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Dynamics of a Disordered, Driven Zero-Range Process in One Dimension
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We study a disordered, driven zero range process which models a closed system of attractive
particles that hop with site-dependent rates and whose steady state shows a condensation transition
with increasing density. We characterise the dynamical properties of the mass fluctuations in the
steady state in one dimension both analytically and numerically and show that there is a dynamic
phase transition in the density-disorder plane. We also determine the form of the scaling function
which describes the growth of the condensate as a function of time, starting from a uniform density
distribution.

PACS numbers: 64.60.-i, 05.60.-k, 61.43.Hv

Since the state of a system with an ordered phase in the
infinite time limit is typically very different from that far
from the steady state, different processes and time scales
may govern the dynamics in the steady state and the
relaxation towards it. Quenched disorder can strongly
affect the dynamical properties in both situations; in
particular, it may give rise to new dynamic universal-
ity classes. In the absence of a general framework for
analyzing nonequilibrium, disordered systems, it is evi-
dently of interest to develop a detailed understanding of
these changes using simple models.

We address the above issues in a disordered, driven
zero range process (ZRP) which is a stochastic lattice
model of interacting particles. In this process, a site can
be occupied by an arbitrary number of unit-mass parti-
cles. Interparticle interactions are modeled by allowing
the hop-out rate of a particle to depend on the mass
at the site it leaves; in general, these rates may even
be site dependent. Remarkably, for any choice of rates,
the steady state of this model can be found exactly [1].
There has been a surge in interest in the ZRP follow-
ing the finding that this model can show a condensation
transition in which at high densities, a finite fraction of
particles condense onto a single site. This transition oc-
curs in the steady state of the conserved mass model for
a wide choice of hopping rates [2]. Recent work on the
ZRP has been devoted to studying dynamical properties
[3, 4, 5] and using it to develop a general understanding
of nonequilibrium steady states [6, 7], besides modeling
various physical systems [2, 8].

Here we consider a disordered, driven ZRP in one
dimension in which a particle hops forward at a rate
which is independent of the mass. Quenched disorder is
modeled by choosing site-dependent hopping rates drawn
from a distribution. The steady state of such a ZRP has
been shown to exhibit a phase transition, from a low den-
sity, homogeneous phase to a high density phase with a
condensate at the site with the lowest hopping rate [3, 9].
Interestingly, by regarding sites as particles and masses
as hole clusters, this model maps exactly onto a simple
traffic model of cars (particles) with different preferred
speeds on a single-lane highway, with no possibility of

overtaking. At low densities, an infinite headway ap-
pears in front of the slowest car, corresponding to the
condensate in the ZRP [3, 9].

Our results pertain both to the dynamical properties
in the steady state and to the manner in which the sys-
tem relaxes to it. While the former concerns the motion
and the decay of the density fluctuations about the mean
in the bulk of the system, the latter involves the trans-
fer of a macroscopic amount of mass from the bulk of the
system to the globally slowest site. We find that different
time scales govern these two processes. Our main results
are summarized below.
Steady state dynamics: We calculate the speed of density
fluctuations in the steady state and identify the regimes
in the density-disorder plane in which this speed van-
ishes, signalling a dynamic phase transition. Our Monte
Carlo simulations show that when this speed is nonzero,
the dynamic behavior remains the same as that of a pure
system, while it changes if the speed vanishes.
Relaxation to the steady state: We give an analytical ar-
gument for the form of the scaling function which de-
scribes the temporal growth of the condensate starting
from a uniform density distribution, and present numer-
ical evidence to support our results. The dynamic expo-
nent is deduced from the growth law via a scaling argu-
ment and agrees with earlier results based on a determin-
istic traffic model [3, 10, 11].

