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Passive Sliders and Scaling: from Cusps to Divergences
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The steady state reached by a system of particles sliding down a fluctuating surface has interesting
properties. Particle clusters form and break rapidly, leading to a broad distribution of sizes and
large fluctuations. The density-density correlation function is a singular scaling function of the
separation and system size. A simple mapping is shown to take a configuration of sliding hard-core
particles with mutual exclusion (a system which shows a cusp singularity) to a configuration with
multiparticle occupancy. For the mapped system, a calculation of the correlation function shows
that it is of the same scaling form again, but with a stronger singularity (a divergence) of the sort
observed earlier for noninteracting passive particles.
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I. INTRODUCTION

Driven diffusive systems consist of many particles,
with individual particles undergoing a diffusive motion
apart from being influenced by interparticle interactions
and external forcing, which drives the system into a
nonequilibrium state. Examples range from stirred flu-
ids on the one hand, to current-carrying systems, such as
vehicular and pedestrian traffic, on the other. Attempts
at theoretical modeling of such systems range from set-
ting up and trying to solve continuum equations like
the Navier-Stokes equations for fluids to studying lattice
models like the asymmetric exclusion process, a simple
model for directed motion of particles with an exclusion
constraint. The theoretical challenge is to describe the
macroscopic properties of these nonequilibrium systems
in the absence of a general prescription that specifies
the weights of microscopic configurations in the steady
state, akin to the Boltzmann-Gibbs prescription for equi-
librium statistical mechanics.

The coupling of two or more driven diffusive systems
to each other can give rise to complex and interesting
behavior. This is so even when the coupling is unidirec-
tional; i.e., one of the driven fields evolves autonomously
and drives the other (passive) field. An example is the
problem of passive scalars, like ink or dye, advected by
the streamlines of a stirred fluid [1]. The nontrivial na-
ture of the passive scalar problem arises from the fact
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that besides being driven by the fluid, the passive par-
ticles also diffuse; this allows passive particles to jump
from one advecting streamline to another, leading to an
intricate behavior of the passive density. Of course, the
nature of the driving field is of great importance for the
ultimate distribution of the scalar. For instance, pas-
sive particles driven by incompressible fluids (e.g., ink
in water) tend to spread out and mix in the large-time
limit. However, if the fluid in question is compressible,
the behavior can change drastically, and it is possible
for the particles to cluster together in dynamic clumps
rather than reach a homogeneous state [2]. The insta-
bility of a homogeneous state to clustering or clumping
has been discussed earlier, both in the context of driving
by compressible fluids and separately by allowing for the
inertia of driven particles, which allows them to deviate
from strictly following the streamlines [2—4]. It is clearly
of interest to characterize the steady states in such sit-
uations, where there is a broad distribution of cluster
sizes under conditions of rapid making and breaking of
individual clusters.

This sort of dynamical steady state, in which par-
ticle clusters constantly form and break, has recently
been studied in another related context, namely, parti-
cles sliding down fluctuating surfaces, which themselves
are driven systems [5-11]. In a qualitative sense, the
state is quite different for the cases of noninteracting
passive particles [8,9] and passive particles with mutual
hard-core exclusion interactions [5-7,10]. In the former
case, there is a large degree of clumping accompanied by
strong fluctuations, as large, concentrated clusters can
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form and break; this state is referred to as a strong clus-
tering state (SCS) [9]. In the latter case, mutual ex-
clusion prevents pile-ups of particles at the same spatial
location. The state turns out to have long-range order as
in phase-ordered systems familiar from equilibrium con-
texts. However, unlike equilibrium systems, fluctuations
in this case remain very strong even in the thermody-
namic limit hence the appellation fluctuation-dominated
phase ordering (FDPO) [6]. At a quantitative level, the
differences between the two cases are captured by the
two-point density-density correlation function. Numeri-
cal simulations show that for SCS, as well as for FDPO,
the correlation function is a scaling function of separation
and system size. However, the scaling functions are quite
different in the two cases, being characterized by differ-
ent sorts of singularities for small values of the scaling
argument: a divergence for the case of SCS and a cusp
singularity for the case of FDPO.

