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The steady state reached by a system of particles sliding down a uctuating surface has interestingproperties. Particle clusters form and break rapidly, leading to a broad distribution of sizes andlarge uctuations. The density-density correlation function is a singular scaling function of theseparation and system size. A simple mapping is shown to take a con�guration of sliding hard-coreparticles with mutual exclusion (a system which shows a cusp singularity) to a con�guration withmultiparticle occupancy. For the mapped system, a calculation of the correlation function showsthat it is of the same scaling form again, but with a stronger singularity (a divergence) of the sortobserved earlier for noninteracting passive particles.
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I. INTRODUCTION

Driven di�usive systems consist of many particles,with individual particles undergoing a di�usive motionapart from being inuenced by interparticle interactionsand external forcing, which drives the system into anonequilibrium state. Examples range from stirred u-ids on the one hand, to current-carrying systems, such asvehicular and pedestrian tra�c, on the other. Attemptsat theoretical modeling of such systems range from set-ting up and trying to solve continuum equations likethe Navier-Stokes equations for uids to studying latticemodels like the asymmetric exclusion process, a simplemodel for directed motion of particles with an exclusionconstraint. The theoretical challenge is to describe themacroscopic properties of these nonequilibrium systemsin the absence of a general prescription that speci�esthe weights of microscopic con�gurations in the steadystate, akin to the Boltzmann-Gibbs prescription for equi-librium statistical mechanics.The coupling of two or more driven di�usive systemsto each other can give rise to complex and interestingbehavior. This is so even when the coupling is unidirec-tional; i.e., one of the driven �elds evolves autonomouslyand drives the other (passive) �eld. An example is theproblem of passive scalars, like ink or dye, advected bythe streamlines of a stirred uid [1]. The nontrivial na-ture of the passive scalar problem arises from the fact
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that besides being driven by the uid, the passive par-ticles also di�use; this allows passive particles to jumpfrom one advecting streamline to another, leading to anintricate behavior of the passive density. Of course, thenature of the driving �eld is of great importance for theultimate distribution of the scalar. For instance, pas-sive particles driven by incompressible uids (e:g:, inkin water) tend to spread out and mix in the large-timelimit. However, if the uid in question is compressible,the behavior can change drastically, and it is possiblefor the particles to cluster together in dynamic clumpsrather than reach a homogeneous state [2]. The insta-bility of a homogeneous state to clustering or clumpinghas been discussed earlier, both in the context of drivingby compressible uids and separately by allowing for theinertia of driven particles, which allows them to deviatefrom strictly following the streamlines [2{4]. It is clearlyof interest to characterize the steady states in such sit-uations, where there is a broad distribution of clustersizes under conditions of rapid making and breaking ofindividual clusters.This sort of dynamical steady state, in which par-ticle clusters constantly form and break, has recentlybeen studied in another related context, namely, parti-cles sliding down uctuating surfaces, which themselvesare driven systems [5{11]. In a qualitative sense, thestate is quite di�erent for the cases of noninteractingpassive particles [8,9] and passive particles with mutualhard-core exclusion interactions [5{7,10]. In the formercase, there is a large degree of clumping accompanied bystrong uctuations, as large, concentrated clusters can
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form and break; this state is referred to as a strong clus-tering state (SCS) [9]. In the latter case, mutual ex-clusion prevents pile-ups of particles at the same spatiallocation. The state turns out to have long-range order asin phase-ordered systems familiar from equilibrium con-texts. However, unlike equilibrium systems, uctuationsin this case remain very strong even in the thermody-namic limit hence the appellation uctuation-dominatedphase ordering (FDPO) [6]. At a quantitative level, thedi�erences between the two cases are captured by thetwo-point density-density correlation function. Numeri-cal simulations show that for SCS, as well as for FDPO,the correlation function is a scaling function of separationand system size. However, the scaling functions are quitedi�erent in the two cases, being characterized by di�er-ent sorts of singularities for small values of the scalingargument: a divergence for the case of SCS and a cuspsingularity for the case of FDPO.Beyond the numerical results, it is useful to have an-alytical treatments for simpli�ed models, in order to ex-plicitly demonstrate the existence of scaling and singu-larities of the scaling function. Such a treatment wascarried out for FDPO by considering the properties of acoarse-grained depth model of the surface [5{7,10]. Theresulting scaling function shows a cusp singularity. Theprincipal new result reported in this paper is that a sim-ple mapping takes a con�guration of the FDPO steadystate in such a model to a con�guration that is of theSCS variety. This allows an explicit calculation of cor-relation functions and a demonstration of scaling with adivergent scaling function.The paper is organized as follows: In Section II, we dis-cuss lattice models of driven, passive sliders for both non-interacting and interacting cases and review the scalingproperties for the two-point correlation function, vis-�a-vis the singular behavior characterizing SCS and FDPO.In Section III, we construct a variant of the coarse-grained depth model and demonstrate that the two-pointcorrelation function exhibits a cusp. We then considerthe e�ect of a mapping from con�gurations of this model(with at most one particle per site) to a model with mul-tiple occupancies, and demonstrate a divergence of thescaling function in the new model. Thus, the cusp sin-gularity - the hallmark of FDPO - contains the seeds ofa divergence in the mapped model, the characteristic ofSCS.

