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Dynamics from time series: Iteration maps in correlation space
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Abstract. The attractor for the dynamics of a complex system can be constructed from the
time series measurement of a single variable. A recently proposed procedure is to construct
a covariance matrix using an embedding window on the time series. An analysis of the
meaning of the eigenvalues of the covariance matrix of the time series is undertaken here.
It is argued that each principal eigenvalue can be decomposed into components which
describe the time evolution of the correlations of the system along the given principal
direction. A one-dimensional iterative map of these components can be constructed in
correlation space. Such a map displays the regular or chaotic nature of the dynamics for

~ each principal direction of the attractor. Tlustrative examples of such maps are constructed
for regular and random time series and for the Lorenz attractor.
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1. Introduction

Chemical and biological systems have generally phase spaces of large dimensions.
Commonly in such systems, self-organisation gives rise to system evolution on low-
dimensional manifolds, called attractors. A major aim of the current dynamical studies
is to determine the dimension of the attractor and the rate of convergence or divergence
of the trajectories of the attractor (Holden 1986). For a real experimental system, we
normally do not know the dynamical equations of motion solving which we could
in principle construct the attractor. A break-through in this regard was achieved by
Takens (1981) and Packard et al (1980) who showed that a m-dimensional attractor
could be embedded in any R" space with dimension n>2m+ 1. The space R" is
spanned by n successive measurements of a time sequence of a single obsgrvable,
called a time series. The Taken’s theorem provides a theoretical foundation for
procedures to construct the attractor from experimental time series data. Based on
this theorem, Broomhead and King (1986) have proposed a procet.iure to coz}struct
the attractor, which essentially involves construction of the covanance matrix and
determining its significant eigenvalues. The number of such elgenvalues prowfxde an
upper bound to the dimension of the attractor. The procedure 1s knovs{n'as sm.gu.lar
system analysis in information theory or as principal component analysis in statistics.
Broomhead and King (1986) have applied the procedure to the Lorenz attractor and
demonstrated its effectiveness in determining the dimension and in recreating the
flows on the attractor. ] ) .

In this paper we undertake an analysis of the meaning of t!ne S}ngular eigenvalue
by decomposing it into correlation components t‘hat evolve in time. We construct
one-dimensional maps (iterates) of such an evolution and show that the converging
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or diverging nature of the trajectory along the singular direction can be determined
from these maps.

In §2, the procedure of singular value analysis of the time series is outlined and
then our analysis of the singular eigenvalue is presented. In §3, we illustrate the
analysis and construction of iterative correlation maps with idealised examples of
systems with constant, periodic and random observables and finally for the strange
attractor of the Lorenz system.

2. The singular spectrum and correlation maps

We begin by outlining the construction of the covariance matrix by the method of
delays. See Broomhead and King (1986) for details. The observable v of the system
is measured at uniform time intervals and the resulting time series consists of the set
{v;li=1,2,...,M} of M consecutive observations. An ‘n-window’ is now applied to
the time series, which makes the n consecutive elements of the series visible in the
window. The jth window is given as the column matrix:

xj=(vjauj+1:---’Uj+n—1)Tb (1)

where T denotes the transpose. Here j=1,2,...,N with N=M —(n—1). Hence N
is the total number of n-windows possible for M observations. x;isan (n x 1) matrix.
The trajectory matrix X is now constructed from these windows as:

Xy

1 |xT
X=_ﬁ 2| o @)

Xy

X is an (N x n) matrix and (1/N'/?) is introduced as a normalisation factor. From
the trajectory matrix X, one constructs the covariance matrix, E, by:

E=XTX, 3)

which is an (n x n) matrix.

" To make further analysis transparent we may look closely at the nature of the
elements of Z. As an example, we consider a 4-window (n = 4) so that E is (4 x 4).
Let us assume to have made 10 observations (M = 10). Therefore, N=M —(n—1) =7,
and we have 7 such windows. We denote the time lag between observations as 7.

From the definition of Z, (3), it follows that the elements of = have the form:

N-1
B = 'Zo Vim+iy Vom 41y + n—m/ N (4)
i= :

for m < n. Matrix E is symmetric: &, = E,p-
It is helpful to look at some elements explicitly.
Diagonal elements:

B, =1/} + 02+ - +02),
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2,, =1/N+ 05+ - +0}),

344=(1/7)(vi+v§ + e+ 03) (5)

Off-diagonal elements:

[1}

12=1/T)(v vy + V303 + -+ + VeU7),

B4 =(1/7) (w304 + V30 + -+ + VgP10); , (6)
and so on.