Beyond the numerical results, it is useful to have an-
alytical treatments for simplified models, in order to ex-
plicitly demonstrate the existence of scaling and singu-
larities of the scaling function. Such a treatment was
carried out for FDPO by considering the properties of a
coarse-grained depth model of the surface [5-7,10]. The
resulting scaling function shows a cusp singularity. The
principal new result reported in this paper is that a sim-
ple mapping takes a configuration of the FDPO steady
state in such a model to a configuration that is of the
SCS variety. This allows an explicit calculation of cor-
relation functions and a demonstration of scaling with a
divergent scaling function.

The paper is organized as follows: In Section II, we dis-
cuss lattice models of driven, passive sliders for both non-
interacting and interacting cases and review the scaling
properties for the two-point correlation function, vis-a-
vis the singular behavior characterizing SCS and FDPO.
In Section III, we construct a variant of the coarse-
grained depth model and demonstrate that the two-point
correlation function exhibits a cusp. We then consider
the effect of a mapping from configurations of this model
(with at most one particle per site) to a model with mul-
tiple occupancies, and demonstrate a divergence of the
scaling function in the new model. Thus, the cusp sin-
gularity - the hallmark of FDPO - contains the seeds of
a divergence in the mapped model, the characteristic of
SCS.

II. SLIDING PARTICLES ON FLUCTUATING
SURFACES: A SURVEY

In this section, we summarize recent work on the prob-
lem of passive particles sliding under gravity on stochas-
tically evolving surfaces [5-16]. The surfaces under con-
sideration are taken to evolve according to the Kardar-
Parisi-Zhang (KPZ) and the Edwards-Wilkinson (EW)
dynamics. Apart from the effect of gravity, the particles

also have a random noise acting on them. The nature
of the interaction between particles is an important con-
sideration and has a significant impact on the behavior
of the system. Two cases were considered - hard core
repulsion and no interaction at all, ¢.e., noninteracting
particles. In both cases, one sees a clustering of parti-
cles and finds strong fluctuations. However, the nature
of clustering depends strongly on whether we have hard-
core repulsion, which allows a finite occupancy, or no
interaction, which allows for arbitrarily high particle oc-
cupancies.

1. Noninteracting Particles

Let us first consider the KPZ equation for an evolving
surface:

O =vV2h + é(Vh)2 + Ch (2, 1), (1)
ot 2

which describes an evolving height field h(Z,t). (, is
a Gaussian white noise satisfying ((p(Z,¢)(p (7, t")) =
2Dy,0%(# — #)6(t — t'). This equation contains the non-
linear term %(Vh)?, which breaks the h — —h symme-
try and allows for the possibility of the surface moving
in the direction of particle motion or against it. The
transformation @ = —Vh maps the above equation (with
A = 1) to the Burgers equation for a compressible fluid, ¥
being the velocity field of the fluid. The problem of slid-
ing particles on surfaces then becomes the passive scalar
problem of fluid dynamics, which describes the motion
of an advected field in a stirred fluid.

Consider noninteracting particles that slide on the
fluctuating surface described by Eq. (1). These parti-
cles sense the local slope and tend to move downwards,
as if subject to gravity. In addition to this downward
movement, the particles are also subject to random white
noise. This problem was first studied by Drossel and
Kardar [12,13]. A useful approach to study this coupled
surface-particle system is to study a lattice model by us-
ing Monte-Carlo simulations [8,9,12,13]. The model of
Refs. 8 and 9 consists of a flexible one-dimensional lat-
tice in which particles reside on sites while the links or
bonds between successive lattice sites are also dynami-
cal variables that denote local slopes of the surface. The
asymmetry of the KPZ dynamics allows for two kinds
of dynamics, namely, advection and anti-advection, with
particles moving in the direction and against the direc-
tion of surface motion, respectively. The possibility of
different time scales of particle and surface motion was
modeled by using the ratio w of the particle to surface
update rates. In particular, the limit w — 0, with L held
fixed, corresponds to the adiabatic limit of the problem
where particles move on a static, disordered surface, and
the steady state is a thermal equilibrium state. Exact
analytic results can be obtained in this limit [9].
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We will begin by describing the results for the 1 — d
KPZ advection case described above. While various as-
pects of the steady state have been studied [8,9, 12—
16], we restrict our discussion here to the relevant static
quantities. For finite values of w, Monte-Carlo simula-
tions were used to evaluate the two point density-density
correlation function G(r, L) = (nn;.)r, where n; is the
number of particles at site i. Numerical data for vari-
ous system sizes L were shown to be consistent with the
scaling form

G(r,L) ~ %Y (%) . 2)

Here, 11 ~ 1/2, and the scaling function Y (y) has a power
law divergence Y (y) ~y~" as y — 0, with v ~ 3/2.