II. SLIDING PARTICLES ON FLUCTUATINGSURFACES: A SURVEY
In this section, we summarize recent work on the prob-lem of passive particles sliding under gravity on stochas-tically evolving surfaces [5{16]. The surfaces under con-sideration are taken to evolve according to the Kardar-Parisi-Zhang (KPZ) and the Edwards-Wilkinson (EW)dynamics. Apart from the e�ect of gravity, the particles

also have a random noise acting on them. The natureof the interaction between particles is an important con-sideration and has a signi�cant impact on the behaviorof the system. Two cases were considered - hard corerepulsion and no interaction at all, i.e., noninteractingparticles. In both cases, one sees a clustering of parti-cles and �nds strong uctuations. However, the natureof clustering depends strongly on whether we have hard-core repulsion, which allows a �nite occupancy, or nointeraction, which allows for arbitrarily high particle oc-cupancies.

1. Noninteracting Particles
Let us �rst consider the KPZ equation for an evolvingsurface:
@h@t = �r2h+ �2 (rh)2 + �h(~x; t); (1)

which describes an evolving height �eld h(~x; t). �h isa Gaussian white noise satisfying h�h(~x; t)�h(~x0; t0)i =2Dh�d(~x� ~x0)�(t� t0). This equation contains the non-linear term �2 (rh)2, which breaks the h ! �h symme-try and allows for the possibility of the surface movingin the direction of particle motion or against it. Thetransformation ~v = �rh maps the above equation (with� = 1) to the Burgers equation for a compressible uid, ~vbeing the velocity �eld of the uid. The problem of slid-ing particles on surfaces then becomes the passive scalarproblem of uid dynamics, which describes the motionof an advected �eld in a stirred uid.Consider noninteracting particles that slide on theuctuating surface described by Eq. (1). These parti-cles sense the local slope and tend to move downwards,as if subject to gravity. In addition to this downwardmovement, the particles are also subject to random whitenoise. This problem was �rst studied by Drossel andKardar [12,13]. A useful approach to study this coupledsurface-particle system is to study a lattice model by us-ing Monte-Carlo simulations [8,9,12,13]. The model ofRefs. 8 and 9 consists of a exible one-dimensional lat-tice in which particles reside on sites while the links orbonds between successive lattice sites are also dynami-cal variables that denote local slopes of the surface. Theasymmetry of the KPZ dynamics allows for two kindsof dynamics, namely, advection and anti-advection, withparticles moving in the direction and against the direc-tion of surface motion, respectively. The possibility ofdi�erent time scales of particle and surface motion wasmodeled by using the ratio ! of the particle to surfaceupdate rates. In particular, the limit ! ! 0, with L held�xed, corresponds to the adiabatic limit of the problemwhere particles move on a static, disordered surface, andthe steady state is a thermal equilibrium state. Exactanalytic results can be obtained in this limit [9].
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We will begin by describing the results for the 1 � dKPZ advection case described above. While various as-pects of the steady state have been studied [8, 9, 12{16], we restrict our discussion here to the relevant staticquantities. For �nite values of !, Monte-Carlo simula-tions were used to evaluate the two point density-densitycorrelation function G(r; L) � hnini+riL where ni is thenumber of particles at site i. Numerical data for vari-ous system sizes L were shown to be consistent with thescaling form
G(r; L) � 1L�Y