The diagonal element Z,,, of the covariance matrix is thus the average of the
self-correlations, (v;v;), over the N windows starting with the ith observation and
going on to i+ (N —1). By self-correlation, we mean the dyadic product (v;v;) of the
same observation, i.e. between observations of time lag 7= 0. Egn+ 1)om+1) obviously
represents a similar average of self-correlations, but now over windows displaced
forward by time t from the set of windows corresponding to E,,,-

Therefore, the ordered set E;;, ;5. B33, 244 Can be thought of as representing
the progression of average self-correlations over the trajectory as the dynamics evolves
from time 0, 7, 21, to 3t.

For the off-diagonal elements of &, a similar interpretation holds. That is, Z,,
represents the average over the trajectory, of N dyadic correlations between observa-
tions v; and v; with a delay time of (n — m)t between the observations starting with
0= For instance, E,, represents the average of 7 correlations of observations with
delay of (4 — 2) = 21, starting with the product v,v,, as is clear from (6). This structure
of the matrix = may be schematically written as:

CA1) (12 (13) (14) ]

Sen @ 23 @9
%)

[}
1l

576D (32 (33) 64

3z \\‘
L @) (42) (43) (44

where (mn) denotes Z,,,,. Each row of £ is displaced forward in time by 7. The elements
on the dotted diagonal line are those of a column or equivalently of a row because
of the symmetry of E. The average of the elements of arow (or column) of the covariance
matrix is therefore displaced forward in time by t.

We can imagine the elements of Z as being viewed through a 4-window, opened
upon the dyadic correlations, in contrast to the window used for observing the
elements of the time series. This correlation window monitors the average binary
correlations at times 0, 7, 27, 3t in our example.

The next step is the singular value decomposition or equivalently the diagonalisation
of E to obtain the eigenvalues (singular values) and eigenvectors (singular vectors).
Since = is symmetric and non-negative definite, its eigenvalues ¢ are real and can be
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taken as non-negative. We write the eigenvalue equation as:
EC=CX (8)

Here X is the diagonal matrix of elements {o;} and C is the (n x n) eigenvector matrix
with each column consisting of an eigenvector:

c=(C,,C,,...,C,), ' (9)
with :

Ci:‘(cilvcizv--’cin)T’ (10)
and CTC=1. '

Clearly, we have from (8),
r=CTEC. (11)
By expanding the r.h.s. of this equation, we have for the ith diagonal element of X,
0= Z Z CiiCaEj- (12)
j=1k=1

We rewrite this equation as
)y ( ) CijCikEjk/Ui) =1 (13)
j=1 \k=1

Or further as
Y gi=1, | (14)
j=1 :

where we have defined,

CIj- = kZ1 CiiCuE /0. v (15)

This definition of qj. shows that it is the weighted average of the elements of the
jth row of the covariance matrix =. The weighting factor involves the product of
the coefficients, C;;C;, ie. the j,k components of the ith singular vector. As j goes
from 1 to n, we are descending down the rows of =, and according to our earlier
interpretation of the elements of these rows, the n qj. values should correspond to
time delays 0, 7, 2,...,(n — 1)7. To remind us of this property, we write (14) in the
slightly modified form: '

G+di+ah+-+4q_, =1 ' | (16)

We note that these g'-values represent a certain decomposition of the singular
value ;. Thus qj. is the average over the trajectory projected on to the ith principal
(singular) direction, of all binary correlations after a time lag of jr units. That their
sum over the window length is unity is just a convenient normalisation. It is easy to
show that qj. as defined by (15) is simply C?, the square of the jth component of the

ij*

*
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W



T e e i

-~

Dynamics from time series : 483

singular vector i, but the form of (15) lends itself more easily to our interpretation
in terms of evolving binary correlations. ' ‘
Thus we may think of the ordered set {qj.l j=0,1,....,(n—1)} as representing the
time evolution of the average binary correlations along the singular direction i.
Hence this set of ¢' may be used to produce a one-dimensional mapping of the
correlations along the singular direction i as

¢, =1, , | a7

by simply plotting ¢, , against q;-

We expect that the iterates of such a map in the correlation space should reveal
the qualitative character of the dynamics along each singular direction. That is, the
map could reveal a fixed point, or periodic, or chaotic nature of the attractor along
the principal directions in correlation space. These should not however be confused
with similar entities in phase space. We test out this expectation by explicit calculations
for a few selected dynamical systems in the following section.

3. Tllustrative examples

In this section we illustrate the construction of the map of correlation iterates for
some typical cases.

Case 1: Time-invariant trajectory

If the observations do not change with time, we have a constant trajectory and an
(n % n) covariance matrix with every element equal to, say, a/n. It has only a single
non-zero eigenvalue equal to a. The singular eigenvector has all the n components
each equal to 1/n'/% Consequently the iterates defined by (17) gives a single fixed
point, showing the time-invariant nature of the correlations.