The ZRP involves M particles on a ring of size L with
an arbitrary number of particles allowed at any site. A
particle hops out of a randomly selected site k to site
k + 1 with quenched rate wj(k) where the subscript j
is the index which ranks the rates in ascending order,
with j = 1 labeling the lowest rate. The rate w(k) is
chosen to be independent of the mass at site k so that
the system has on-site attractive interactions [12]. These
site-dependent hopping rates are chosen independently
from a common distribution

f(w) =
[

(n + 1)/(1 − c)n+1
]

(w − c)
n

, w ∈ [c, 1] ,
(1)

with c, n > 0. For this process, the probability of a con-
figuration C ≡ {m(1), ..., m(L)} in the steady state is
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given by [3, 9]

P (C) =
1

Z

L
∏

k=1

(

v

w(k)

)m(k)

, (2)

with the constraint
∑

k m(k) = M . Here Z is the par-
tition function, m(k) is the mass at site k and v is the
fugacity. The preceding equation gives the average mass
µj = v/(wj − v) at the site with hopping rate wj . Since
the total number of particles is conserved, we have

ρ =
1

L

v

w1 − v
+

∫ 1

c

dw
v

w − v
f(w) , (3)

where ρ = M/L is the density. The above equation im-
plies that in the thermodynamic limit, there exists a fi-
nite critical density ρc below which the fugacity increases
with density and above which v gets pinned to the low-
est hopping rate c. Thus, there is a phase transition from
the low density phase with mass of order unity at each
site to a high density phase with infinite mass at the site
with the lowest hopping rate [3, 9]. The critical point,
given by ρc = c (n + 1)/n(1− c), is obtained from Eq.(3)
on setting v equal to c in the integral. This transition
is analogous to Bose-Einstein condensation in the ideal
Bose gas or in a system of noninteracting bosons in a
random repulsive potential [13].

We begin with a discussion of the steady state dynam-
ics, in particular, the study of the statistical fluctuations
of the density about its average. In a steady state carry-
ing a uniform current J , these fluctuations are carried as
kinematic waves whose speed vkin is known to be given
by vkin = ∂J/∂ρ from a general hydrodynamic argument
[14]. This speed plays an important role in determining
whether the quenched disorder changes the dynamic uni-
versality class [15]. If vkin is nonzero, each density fluc-
tuation encounters a particular patch of disorder essen-
tially only once in an infinite system, as the probability of
returning is exponentially small. Thus, the noise arising
from the different patches of disorder is essentially uncor-
related in time, and we would then expect the kinematic
wave to decay with the Kardar-Parisi-Zhang (KPZ) expo-
nent [16]. However, if vkin vanishes, then this argument
fails and we would expect disorder to change the dynamic
universality class.

In order to determine the kinematic wave speed, we
use J=v and Eq.(3) to obtain

v−1
kin =

1

L

w1

(w1 − v)2
+

1

L

w2

(w2 − v)2
+

∫ 1

c

dw
w f(w)

(w − v)2
,

(4)
where we have separated out the contributions from the
two slowest sites. The above expression for v−1

kin involves
essentially the sum of the mass variances σ2

j at sites with

rate wj where σ2
j = v wj/(wj − v)2 is obtained for all j

and ρ using Eq.(2). (However, this expression for vari-
ance is invalid at the slowest site for ρ > ρc, as explained

below.) For a given set {w} and fixed density, we solved
Eq.(3) numerically to determine the fugacity v which is
used to find µj and σ2

j . The L dependence of the mass
and the variance was then found by averaging over a large
number (∼ 106) of disorder configurations. Our findings
for the mean mass µj and the fluctuations σj are sum-
marized below.

For ρ < ρc, each site supports mass of order unity with
fluctuations of the same order.

For ρ = ρc, both µj and σj at a site with ordering
index j grow as (L/j)1/(n+1). This can be seen by using
v(ρc) ≃ c and changing w to a uniformly distributed
variable u defined by w − c = (1 − c) u1/(n+1).

For ρ > ρc, the behavior of µj and σj in a typical
disorder configuration remains the same as that at the
critical point for j ≥ 2. However, the disorder-averaged
variance σ2

j for j = 2 grows with L at the same rate
as that for j = 1, and is larger than at any other site
in the rest of the system, even though the second slow-
est site does not support a condensate. To understand
this surprising feature, we numerically studied the distri-
bution P (xj ≡ wj − v, L) for various j and L. For the
slowest site, this distribution approaches a delta function
centered about 1/L. Thus the expression for σ2

j quoted
above breaks down for j = 1 since it predicts macro-
scopic fluctuations at this site, implying the invalidity of
the grand canonical ensemble. To determine the variance
at this site, we use the sum rule σ2

1 =
∑L

j=2 σ2
j which fol-

lows from mass conservation and the product measure
form of the steady state. Our numerical data shows that
for j > 1 and large L, the distribution P (xj , L) is of the
form

P (xj , L) ≈ L1/(n+1) Xj

[

(xj − ǫj) L1/(n+1)
]