� rL
� : (2)

Here, � ' 1=2, and the scaling function Y (y) has a powerlaw divergence Y (y) � y�� as y ! 0, with � ' 3=2.The divergence of the scaling function indicates astrong clustering of particles while the scaling with sys-tem size implies that there are particle clusters separatedfrom each other on the scale of the system size. This scal-ing and divergence are the de�ning features of a new kindof steady state - the strong clustering state or SCS. Fur-ther, the system shows strong uctuations in the steadystate. These were characterized using the variance �2 ofthe fraction of sites Nn=L with occupancy n. We foundthat in the limit L!1, the ratio �=hNn=Li approachesa constant. This is to be contrasted with a normal, self-averaging system where this ratio vanishes in the limitL!1.Let us now turn to the limiting adiabatic case, ! ! 0,corresponding to an equilibrium system of particles atinverse temperature � distributed on a disordered, sta-tionary surface. Relevant quantities were calculated byaveraging over all surface con�gurations, as in the Sinaimodel [17]. For the KPZ equation in one dimension,the distribution of heights in the stationary state is de-scribed by Prob[fh(r)g] / exp �� 12 R h2(r0)dr0�. Thus,any stationary con�guration can be thought of as thetrace of a random walker in space evolving via the equa-tion dh(r)=dr = �(r), where the white noise �(r) has zeromean and is delta correlated, h�(r)�(r0)i = �(r�r0). Thisis exactly the surface considered in the Sinai model. Theprobability �(r) � nr=L of �nding the particle at posi-tion r is given by �(r) = exp[��h(r)]=Z with the parti-tion function Z = R L0 exp[��h(r0)]dr0. One can then cal-culate the correlation function G(r; L)=L2 = h�(r0)�(r+r0)i by following the calculation of Comtet and Texier[18]. In the scaling limit, r !1, L!1 with the ratioy = r=L �xed, one �nds G(r; L) � L�1=2Y (r=L), wherethe scaling function Y (y) diverges near the origin as apower law with a power 3=2. Surprisingly, this equilib-rium result reproduces very well the scaling exponentsand scaling functions found for the correlation functionin the strongly nonequilibrium case ! = 1.The phenomenon of clustering and SCS is not re-stricted to the KPZ advection case. One can also con-sider other driving surfaces - the Edwards-Wilkinson(EW) surface where the nonlinear term of Eq. (1) is ab-sent or the KPZ anti-advection case where the particles

move opposite to the KPZ surface motion. In both ofthese cases, the steady state was seen to be an SCS withthe same scaling form as in Eq. (2), but with di�erentexponents [8, 9]. We found that � = 0 in both thesecases while � ' 1=3 and 2=3 for the KPZ anti-advectionand the EW cases, respectively. These values indicateclustering is less pronounced than in the KPZ advectioncase.To summarize, the system of noninteracting particlessliding on uctuating surfaces shows interesting behaviorwith a high degree of clustering of particles and very largeuctuations in the distribution of particles from one con-�guration to another. The results agree very well withresults for an equilibrium model with quenched disor-der, suggesting that the action of nonequilibrium surfaceuctuations is similar to that of temperature in the equi-librium problem.

2. Particles Interacting by Hard-core Repulsion
We now consider particles that are again driven byuctuating surfaces as in the previous section, but whichhave a hard-core interaction amongst themselves. Thisproblem has been well studied, and many aspects areunderstood [5{7, 10]. We will concern ourselves hereagain with the static properties. As for noninteract-ing particles, Monte-Carlo simulations were performedto study steady-state characteristics [5,6]. The dynami-cal rules for the Monte-Carlo were similar to those dis-cussed above, but with the additional restriction that aparticle could not move to an already occupied site. Theoccupancy is described by an Ising variable �i with value�1 when a given site i is unoccupied and +1 when it isoccupied. The number of particles is taken to be L=2.The quantity of interest is the two-point correlationfunction C(r; L) � h�i�i+ri. Numerical simulationsshow that C is a scaling function of r And L:
C(r; L) � m2 h1� a� rL