Case 2: Sinusoidal trajectory

As our next example, we take the observations of the time series to be given by
y(t) = sin wt, i (18)

with o = 5, say. The spectrum of the singular eigenvalues, in percentage, is given in
figure 1. This figure corresponds to 200 equally spaced y values and an embedding
window of length 20. The figure shows that there are only 2 significant singular values,
out of a possible total of 20. The correlation jterative map for the dominant singular
value (o, = 92%) is shown in figure 2. The points lie close to the diagonal, the envelope
of these points being cigar shaped. This indicates the essential retention of correlations
along the direction given by this eigenvector in correlation space. The second singular
value (0, = 8%) also gives a similar iteration map of retained correlations (not shown

in the figure).

Case 3: Random trajectory

We now take the extreme case of the observable y(t) to be 200 random numbers
generated by a computer, with mean =0 and variance = 1. We impose an embedding
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Figure 1. Eigenvalue spectrum for the sinusoidal trajectory of (18) for 200 points with a
window length of 20.
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Figure 2. Iterative map of the components of the singular value g, = 92% for the sinusoidal
trajectory of (18).

window length of 30. A typical trajectory is given in figure 3 and the corresponding
eigenvalue spectrum is shown in figure 4a. The eigenvalues have been taken in
increasing order. The values have all comparable magnitudes, showing that the dimen-
sion of the attractor is, according to the Broomhead and King (1986) prescription,
the same as that of the embedding space, namely 30 in this case. The iteration map
of g for the highest (¢ = 6-5%) is given in figure 5a. The random distribution of points
away from the diagonal is obvious. In other words, the correlations change randomly
along this principal direction as the dynamics evolves. This is the case for all other



o

Sy

40 v

30+

20~

10+

random number

230 - .

0 20 40 60

80 100 120 140 160 180 200

index

Figure 3. Random trajectory of 200 points generated by a computer.
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Figure 5. Tterative map of the components of the largest singular value for the random
trajectory corresponding to figure 3, with a window length of 30 (a) and 10 (b).

eigenvalues and principal directions also, which shows that there is no direction in
which correlations are retained. This is indeed what one would expect for random
observables.

At this point it is necessary to comment on the dependence of the results on the
choice of the embedding dimension. Relatively large dimensions are chosen in this
example and in the following cases, since the number of points on the iterative map
is determined by this dimension and one would like to have sufficient points on the
map to decipher its nature. However, it is important to see whether this choice affects
the qualitative features of the eigenvalue spectrum or of the iterative maps. We display
in figure 4b the eigenvalue spectrum obtained for the same random trajectory, but
now with a drastically reduced dimension of only 10. Clearly the same qualitative
distribution of the eigenspectrum is obtained. (Compare with figure 4a. Note that
the percentages depend on the actual number of eigenvalues.) The iterative map for
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the highest eigenvalue for-this case is shown in figure 5b. It shows the same aperiodic
feature as in the case of the larger dimension figure 5a. Studies with various other
values for the embedding dimension lead to the same conclusions, showing that the
present results are indeed generic.

Case 4: The Lorenz attractor

The well-known Lorenz attractor (see Sparrow 1986) is defined by
%02 =((y—x), rx—y—xz, —bz+xy) (19)

where we take the parameters to be: ¢ =10, b=8/3 and r = 28 for which the system
is a strange attractor.

The time series x(f) obtained by numerical solution of (19) by a fourth-order
Runge—Kutta routine is shown in figure 6. The singular spectrum for x(t) as the time
series with an embedding window of 35 time units is shown in figure 7. The number
of significant eigenvalues and therefore the dimension of the attractor are not clear
from this figure. This depends on the numerical noise level of the computations of
the spectrum, and this problem has been discussed in detail by Broomhead and King
(1986). The dimension is also sensitive to the parameters of the embedding window,
namely the sampling time and the lag time (see Albano et al 1991 for a discussion
of these problems). In the present case, the first five largest singular values are: 57,
14, 6, 3 and 2:5%. If we set the noise level as 59, the attractor has a dimension of
3, as is the case for the Euclidian space dimension of the Lorenz attractor. Our present
concern, however, is not so much the dimension of the attractor, as the nature of
correlations along the principal directions. The iterate maps of g for the above five
singular values are given in figures 8a—e. The first two, figures 8a and b, corresponding
to o = 57 and 14%, show clearly the regular behaviour of correlations in these two
directions. These figures are very similar to the map for the sinusoidal function of
case 2 (figure 2), where the iterates lie close to the diagonal.

