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Abstract

We study the steady states of two stochastic lattice models with two species of
particles, where the local mobility of one species depends on the spatial distribution
of the other. The eigenvalues of a 2× 2 matrix of couplings can develop imaginary
parts, and the question arises whether this implies an instability to a macroscopi-
cally different steady state. In the first model, where the mobility depends on the
local density of the other species, we show that the system undergoes macroscopic
phase separation. In the second model, where the mobility depends on the second
derivative of the density of the other species, there is a finite correlation length and
the density is homogeneous on macroscopic scales.

1. Introduction

Interesting effects arise when the time evolutions of two different statistical fields are
coupled, and fluctuations of one field feed into the dynamics of the other. Such effects
arise in several physical systems, for instance, coupled interfaces [1], drifting polymers [2]
and sedimenting colloidal crystals [3, 4]. In this paper, we focus on instabilities that can
arise in coupled-field systems in which the mobility of one species depends on the spatial
distribution of the other.

The instabilities in question arise within a linearized hydrodynamic description, and
we seek to clarify the circumstances under which the final steady state is macroscopically
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different. To this end, we study two lattice models with two species of particles, one on
each sublattice of a one-dimensional lattice. In the first model, the local mobility of one
species depends on the local density of the other, while in the second model the mobility
of one species depends on the second derivative of the density of the other species. We
find that the first model exhibits macroscopic phase separation of an exceptionally robust
sort [4], while in the second model there is a finite correlation length and a homogeneous
macroscopic density.

Before turning to the two-species problem, we briefly recapitulate some well-known
properties of single-species driven diffusive systems.

1.1. Single-Species Driven Diffusive Systems

The simplest models of driven systems consist of lattice gases evolving through probabilis-
tic update rules. A configuration of the system is specified by giving the set of occupation
numbers {ni} for all lattice sites i of a one-dimensional lattice, where ni = 1 if site i is
occupied and 0 if it is not; double occupancy of a site is disallowed. The dynamics is
stochastic: for example, in the well-studied asymmetric exclusion process, each particle
attempts a rightward (leftward) hop to a neighbouring site at rate p(q), but the hop is
actually completed only if the neighbouring site is unoccupied. Other rules for particle
movement (e.g. next neighbour hops, or leapfrogging moves) specify alternative models.

With periodic boundary conditions, the system reaches a steady state which supports
a macroscopic current J0 through the system. J0 depends on the hopping rules and is a
nonlinear function of the overall density ρ0 of particles. For instance, in the asymmetric
exclusion process referred to above, J = (p− q)ρ0(1− ρ0). To learn about the properties
of fluctuations on large length and time scales, we turn to a continuum hydrodynamic
description. An approximate equation of motion for coarse-grained density fluctuations
δρ(x, t) ≡ ρ(x, t) − ρ0 can be derived starting from the continuity equation ∂ρ/∂t +
∂J/∂x = 0. It is assumed that J can be written as the sum of three contributions [5]: a
systematic part given by J0(ρ(x)), a diffusive part −D∂ρ/∂x, and a noisy part η(x) with
〈η(x, t)η(x′t′)〉 = Γδ(x − x′)δ(t − t′). Then expanding J0(ρ(x)) up to quadratic order in
δρ(x), we obtain

∂(δρ)
∂t

=
∂

∂x

[
cδρ+

D∂(δρ)
∂x

+ λ(δρ)2 + η

]
(1)

with c = (∂J/∂ρ)ρ0 and λ = 1
2
(∂2J/∂ρ2)ρ0 . On defining h(x, t) =

∫ x
dx′ δρ(x′, t), Eq.

(1) may be rewritten as

∂h

∂t
= c

∂h

∂x
+ D

∂2h

∂x2
+ λ

(
∂h

∂x

)2

+ η. (2)

This form of the evolution equation also describes a different physical problem, namely the
dynamics of a driven interface [6], in which case h(x, t) represents the height of interface.

The linear term cδρ ≡ c∂h/∂x describes the movement of the pattern of fluctuations
at speed c through the system [7]. It can be eliminated by the Galilean shift x→ x+ ct,
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t→ t, tantamount to moving into a frame of reference in which the wave is stationary. The
remaining terms give rise to the decay of the fluctuation wave in time. A fluctuation of
spatial extent ∆x survives for a time τ ∼ (∆x)z where z is a dynamical critical exponent.
When λ = 0, one finds z = 2 [8], whereas if λ 6= 0, the decay is more rapid and z = 3

2
[5, 6].

1.2. Two-Species Driven Diffusive Systems

We now turn to the case of two driven coupled fields. The development of approximate
hydrodynamic equations proceeds much as before, but as we will see below, the linear
first derivative terms can have much more drastic consequences.