��i (3)
as r=L ! 0. The scaling function shows a cuspy fallfrom a �nite intercept, with cusp exponents � ' 0:25for driving by a KPZ surface and � ' 0:5 for an EWsurface. The value of the intercept is a measure of long-range order [6,11], and the system can be thought of asa phase-ordered system similar to a conserved-spin Isingsystem. The di�erence is that in this case, the scalingfunction shows a cusp rather than the linear Porod lawdecay (� = 1) characteristic of regular phase-ordered sys-tems, implying that there are no sharp interfaces betweenphases. The other feature of the system is the occurrenceof strong macroscopic uctuations, characterized by us-ing the lowest wave-vector Fourier components of thedensity pro�le [6,11], thus the name uctuation domi-nated phase ordering (FDPO) for this sort of state. The
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clustering of particles in FDPO is milder than that forSCS, an outcome of interparticle interactions. In 2 � d,the steady state of particles sliding on a KPZ surface wasfound to be of the FDPO variety, too [7].To characterize FDPO analytically, simpler modelsknown as Coarse-grained Depth (CD) models were de-�ned in Refs. 5 and 6. In the CD models, one con-siders an evolving surface, and for each surface con�g-uration, one places an imaginary cut or reference line,below which all sites are occupied (�i = 1) and abovewhich all sites are empty (�i = �1). One can thencompute the correlation function as before. Di�erentprescriptions for choosing the reference level, discussedbelow, de�ne various kinds of CD models (CD1, CD2,CD3, � � �) [6]. The CD1 model turns out to have anuninteresting steady state [6] and will not be discussedhere. The CD2 and CD3 models are discussed in the nextparagraph while the CD4 model is de�ned in Section III.Analytical results can be obtained for CD models and al-low demonstration of FDPO behavior, with correlationfunctions showing scaling, as for the sliding particles dis-cussed above. The CD models can be thought of as thevery-low-temperature limit of the sliding particle model,where the particles �nd the deepest empty sites and oc-cupy them up to a prescribed height, in the adiabaticlimit of a frozen surface con�guration. As in the case ofSCS, this equilibrium, disordered system describes thenonequilibrium FDPO state very well.For the CD2 model, one considers the cut to be alwaysat the height of the site i = 0. As the con�gurations ofa 1� d KPZ or an EW surface can be thought of as thetrajectories of a random walk, the length of successivestretches of sites above the cut (� = 1) and below thecut (� = �1) are distributed in the same way as the �rstreturns to the origin of a random walk. Thus, the proba-bility distribution P (l) for the length l of the stretches ofoccupied and unoccupied sites is given by P (l) � l�3=2.One can, thus, calculate the correlation function C(r) byusing the fact that successive intervals of occupied sites(up spins) and unoccupied sites (down spins) are dis-tributed independently of each other and according to apower law. We found that C(r) had the same form asin Eq. (3) above with � = 1=2, which matched very wellthe numerical result for the EW surface with sliding par-ticles. The other model considered was the CD3 modelwhere the reference line is taken at the level of the instan-taneous average height. The distribution of the lengthsof spin up/down clusters was computed using Monte-Carlo simulations, P (l) � l�� with � ' 3=2, as for theCD2 model. To calculate the correlation function analyt-ically, one can make the approximation that successiveclusters are distributed independently of each other - theindependent interval approximation (IIA) [19]. Using theIIA, the correlation function was found once again to be-have as in Eq. (3) with � = 2 � � = 1=2, as in the CD2model. This result was veri�ed by numerical simulations.To summarize, the FDPO steady state for hard-core interacting particles sliding on a uctuating sur-

face shows clustering of particles and strong uctuations.The clustering was characterized by a cusp in the scalingfunction describing the correlation function. One can un-derstand these results for the nonequilibrium model bystudying the simpler CD models, which correspond to�lling a disordered landscape up to a prescribed level.