The divergence of the scaling function indicates a
strong clustering of particles while the scaling with sys-
tem size implies that there are particle clusters separated
from each other on the scale of the system size. This scal-
ing and divergence are the defining features of a new kind
of steady state - the strong clustering state or SCS. Fur-
ther, the system shows strong fluctuations in the steady
state. These were characterized using the variance %2 of
the fraction of sites N, /L with occupancy n. We found
that in the limit L — oo, the ratio ¥/{\,,/L) approaches
a constant. This is to be contrasted with a normal, self-
averaging system where this ratio vanishes in the limit
L — .

Let us now turn to the limiting adiabatic case, w — 0,
corresponding to an equilibrium system of particles at
inverse temperature [ distributed on a disordered, sta-
tionary surface. Relevant quantities were calculated by
averaging over all surface configurations, as in the Sinai
model [17]. For the KPZ equation in one dimension,
the distribution of heights in the stationary state is de-
scribed by Prob[{h(r)}] o exp [-1 [h*(r')dr']. Thus,
any stationary configuration can be thought of as the
trace of a random walker in space evolving via the equa-
tion dh(r)/dr = &(r), where the white noise £(r) has zero
mean and is delta correlated, (£(r)&(r")) = 0(r—r'). This
is exactly the surface considered in the Sinai model. The
probability p(r) = n,/L of finding the particle at posi-
tion r is given by p(r) = exp[—Fh(r)]/Z with the parti-
tion function Z = fOL exp[—ph(r')]dr'. One can then cal-
culate the correlation function G(r, L)/L? = {(p(ro)p(r +
r0)) by following the calculation of Comtet and Texier
[18]. In the scaling limit, r — co, L — oo with the ratio
y = r/L fixed, one finds G(r, L) ~ L~Y/2Y (r/L), where
the scaling function Y (y) diverges near the origin as a
power law with a power 3/2. Surprisingly, this equilib-
rium result reproduces very well the scaling exponents
and scaling functions found for the correlation function
in the strongly nonequilibrium case w = 1.

The phenomenon of clustering and SCS is not re-
stricted to the KPZ advection case. One can also con-
sider other driving surfaces - the Edwards-Wilkinson
(EW) surface where the nonlinear term of Eq. (1) is ab-
sent or the KPZ anti-advection case where the particles

move opposite to the KPZ surface motion. In both of
these cases, the steady state was seen to be an SCS with
the same scaling form as in Eq. (2), but with different
exponents [8,9]. We found that 4 = 0 in both these
cases while v ~ 1/3 and 2/3 for the KPZ anti-advection
and the EW cases, respectively. These values indicate
clustering is less pronounced than in the KPZ advection
case.

To summarize, the system of noninteracting particles
sliding on fluctuating surfaces shows interesting behavior
with a high degree of clustering of particles and very large
fluctuations in the distribution of particles from one con-
figuration to another. The results agree very well with
results for an equilibrium model with quenched disor-
der, suggesting that the action of nonequilibrium surface
fluctuations is similar to that of temperature in the equi-
librium problem.

2. Particles Interacting by Hard-core Repulsion

We now consider particles that are again driven by
fluctuating surfaces as in the previous section, but which
have a hard-core interaction amongst themselves. This
problem has been well studied, and many aspects are
understood [5-7, 10]. We will concern ourselves here
again with the static properties. As for noninteract-
ing particles, Monte-Carlo simulations were performed
to study steady-state characteristics [5,6]. The dynami-
cal rules for the Monte-Carlo were similar to those dis-
cussed above, but with the additional restriction that a
particle could not move to an already occupied site. The
occupancy is described by an Ising variable o; with value
—1 when a given site ¢ is unoccupied and +1 when it is
occupied. The number of particles is taken to be L/2.