Let nσ(x, t) and nτ (x, t) be local densities, and let Jσ(x, t) and Jτ (x, t) be the cor-
responding local currents. The coupling between the fields implies that the systematic
parts of Jσ and Jτ depends on both δnσ(x, t) and δnτ (x, t). Proceeding as in the single-
component case, we obtain the coupled equations

∂h1

∂t
= c11

∂h1

∂x
+ c12

∂h2

∂x
+D1

∂2h1

∂x2

+λ1

(
∂h1

∂x

)2

+ µ1

(
∂h2

∂x

)2

+ ν1

(
∂h1

∂x

)(
∂h2

∂x

)
+ η1(x, t)

∂h2

∂t
= c21

∂h1

∂x
+ c22

∂h2

∂x
+D2

∂2h2

∂x2

+λ2

(
∂h1

∂x

)2

+ µ2

(
∂h2

∂x

)2

+ ν2

(
∂h1

∂x

)(
∂h2

∂x

)
+ η2(x, t)

(3)

where ∂h1/∂x = δnσ(x, t) and ∂h2/∂x = δnτ (x, t).
Let us first examine the effect of keeping only the first derivative terms on the right

hand side of the above equations [9]. Let the eigenvectors of the 2×2 matrix
(
c11 c12

c21 c22

)
be e+ and e−, and let the corresponding eigenvalues be c+ and c−. There are two cases
to consider:

(A) If c+ and c− are real (i.e. if ∆ ≡ (c11 − c22)2 + 4c12c21 > 0), they represent the
speeds of two waves. The two waves involve e+ and e−, each composed of a linear
combination of h1 and h2. To proceed, rewrite Eqs. (3) in terms of e+(x, t) and
e−(x, t). Notice that in the rest frame of each wave, the other wave moves with a
finite speed |c+− c−|; the two waves are coupled through nonlinear terms. It would
be interesting to clarify how this coupling affects the dissipation of the waves.

(B) There is a much more drastic effect — an instability — if c+ and c− pick up
an imaginary part (i.e. if ∆ < 0). The solutions of the linear equations then no
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longer describe a pattern of fluctuations moving as a wave, but rather an unbounded
exponential growth of fluctuations. This instability signals the advent of a new state
which is qualitatively different from the statistically homogeneous state assumed at
the outset. To be able to describe this state, it is essential to include appropriate
nonlinear terms. We turn to this in Section 2, by studying a lattice model in
the unstable regime where we find that the system undergoes macroscopic phase
separation.

Finally, in order to understand better the occurrence of putative instabilities, we study
a related but different lattice model in Section 3. The hydrodynamic description of this
model involves linear third derivative terms in place of the first derivative terms in Eq.
(3). In this case, we show that even when the eigenvalues of the corresponding 2 × 2
matrix are complex, there is no macroscopic instability.

2. Two-Species Lattice Model with Coupling to Density

In this section, we study a lattice model which involves two species of Ising spins evolving
under dynamical rules which make the mobility of one species dependent on the local
density of the other. This model was introduced by Lahiri and Ramaswamy (LR) [3] to
study coupled-field systems such as the density and tilt fields in a sedimenting colloidal
crystal.

The LR model consists of two sets of spins {σi} and {τi} on a one-dimensional lattice,
with σ spins on one sublattice, and τ spins on the other. A typical configuration is
τ1/2σ1τ3/2σ2τ5/2σ3 · · · where each of σi and τj take on values ± 1. Defining nσ = 1

2(1+σ)
and nτ = 1

2 (1 + τ ), we may map the Ising spin variables to (1, 0) - valued occupation
numbers. Pictorially, we denote σi by + or −, and τj by / or \. The local evolution
involves Kawasaki exchange of + − at a rate which depends on the intervening τ spin.
Similarly, the rate of / \ exchanges depend on the intervening σ spin. In other words, the
intervening spin sets the direction of a local biasing field, either favouring or disfavouring
exchanges of the other species.

Let us label the elementary moves as follows:

(a) + \ − → − \ +
(b) − / + → + / −
(c) / + \ → \ + /
(d) \ − / → / − \

Let (ā), (b̄), (c̄) and (d̄) denote the corresponding reverse moves. The simplest version of
the model is defined by taking the rates for moves (a)− (d) to be equal, say U , different
from the common rate V for moves (ā)− (d̄).

With U 6= V , this model corresponds to the unstable case (B) of the previous section,
as c11 = c22 = 0 and c12 and c21 have the same sign; a continum hydrodynamic treatment
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at the linear level would predict an exponential instability. What then is the final state
of the system? An answer can be found in the half-filled case Σiσi = Σjτj = 0. Since the
details of the analysis have appeared already [4], we only summarize the results here.

(i) The condition of detailed balance is valid with respect to the Hamiltonian

H = ε

N∑
k=1

hk{τ}σk (4)

where hk{τ} is a ‘height’ field defined by

hk{τ} =
k∑
j=1

τj−1/2. (5)

The steady state is thus described by an equilibrium Boltzmann measure, and a
configuration {σ, τ} has weight exp(−H{σ, τ}/T ) where T is the temperature. This
can be seen by noting that the energy change on interchanging neighbouring σ spins
is

∆Eσ ≡ ∆E(σi↔ σi+1) = ετi+ 1
2
(σi − σi+1), (6)

while the change of energy under exchange of τ spins is given by a similar expression
with σs and τs interchanged. Thus the ratio of Boltzmann weights of the configu-
rations after and before an interchange of spins, say σi ↔ σi+1, is exp(−2∆Eσ/T ).
This equals the ratio of forward to backward transition rates if the ratio ε/T is
related to the rates U and V by

V

U
= e−2ε/T (7)

Notice that H involves long-ranged couplings between spins σi and τj−1/2.