Θ(xj − ǫj) ,

(5)
where Θ is the Heaviside step function, ǫj is of order 1/L
and Xj is the scaling function appearing in the distribu-
tion P(wj − w1, L) of variable wj − w1 in L trials. This
distribution can be calculated and is of the same scaling
form as Eq.(5) with ǫj = 0; the scaling function Xj(x) is
found to grow as xj−2 for x ≪ 1 and decays as (1 − x)n

as x → 1. Note that Xj(x) approaches a nonzero value
as x → 0 for j = 2. Using this scaling function in Eq.(5),

we find that σ2
j ∼ (L/j)2/(n+1) for j > 2, while for j = 2

it is of the order L(n+2)/(n+1). Since the contribution of
σ2

2 dominates the rest in the sum rule, we find

σ2
1 ∼ σ2

2 ∼ L(n+2)/(n+1) . (6)

The anomalously large value of σ2
2 is a consequence of

the nonzero probability for a near-vanishing difference
between the two lowest rates.

We now return to Eq.(4) and determine vkin using the
results obtained above.

For ρ < ρc, the first two terms in Eq.(4) are negligible
in the thermodynamic limit, while the integral is of order
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FIG. 1: Plot of the tagged particle correlation C(k, t) vs. t at
the critical point showing the existence of kinematic waves for
n > 1. For n = 2, the solid curve passing through the minima
is a power law with exponent 2/3 and the initial tangential
straight line has a slope equal to c = 1/2. For n = 1/2, the
y-axis has been scaled down by a factor of 15. The data have
been averaged over all k for both values of n.

unity so that vkin is nonzero. Because of the argument
above, we expect that the kinematic waves decay with
the KPZ exponent in this phase.

For ρ = ρc, there is a transition in the behavior of
∂ρ/∂v as n crosses one [3]. Integrating σ2

j over j, we find
that

v−1
kin(ρc) ∼

{

L(1−n)/(1+n) , n < 1
(n + 1)/(n − 1) , n > 1 ,

(7)

which indicates a dynamic phase transition at n = 1 in
the thermodynamic limit. For n > 1, the kinematic wave
speed is nonzero and we expect the universality class to
be the same as for ρ < ρc. For n ≤ 1, this speed is
zero implying that the transport of density fluctuations is
anomalously slow. Thus, for n ≤ 1, disorder is expected
to be relevant in changing the dynamical behavior from
the KPZ universality class.

For ρ > ρc, due to the condensate at the slowest site,
the first term in Eq.(4) diverges giving vkin = 0 for all n.
We consider the speed v′kin in the system excluding this
site. In a typical disorder configuration, v′kin behaves
as at the critical point and there is a transition in the
dynamical behavior at n = 1. However, the disorder

average of the inverse speed v′
−1

kin diverges for all n, as
can be seen using Eq.(6) in Eq.(4).

We verified the above predictions by monitoring
C(k, t) = 〈H2(k, t)〉 − 〈H(k, t)〉

2
where H(k, t) is the

number of particles that hop past site k in a time interval
t. In the traffic model, C(k, t) gives the tagged particle
correlation which measures the mean squared displace-
ment of a tagged particle k around its mean position at

time t. In an infinite system, C(k, t) increases linearly
with time and the slope gives the tagged diffusion con-
stant. In a finite system with periodic boundary condi-
tions, if kinematic waves are present, C(k, t) oscillates
with time period L/vkin and its values at the minima are
a measure of the decay of the wave.

We measured C(k, t) using Monte Carlo simulations in
both the phases and at the critical point. Except at very
short times, C(k, t) is found to be independent of k, as
explained below. In Fig. 1, we show C(k, t) as a function
of time at the critical point for two values of n. For n = 2,
it is found to oscillate, with the values at minima growing
as a power law in time with exponent 2βKPZ = 2/3;
at short times, it increases linearly with slope equal to
c. For n = 1/2, there are no oscillations and C(k, t)
continues to increase linearly with slope equal to c. The
tagged diffusion constant is the same for all k and is equal
to that of the slowest particle for ρ ≥ ρc, due to the
no-overtaking constraint in the traffic model. Since the
slowest particle behaves as a free, biased random walker
due to the infinite headway in front of it, its diffusion
constant equals c for all n.