The quantity of interest is the two-point correlation
function C(r,L) = (0;0:4r). Numerical simulations
show that C is a scaling function of » And L:

C(r,L) ~ m? [1 —a (%)a} (3)

as r/L — 0. The scaling function shows a cuspy fall
from a finite intercept, with cusp exponents a ~ 0.25
for driving by a KPZ surface and a ~ 0.5 for an EW
surface. The value of the intercept is a measure of long-
range order [6,11], and the system can be thought of as
a phase-ordered system similar to a conserved-spin Ising
system. The difference is that in this case, the scaling
function shows a cusp rather than the linear Porod law
decay (a = 1) characteristic of regular phase-ordered sys-
tems, implying that there are no sharp interfaces between
phases. The other feature of the system is the occurrence
of strong macroscopic fluctuations, characterized by us-
ing the lowest wave-vector Fourier components of the
density profile [6,11], thus the name fluctuation domi-
nated phase ordering (FDPO) for this sort of state. The
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clustering of particles in FDPO is milder than that for
SCS, an outcome of interparticle interactions. In 2 — d,
the steady state of particles sliding on a KPZ surface was
found to be of the FDPO variety, too [7].

To characterize FDPO analytically, simpler models
known as Coarse-grained Depth (CD) models were de-
fined in Refs. 5 and 6. In the CD models, one con-
siders an evolving surface, and for each surface config-
uration, one places an imaginary cut or reference line,
below which all sites are occupied (o; = 1) and above
which all sites are empty (o; = —1). One can then
compute the correlation function as before. Different
prescriptions for choosing the reference level, discussed
below, define various kinds of CD models (CD1, CD2,
CD3, ---) [6]. The CD1 model turns out to have an
uninteresting steady state [6] and will not be discussed
here. The CD2 and CD3 models are discussed in the next
paragraph while the CD4 model is defined in Section III.
Analytical results can be obtained for CD models and al-
low demonstration of FDPO behavior, with correlation
functions showing scaling, as for the sliding particles dis-
cussed above. The CD models can be thought of as the
very-low-temperature limit of the sliding particle model,
where the particles find the deepest empty sites and oc-
cupy them up to a prescribed height, in the adiabatic
limit of a frozen surface configuration. As in the case of
SCS, this equilibrium, disordered system describes the
nonequilibrium FDPO state very well.

For the CD2 model, one considers the cut to be always
at the height of the site ¢ = 0. As the configurations of
al—d KPZ or an EW surface can be thought of as the
trajectories of a random walk, the length of successive
stretches of sites above the cut (¢ = 1) and below the
cut (¢ = —1) are distributed in the same way as the first
returns to the origin of a random walk. Thus, the proba-
bility distribution P(!) for the length [ of the stretches of
occupied and unoccupied sites is given by P(l) ~ 173/2,
One can, thus, calculate the correlation function C(r) by
using the fact that successive intervals of occupied sites
(up spins) and unoccupied sites (down spins) are dis-
tributed independently of each other and according to a
power law. We found that C(r) had the same form as
in Eq. (3) above with o = 1/2, which matched very well
the numerical result for the EW surface with sliding par-
ticles. The other model considered was the CD3 model
where the reference line is taken at the level of the instan-
taneous average height. The distribution of the lengths
of spin up/down clusters was computed using Monte-
Carlo simulations, P(I) ~ =% with § ~ 3/2, as for the
CD2 model. To calculate the correlation function analyt-
ically, one can make the approximation that successive
clusters are distributed independently of each other - the
independent interval approximation (ITA) [19]. Using the
ITA, the correlation function was found once again to be-
have as in Eq. (3) with @ =2 — 60 = 1/2, as in the CD2
model. This result was verified by numerical simulations.

To summarize, the FDPO steady state for hard-
core interacting particles sliding on a fluctuating sur-

face shows clustering of particles and strong fluctuations.
The clustering was characterized by a cusp in the scaling
function describing the correlation function. One can un-
derstand these results for the nonequilibrium model by
studying the simpler CD models, which correspond to
filling a disordered landscape up to a prescribed level.