(ii) The ground state exhibits complete phase separation, corresponding to all σ = 1
particles being at the bottom of the potential well formed by the τ spins. Pictorially,
the state is

−\ − \ − \ − \+ \+ \+ \+ /+ /+ /+ /− /− /− /

(iii) In an infinite sample, phase separation survives at all T . The effect of any nonzero
temperature is only to smear out each of the four interfaces over a finite, T -
dependent length, with basically no effect on the bulk of the spins. This unusual
behaviour occurs since the energy grows super-extensively (∼ (length)2), and thus
dominates over the entropy at all temperatures.

(iv) When the filling is changed away from
∑

i σi =
∑

i τi = 0, the condition of de-
tailed balance no longer holds, and there is no description in terms of an effective
Hamiltonian. Nevertheless, kinetic arguments can be given to show that phase sep-
aration survives even when the filling is changed. The extreme robustness of the
phenomenon leads us to call it Strong Phase Separation.
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(v) The approach to the steady state is exceptionally slow. It occurs through a coars-
ening process which involves thermal activation over large barriers, resulting in a
coarsening length growing logarithmically in time.

Strong phase separation also occurs in other systems, for instance a 3-species permutation-
symmetric model on a 1-d lattice with periodic boundary conditions [10].

3. Two-Species Lattice Model with Second Derivative Coupling

In this section we construct a lattice model which is related to, but ultimately quite
different from, the LR model of the previous section. We proceed in a direction opposite
to that in Section 2: we define the model through the Hamiltonian and then construct
the kinetics using the condition of detailed balance rather than the other way around.

The Hamiltonian is constructed from local terms which explicitly favour the 3 site
configuration Cσ ≡ (+/ − or − \+) over C ′σ ≡ (−/ + or + \−), and also Cτ ≡
(\ + / and /− \) over C ′τ ≡ (/+ \ and \ − /). To this end, we define 3-spin operators

hi+ 1
2
≡ h(σi, σi+1, τi+ 1

2
) =

1
2
τi+ 1

2
(σi − σi+1)

gi ≡ g(τi− 1
2
, τi+ 1

2
, σi) =

1
2
σi(τi+ 1

2
− τi− 1

2
), (8)

which distinguish between Cσ,τ and C ′σ,τ . The Hamiltonian is then

H = −ε1
∑
i

hi+ 1
2
− ε2

∑
i

gi. (9)

If ε1, ε2 > 0 the configurations Cσ and Cτ have a lower energy than C ′σ and C ′τ . Further,
the energy difference on interchanging two spins σi and σi+1 is

∆Eσ ≡ ∆E(σi ↔ σi+1) = −ε1 + ε2
2

[
(σi − σi+1)(τi− 1

2
+ τi+ 3

2
− 2τi+ 1

2
)
]

(10)

The expression for ∆Eτ is obtained by interchanging σ’s and τ ’s. These expressions
should be contrasted to Eq. (6) for the LR model.

We define the rates of spin interchanges using the condition of detailed balance: for
instance, the ratio of the rates of forward and backward σ spin exchanges is given by
exp(−∆Eσ/T ). Interestingly, we see that the local σ current is guided by the discrete
second derivative (τi− 1

2
+ τi+ 3

2
− 2τi+ 1

2
), in contrast to the τi+ 1

2
– guided current in the

LR model.
In the continuum limit, this results in a contribution proportional to ∂2τ/∂x2 to the σ

current Jσ, and similarly ∂2σ/∂x2 to Jτ . This results in coupled equations for h1 and h2

which resemble Eq. 3, except that the linear first derivative terms (e.g. ∂h2/∂x) are re-
placed by third derivatives (e.g. ∂3h2/∂x

3). Once again, eigenvalues of the corresponding
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2× 2 matrix pick up an imaginary part, say cIm3 , but this does not signal a macroscopic
instability of the sort found for the LR model. This is because the stable second deriva-
tive terms dominate the behaviour at low enough wavevectors q (once Dq2 > cIm3 q3) and
correspondingly large distances (> cIm3 /D).

Confirmation of this point of view comes from direct consideration of the lattice model.
While its ground state

\+ /− \+ /− \+ /− \+ /− \+ /− \+ /−

exhibits long range order, this cannot be sustained at any finite temperature, as well
known arguments militate against an ordered phase in an equilibrium one-dimensional
system with short-ranged interactions. The occurrence of phase transitions to an ordered
phase in higher dimensions remains an interesting possibility within this lattice model.
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