ability of N_a to protonate in dihydroindole alkaloids, with consequent change to benzenoid absorption, appears therefore to be influenced not only by the distance from N_b , but also on the degree and nature of substitution in the neighbourhood of N_a .

SUMMARY

The ease of protonation of N_a of dihydroindole alkaloids is shown to depend not only on the distance from N_b , but also on the degree and nature of substitution in the neighbourhood of N_a , from a study of their u.v. spectra in acid solution.

ACKNOWLEDGEMENT

We are grateful to Dr. R. H. Manske and Prof. Asima Chatterjee for samples of calycanthine and ajmaline respectively, and to Dr. H. Conroy for a copy of the paper on echitamine in advance of publication. We thank the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship (to S. R.).

REFERENCES

1. Hodson and Smith .. *J. Chem. Soc.*, 1957, 1877.
2. Govindachari and Rajappa .. *Proc. Chem. Soc.*, 1959, 134.
3. Birch, Hodson and Smith .. *Ibid.*, 1959, 224.
4. Govindachari and Rajappa .. *Chem. and Ind.*, 1959, 1549.
5. Conroy, Bernasconi, Brook, Ikan, Kurtz and Robinson .. *Tetrahedron Letters*, 1960, No. 6, 1.
6. Battersby and Hodson .. *Proc. Chem. Soc.*, 1958, 287.
7. Woodward, Yang, Katz, Clark, Harley-Mason, Ingleby and Sheppard .. *Ibid.*, 1960, 76.