20}

15F

x(t)

g

[oiy

(=
T

17 14 16 18 20 22 2% 26 28 30

time(t)

Figure 6. Time series x(z) for the Lorenz attractor obtained by the solution of (19).
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Figure 7. Eigenvalue spectrum for the time series x(t) of figure 6, with 1000 points and a
window length of 35.

q(n+1)

- q(n+1)

60

so}
40t
30}
20t

10

10

20

index

30

35

40

0.14r

0.08f

0.06+

0.04¢

0.02}

(a)

0.06

0.08

0.1

012

0.14

014
012}k

0.1}
0.8}

0.06

0.04

0.02f

(b)

0.1

0.12

0.14




Dynamics from time series

0.14+
0.12r
0.1+

0.08

q(n+1)

0.06

0.04

0.02

(c)

0.06

0.08 0.1 012

0.14

0.14

012r

5

0.1

0.08+

q(n+1)

0.06

0.04

1

0.02H

T

(d)

0.04

012

014

0.14r

0.12f

S

0.08

- q(nt+1)

0.06-

—

0.02

(e)

0.04

0.06

0.08 0.1 012

q(n)

014

489

Figure 8. Iterative map of the components of the singular values for x(t) of the Lorenz
attractor corresponding to figure 7 (window length = 35). The singular values for the different
figures are 57 (a), 14 (b), 6 (c), 3 (d) and 2.5 ().
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Figure 9. Same as figure 7, but with window length of 15.

The third principal direction with o = 6%, the flow of correlations is again somewhat
regular, but shows signs of decorrelation and a greater spread in the values of g (see
figure 8c). These findings are reminiscent of the Lyapunov exponents of the Lorenz
attractor, which have the signs (—,0, +) indicating that trajectories in phase space
contract exponentially, slower than exponentially and diverge exponentially in the
three dimensions (Wolf 1986).

Going on to the fourth (¢ = 3%) and the fifth (¢ = 2-5%) singular directions (figures
8d and e), we see unmistakable signs of aperiodic or chaotic behaviour of correlations
which are now more widely scattered from the diagonal. These diagrams resemble
figure 5 for the case of the random observable, indicating the chaotic nature of
evolution of correlations along these directions.

As in the case of the random trajectory discussed above, it is important to deterimine
whether these results are generic. For this purpose we have carried out studies of the
eigenspectrum and the correlation maps for varying embedding dimensions. Typical
results, for dimensions 15 instead of 35 used above, are reported. The eigenvalue
spectrum (figure 9) has evidently the same features (compare with figure 7), the largest
five now being 68, 106, 6, 47 and 3%, respectively. The correlation map for the
principal direction for the largest eigenvalue (figure 10a) shows the same regular
behaviour as for the larger dimension case (figure 8a) and the aperiodic nature of
the map for the fourth direction (figure 10b), is similar to that for the larger dimension
(figure 8d). Note that numerical values of the eigenvector components will differ in
the two cases due to the different dimensions and normalization. We thus conclude
that the qualitative aspects of the eigenspectrum and the correlation maps of the
eigenvectors are independent of the choice of the embedding dimension. ,

These observations prompt us to conclude that there are at most three orthogonal
directions in which the correlations are more or less retained and that the flow is

~appreciably decorrelated in all other directions of the embedding space. It may be
- possible to quantify this picture by evaluating the rates of decorrelation along the
singular directions and to compute the corresponding exponents. Such efforts which
would involve devising a proper definition of the decorrelation exponent in the present
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Figure 10. Iterative map of the components of the singular values for x(t) of the Lorenz
attractor corresponding to figure 9 (window length = 15). The singular values are for 68 (a)
and 4.7% (b).

context and devising a suitable algorithm for its numerical evaluation from the maps,
are under way. :

4. Summary

We have addressed the problem of determining the nature of the attractor from the
time series of a single variable of a multidimensional dynamical system. We have

- shown that the singular values of the covariance matrix constructed from the

trajectory, can be decomposed into components that evolve with time. An iterative
one-dimensional map of these correlation components reveal the nature of retention
or loss of correlation along a given principal direction of the attractor. Along
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insignificant directions, ie. those with small singular values, the flow is fast
decorrelated and resembles chaotic behaviour. Along significant directions, i.e. those
with large singular values, correlations are retained to a considerable extent. The
results are largely independent of the choice of the embedding dimension.

These observations made on the model systems of the present study point the way
to the possible use of such correlation maps to determine not only the dimension of
the attractor but also the nature of the flow along the singular directions of the
attractor from the experimental time series.

References

Albano A M, Passamante A and Farrell M E 1991 Physica D54 85

Broomhead D S and King P G 1986 Physica D20 217

Holden A V (ed.) 1986 Chaos (Manchester: University Press)

Packard N H, Crutchfield J P, Farmer J D and Shaw R S 1980 Phys. Rev. Lett. 45 712

Sparrow C 1986 In Chaos (ed.) A V Holden (Manchester: University Press) pp. 111-134

Takens F 1981 In Dynamical systems and turbulence (eds.) D A Rand and L -S Young (Berlin: Springer)
Wolf A 1986 In Chaos (ed.) A V Holden (Manchester: University Press) pp. 273-290

e

S

e

-£2.

s