III. MAPPING FROM SINGLE-PARTICLETO MULTIPARTICLE OCCUPANCIES:FROM FDPO TO SCS
As we have seen, the simple CD models gave consid-erable insight into the nonequilibrium FDPO state. Ananalytic treatment was possible as the cluster size distri-bution could be connected to the two-point correlationfunction, within the independent interval approximation.The result - a scaling function with a cusp singularity - isthe hallmark of the FDPO steady state. This leads us toask: Is it possible for us to similarly �nd a simple systemthat helps to shed light on the SCS steady state whosecharacteristic is a divergence of the scaling function forsmall argument?We take a clue from a simple mapping that connectsthe simple exclusion process to the zero-range process(ZRP) [20]. The connection takes a system of particlesinteracting by hard-core repulsion, with a maximum oc-cupancy of one particle per site, to a system with no limiton occupancy. We implement a similar mapping on theCD model and show that the resulting model with mul-tiparticle occupancy has a divergent scaling function ofthe SCS variety.The mapping works as follows: for a given CD con-�guration, every unoccupied site preceding a cluster ofparticles is assigned a number of particles equal to thatpresent in the particle cluster; the particle cluster itselfis erased (Figures 1(c) and 1(d)). This procedure can beinterpreted as shifting the particle clusters from a hor-izontal to a vertical position and placing this verticalcluster on the previous site. The number of lattice sitesin the new model is then equal to the number of emptysites in the CD con�guration. We calculate the two-pointdensity-density correlation function for this new mappedmodel and demonstrate r=L scaling with a divergence forsmall argument - de�ning features of the SCS.Let us consider a typical con�guration of the CDmodelwith alternating clusters of particles and holes (emptysites) as in Figure 1(c). The length l of these stretchesis distributed as a power law P (l) � l��, where, for theCD models under consideration, � = 3=2. We take theaverage particle density to be the same as the averagehole density. As illustrated in Figures 1(c) and 1(d),each con�guration of a CD model can be mapped to acon�guration of a vertical-CD (henceforth, VCD) modelwith no limit on the occupancy. The two-point density-density correlation function in the VCD model is givenby
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Fig. 1. Con�gurations of the CD4 and corresponding VCDmodel: (a) a typical con�guration of a 1 � d KPZ or EWsurface, (b) L=2 particles placed at the deepest sites of thelattice, (c) the resulting CD4 con�guration, and (d) the VCDcon�guration obtained through the mapping.

G(r; L) � hn(i)n(i+ r)iL (4)
= Z L

0
Z L
0 n(i)n(i+r)P �(n(i); n(i+r))dn(i)dn(i+r):

Here, n(i) and n(i + r) are the numbers of particles atsites i and i+r. The angular brackets denote an averageover con�gurations, and P �(n(i); n(i + r)) is the jointprobability that there are n(i) particles at site i and n(i+r) particles at site i+ r. Now, P � is given by
P �(n(i); n(i+r)) = P1(i)Q(n(i))P2(r)Q(n(i+r)); (5)

where P1(i) is the probability that a given site i is oc-cupied and P2(r) is the probability that the site at adistance r from site i is occupied, given that site i is oc-cupied. Q(n(j)) is the probability that the occupancy ofsite j is n(j), given that it is occupied.The probability P1(i) can easily be calculated fromthe lattice model by evaluating the average number ofoccupied sites divided by the system size. The averagenumber of occupied sites can be calculated by dividingthe system size by the average length hli of the particleclusters in the original CD model,
P1(i) = Lhli=L = a1L��2 (6)

because hli can be shown to be proportional to L2��by using hli = R lP (l)dl in the limit of large l. Here,P (l) � l���(L� l) is the probability distribution for thelength of the clusters in the CD model and 1 < � < 2.The � function enforces a cuto� at the system size.We now calculate P2(r), the probability that site i+r isoccupied given that site i is occupied. Consider the seg-ment of length r following site i in the VCD model. Thissegment is composed of n consecutive hole segments inthe underlying CD model, where n is a number between1 and r. Thus, P2(r) is the same as the probability thatthe length of these n segments in the underlying CDmodel adds up to exactly r,
P2(r) = rX

n=1 p
�n(r); (7)

where
p�n(r) =

Z r
0 dl1

Z r
l1 dl2

Z r
l2 dl3 � � �

Z r
ln�2 dln�1 (8)