III. MAPPING FROM SINGLE-PARTICLE
TO MULTIPARTICLE OCCUPANCIES:
FROM FDPO TO SCS

As we have seen, the simple CD models gave consid-
erable insight into the nonequilibrium FDPO state. An
analytic treatment was possible as the cluster size distri-
bution could be connected to the two-point correlation
function, within the independent interval approximation.
The result - a scaling function with a cusp singularity - is
the hallmark of the FDPO steady state. This leads us to
ask: Is it possible for us to similarly find a simple system
that helps to shed light on the SCS steady state whose
characteristic is a divergence of the scaling function for
small argument?

We take a clue from a simple mapping that connects
the simple exclusion process to the zero-range process
(ZRP) [20]. The connection takes a system of particles
interacting by hard-core repulsion, with a maximum oc-
cupancy of one particle per site, to a system with no limit
on occupancy. We implement a similar mapping on the
CD model and show that the resulting model with mul-
tiparticle occupancy has a divergent scaling function of
the SCS variety.

The mapping works as follows: for a given CD con-
figuration, every unoccupied site preceding a cluster of
particles is assigned a number of particles equal to that
present in the particle cluster; the particle cluster itself
is erased (Figures 1(c) and 1(d)). This procedure can be
interpreted as shifting the particle clusters from a hor-
izontal to a vertical position and placing this vertical
cluster on the previous site. The number of lattice sites
in the new model is then equal to the number of empty
sites in the CD configuration. We calculate the two-point
density-density correlation function for this new mapped
model and demonstrate r /L scaling with a divergence for
small argument - defining features of the SCS.

Let us consider a typical configuration of the CD model
with alternating clusters of particles and holes (empty
sites) as in Figure 1(c). The length [ of these stretches
is distributed as a power law P(l) ~ [~%, where, for the
CD models under consideration, § = 3/2. We take the
average particle density to be the same as the average
hole density. As illustrated in Figures 1(c) and 1(d),
each configuration of a CD model can be mapped to a
configuration of a vertical-CD (henceforth, VCD) model
with no limit on the occupancy. The two-point density-
density correlation function in the VCD model is given
by
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Fig. 1. Configurations of the CD4 and corresponding VCD
model: (a) a typical configuration of a 1 —d KPZ or EW
surface, (b) L/2 particles placed at the deepest sites of the
lattice, (c) the resulting CD4 configuration, and (d) the VCD
configuration obtained through the mapping.

G(r,L) = (n()n( +7))L (4)

// n(i+r)P*(n(i),

Here, n(i) and n(i + r) are the numbers of particles at
sites ¢ and ¢+ 7. The angular brackets denote an average
over configurations, and P*(n(i),n(i + 7)) is the joint
probability that there are n(7) particles at site i and n(i+
) particles at site i + r. Now, P* is given by

P li),nli+) = PDQ) P (r)Qn(i+1), ()
where P (i) is the probability that a given site i is oc-
cupied and P»(r) is the probability that the site at a
distance r from site ¢ is occupied, given that site ¢ is oc-
cupied. Q(n(j)) is the probability that the occupancy of
site j is n(j), given that it is occupied.

The probability P;(i) can easily be calculated from
the lattice model by evaluating the average number of
occupied sites divided by the system size. The average
number of occupied sites can be calculated by dividing
the system size by the average length (I) of the particle
clusters in the original CD model,

n(i+r))dn(i)dn(i+r).

L 9—2

because (I) can be shown to be proportional to L?~?
by using (I) = [IP(l)dl in the limit of large . Here,
P(1) ~179O(L —1) is the probability distribution for the
length of the clusters in the CD model and 1 < 6 < 2.
The O function enforces a cutoff at the system size.