A different sort of kinetics governs the approach to the
steady state in the condensate phase in which, starting
from a uniform density distribution, the mass profile de-
velops a singularity at the site with the globally minimum
hopping rate. In the initial stage, the particles hop out
of relatively fast sites quickly and get trapped temporar-
ily at locally slow sites. At moderately large times, one
finds a finite density of large aggregates at these slow
sites, which relax by releasing their excess mass to yet
slower sites on their right. Thus, the masses at slow sites
first grow and then decay to their respective steady state
values, except at the slowest site where the mass mono-
tonically increases and then saturates [4].

For an analytical description of the above growth
mechanism, it is useful to consider a sequence of slowly
relaxing sites on the right of the slowest site. By a se-
quentially increasing label ℓ = 1, 2, ..., we mark the set
of sites which satisfy τℓ > τℓ−1 where τℓ is the relaxation
time of ℓth such site. Denote its position by Rℓ; it is ev-
ident that Rℓ is a random variable which grows rapidly
with ℓ. Now τℓ can be estimated by observing the follow-
ing: (i) the mass at site ℓ grows as tβ till time scales of
order τℓ−1, accumulating mass ∆m(Rℓ) ≃ ∆ρ Rℓ where
∆ρ ≡ (ρ−ρc), and (ii) when the excess mass has reached
the site ℓ, the region to its left has relaxed to the true
steady state. At this point, the mass at site ℓ begins to
decrease since the out current Jout ≈ w(Rℓ) exceeds the
in current Jin = c leading to τℓ ≈ ∆m(Rℓ)/(w(Rℓ) − c).

The growth of mass at site ℓ can be described by con-
sidering the distribution of mass ∆m(Rℓ) at location Rℓ

such that τℓ > t and τℓ′ < t with ℓ′ < ℓ. The probability
of this event is g((∆ρ Rℓ)/t)

∏

R
ℓ′

<Rℓ
[1 − g((∆ρ Rℓ′)/t)]

where g(u) = un+1 is the probability that w − c < u.
It follows that the cumulative distribution F (∆m, t) of
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having mass up to ∆m at time t has the scaling form

F (∆m, t) ≈ 1 − exp(−bnyn+2) , (8)

where bn is a constant and y = ∆m/tβ is the scaling
variable with β = (n + 1)/(n + 2). We have dropped
the label ℓ since we expect the same growth dynamics
for all slow sites including the slowest. Further, the av-
erage mass ∆m1(t, L) at the slowest site at time t in a
system of size L is expected to follow the scaling form
∆m1(t, L) ≈ tβH(t/Lz) where z = 1/β is the dynamic
exponent [4]. In the traffic model, starting from a ho-
mogeneous initial condition, the system approaches the
steady state via a coarsening process by which headway
lengths grow . The above expression for β matches with
the growth exponent for the typical headway length ob-
tained using a deterministic model [3, 10, 11].

To test Eq.(8), we numerically measured the distribu-
tion F (∆m, t) at the slowest and the second slowest sites
as a function of time in a large system (L ∼ 5 × 104) for
various values of n. We used slightly modified dynamical
rules since it allowed us to access longer times. We deter-
mined the out current J(k, t) = w(k) s(k, t) at site k with
occupancy probability s(k, t) at time t using the steady
state expression s(k, t) = m(k, t)/(1 + m(k, t)), where
m(k, t) is the instantaneous mass at site k. The mass
was updated using this modified expression for current
in the evolution equation of m(k, t). This is expected to
be a good approximation at large times when the system
is close to steady state, and is exact in the steady state.
We also checked these simulation results against the orig-
inal dynamics for some cases and found that the results
agree. Figure 2 shows the collapse of ln(1 − F (∆m, t))
vs. ∆mn+2/tn+1 onto a linearly decreasing curve, in ac-
cordance with Eq.(8), for two representative values of n.

To summarize, we studied a disordered, driven ZRP
whose dynamical properties in the steady state show a
phase transition as a function of disorder parameter n.
The relaxation dynamics, by contrast, depends smoothly
on disorder parameter. The dynamic universality class in
the steady state was shown to remain same as for the pure
system for n > 1, while a complete characterisation of the
new universality class for n < 1 remains an interesting
open question.

We thank D. Dhar for useful comments on the
manuscript. K.J. acknowledges partial support from the
Kanwal Rekhi scholarship administered by the TIFR En-
dowment Fund.
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