�P (l1)P (l2 � l1)P (l3 � l2) � � �P (r � ln�1):
Note that we have gone to a continuum description be-cause we are working with separations much larger thanthe lattice constant. Proceeding as in Ref. 6, we de-�ne the Laplace transform of a function f(x) as ~f(s) =R10 dxe�sxf(x) and take the Laplace transform on bothsides of Eq. (8), yielding

~p�n(s) = ~P (s)n; (9)
where ~p�n(s) and ~P (s) are the Laplace transforms of p�n(r)and P (r), respectively. Thus,

~P2(s) = rX
n=1 p

�n(r) = ~P (s)� ~P (s)r+11� ~P (s) (10)
where ~P2(s) is the Laplace transform of P2(r). In thelimit of large r, we have

~P2(s) = ~P (s)1� ~P (s) ; (11)
and in the range 1=L � s � 1, we can expand ~P (s) �1� bs��1, which gives

~P2(s) = 1� bs��1bs��1 � 1bs��1 : (12)
Taking the inverse Laplace transform gives

P2(r) = a2r��2: (13)
Since our mapping simply ips the particles from a hori-zontal to a vertical position, Q(n(i)) � n(i)���(L�n(i))and Q(n(i+r)) � n(i+r)���(L�n(i+r)). Thus, �nally,

G(r; L) = ar��2L��2 Z L��
�

Z L��
� x�y�

��(L� x� y)dxdy; (14)
where  = � � 1, x � n(i); y � n(i + r), and � is acuto� coming from the �nite lattice spacing. Solvingthe above integral leads to an expression involving theGauss Hypergeometric function 2F1(a; b; c; z). For largeL, the leading-order contribution from this integral canbe shown to be L4�2�, implying

G(r; L) = a0r��2L��2L4�2� = a0� rL
���2: (15)

We, thus, see that the correlation function is of the SCSform. We con�rmed this result numerically for a partic-ular CD model, the CD4 model, which is de�ned below.For the CD4 model, we consider a 1 � d KPZ or EWsurface, both of whose surface con�gurations are knownto be isomorphic to the trajectories of a 1 � d unbiasedrandom walk, with the displacement of the walk being
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Fig. 2. Scaling of correlation functions of the VCD model.The inset shows G(r; L) versus r for L = 128; 256; 512 and1024. The main �gure shows the scaling collapse when thesame data are plotted versus r=L. The straight line representsa power law with exponent �0:5.
the height of the surface. For each con�guration of 2Llattice sites, we �ll the lattice up with L particles, start-ing from the bottommost site and moving upwards inheight till all the particles are exhausted (Figures 1(a)and 1(b)). The �lled sites are again assigned a spin vari-able +1, and the un�lled sites �1. Thus, we have againdivided the lattice into two portions with the bottomhalf �lled with particles and the top half empty. While�lling up, the number of available sites at the topmostheight generally exceeds the number of particles that re-main to be assigned. To lift the degeneracy, we assignparticles randomly to the available sites. This procedureis repeated over many con�gurations, and the results av-eraged. Rather than dynamically evolving the surface,we drew independent random walk trajectories so as togenerate uncorrelated surface con�gurations.We monitored the two-point correlation function C(r)of the CD4 model and found that it showed a behaviorsimilar to Eq. (3) with � = 0:5. Further, the probabil-ity distribution for the length of the occupied and theunoccupied clusters was given by P (l) � l�3=2, as forthe CD2 and CD3 models discussed in the previous sec-tion. Thus, in common with these CD models, the CD4model displays FDPO. The reason for choosing the CD4model in the present study is that it leads to a VCDmodel with the desirable feature of a strictly conservednumber of sites and particles. Figure 2 shows the resultof the numerical simulation. We see that the two-pointdensity-density correlation in the VCD model is a scaling

function of separation r and system size L and that thescaling function diverges near the origin with an expo-nent ' 1=2. This agrees well with the analytic predictionof Eq. (15) on setting � = 3=2 and veri�es the occurrenceof SCS in the mapped VCD version of the model.To summarize, we have shown a connection betweenuctuation-dominated phase ordereing and strong clus-tering states: Con�gurations of a CD model, whosescaled correlations show a cusp singularity of the FDPOtype, can be transformed, via a simple mapping, intocon�gurations of a system with multiparticle occupan-cies, whose scaled correlations show a divergence of aSCS variety.
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