We now calculate P (r), the probability that site i+ is
occupied given that site ¢ is occupied. Consider the seg-
ment of length r following site ¢ in the VCD model. This
segment is composed of n consecutive hole segments in
the underlying CD model, where n is a number between
1 and r. Thus, Py(r) is the same as the probability that
the length of these n segments in the underlying CD
model adds up to exactly r,

= (), (7)

Pyi(i) =

-941-

/?ﬂl/‘db dls - - /‘ dl,, ®)
l1 l2 2

XP(ll P(lz —ll)P(lg —lz) TL(T‘—ln 1)

Note that we have gone to a continuum description be-
cause we are working with separations much larger than
the lattice constant. Proceeding as in Ref. 6, we de-
fine the Laplace transform of a function f(z) as f(s) =
Jy" dwe~** f(x) and take the Laplace transform on both
sides of Eq. (8), yielding

= P(s)", (9)

where

P (s)
where % (s) and P(s) are the Laplace transforms of p (r)
and P(r), respectively. Thus,

p g)r+1
an IO {Olais (10)
1—P(s)
where P,(s) is the Laplace transform of Py(r). In the
limit of large r, we have
- P(s
Py(s) = #, (11)
1—P(s)

and in the range 1/L < s < 1, we can expand P(s) ~
1 — bs’ ', which gives

- 1—bs?! 1

Py(s) = =1 N i (12)
Taking the inverse Laplace transform gives

Py(r) = ayrf=2. (13)

Since our mapping simply flips the particles from a hori-
zontal to a vertical position, Q(n(i)) ~ n(i)~?©(L—n(i))
and Q(n(i+r)) ~ n(i+r)"?O(L—n(i+r)). Thus, finally,

L—e pL—¢
G(r,L) = ar9_2L9_2/ / x Ty
xO(L — x — y)dzdy, (14)

where vy = 0 — 1, x = n(i), y = n(i +r), and € is a
cutoff coming from the finite lattice spacing. Solving
the above integral leads to an expression involving the
Gauss Hypergeometric function o F; (a, b; c; z). For large
L, the leading-order contribution from this integral can
be shown to be L*~2¢_ implying

-2

G(r,L) = a/r!=2L724720 = a'(%)a . (15)
We, thus, see that the correlation function is of the SCS
form. We confirmed this result numerically for a partic-
ular CD model, the CD4 model, which is defined below.
For the CD4 model, we consider a 1 — d KPZ or EW
surface, both of whose surface configurations are known
to be isomorphic to the trajectories of a 1 — d unbiased
random walk, with the displacement of the walk being
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Fig. 2. Scaling of correlation functions of the VCD model.
The inset shows G(r, L) versus r for L = 128,256,512 and
1024. The main figure shows the scaling collapse when the
same data are plotted versus r/L. The straight line represents
a power law with exponent —0.5.

the height of the surface. For each configuration of 2L
lattice sites, we fill the lattice up with L particles, start-
ing from the bottommost site and moving upwards in
height till all the particles are exhausted (Figures 1(a)
and 1(b)). The filled sites are again assigned a spin vari-
able +1, and the unfilled sites —1. Thus, we have again
divided the lattice into two portions with the bottom
half filled with particles and the top half empty. While
filling up, the number of available sites at the topmost
height generally exceeds the number of particles that re-
main to be assigned. To lift the degeneracy, we assign
particles randomly to the available sites. This procedure
is repeated over many configurations, and the results av-
eraged. Rather than dynamically evolving the surface,
we drew independent random walk trajectories so as to
generate uncorrelated surface configurations.

We monitored the two-point correlation function C(r)
of the CD4 model and found that it showed a behavior
similar to Eq. (3) with @ = 0.5. Further, the probabil-
ity distribution for the length of the occupied and the
unoccupied clusters was given by P(l) ~ 173/, as for
the CD2 and CD3 models discussed in the previous sec-
tion. Thus, in common with these CD models, the CD4
model displays FDPO. The reason for choosing the CD4
model in the present study is that it leads to a VCD
model with the desirable feature of a strictly conserved
number of sites and particles. Figure 2 shows the result
of the numerical simulation. We see that the two-point
density-density correlation in the VCD model is a scaling

function of separation r and system size L and that the
scaling function diverges near the origin with an expo-
nent ~ 1/2. This agrees well with the analytic prediction
of Eq. (15) on setting § = 3/2 and verifies the occurrence
of SCS in the mapped VCD version of the model.

To summarize, we have shown a connection between
fluctuation-dominated phase ordereing and strong clus-
tering states: Configurations of a CD model, whose
scaled correlations show a cusp singularity of the FDPO
type, can be transformed, via a simple mapping, into
configurations of a system with multiparticle occupan-
cies, whose scaled correlations show a divergence of a
SCS variety.
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