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Abstract. The dynamical evolution of a Brownian particle in an inhomogeneous medium with
spatially varying friction and temperature field is important to understand conceptually. It
requires to address the basic problem of relative stability of states in nonequilibrium systems
which has been a subject of debate for over several decades. The theoretical treatments adopted
so far are mostly phenomenological in nature. In this work we give a microscopic treatment of
this problem. We derive the Langevin equation of motion and the associated Fokker—Planck
equation. The correct reduced description of the Kramers equation in the overdamped limit
(Smoluchowski equation) is obtained. Our microscopic treatment may be helpful in under-
standing the working of thermal ratchets, a problem of much current interest.
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1. Introduction

Thermodynamic equilibrium states are ideal limiting cases and are convenient and
often theoretically amenable to study with relative ease. However, one commonly
encounters systems that are away from equilibrium. All nonequilibrium systems relax
naturally toward their respective equilibrium or stationary states. In nature, evolution
is an ongoing and dominant process. Naturally, the process of relaxation of the
nonequilibrium systems is of great interest in all branches of natural science, be it
physics, chemistry or biology. Moreover, one comes across nonuniform systems more
often than uniform systems. Uniform systems are characterized by a constant (space
independent) diffusion coefficient throughout the system and having the same tempera-
ture in all parts of the system. There are well established theoretical formalisms for
uniform systems to describe their evolution towards equilibrium or steady states [1].
However, the same is not true for nonuniform systems. There exist phenomenological
descriptions but often without microscopic foundations. The ad hoc nature of these
descriptions have led to some controversies, too, in the past. For instance, should the
diffusion equation of a Brownian particle in the absence of external potential have the
form [2-8]
2
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However, considerable progress has been made to make the theories of relaxation of
nonuniform systems self-consistent [2,4, 8, 10].

In this work, we seek to clarify some of the issues pertaining to this important case of
nonuniform systems in a systematic manner. We derive, from microscopic theory, the
Kramers equation for the joint probability distribution of position and velocity of
a Brownian particle in an inhomogeneous, nonisothermal medium. We then proceed to
find the correct Smoluchowski limit to the Kramers equation. This, however, is not
a mathematical problem alone; the underlying conceptual development is quite
appealing and, as mentioned earlier, is subject to ongoing controversies for over several
decades [2-8]. ‘

The evolution of a Brownian particle in condensed media is the most familiar example
of a nonequilibrium process. The process is accompanied by frictional dissipation but
aided by associated fluctuations. Nonequilibrium behaviour of macroscopic uniform
systems is described well by linear-response theory when the initial state of the system is
close to equilibrium. The fluctuation-dissipation theorem relating the power absorbed by
the system to the intrinsic fluctuations in the system in equilibrium has foundations in
the linear response theory. But, when the system is far from equilibrium the linear
response theory cannot be relied upon. In most of the physical systems, whether close to
or far from equilibrium, the approach to equilibrium can, however, be likened to one
kind or other of a diffusion process; it may be translational diffusion of particles,
rotational diffusion of macromolecules, spin diffusion of spin systems, heat or thermal
diffusion in solids, energy diffusion in excitonic motion in semiconductors, and so on.
The diffusion process in inhomogeneous systems, therefore, calls for added attention.

In the case of uniform systems the diffusion constant D =#~ kg T, where 7 is the
friction coefficient and T the temperature. However, for nonuniform systems the space,
g, dependence of the diffusion comes separately through #(g) and T(g). The origin of
n(g) and T(q) and the manner in which they influence the relaxation of the nonequilib-
rium system are entirely different. The variation of #(g) (in the absence of spatial
variation of temperature) influences the dynamics of particle in a potential field and
helps the system to approach towards its equilibrium or steady states. The relative
stability of the competing states is generally governed by the usual Boltzmann factor in
the local neighbourhood of the corresponding (representative) potential wells.
A change in the potential barrier between two potential well minima changes the
relaxation rate but leaves the relative stability of the two well states unchanged. This
simple fact, however, may not apply for more general systems when the temperature is
nonuniform along the potential surface (or spatial coordinate). ,

Landauer, in a series of papers [2-5], argues that for systems with nonuniform
temperature the relative stability of two states will be affected by the detailed kinetics all
along the pathways (on the potential surface) between the two states under comparison,
It is the effect of thermal fluctuations that plays a crucial role and the resulting effective:
potential surface may have completely different nature from that of uniform temperature.
With the help of his blowtorch theorem Landauer [3] shows that a change of temperature
away from uniformity even at very unlikely positions of the system on the potential surface
may cause probability currents to set in moving the system towards a new steady state
situation changing thereby the relative stability of the otherwise locally stable states.
This known important fact, however, has received much less attention in the literature
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than it deserves. This effect can have important consequences on the particle motion in
nonuniform systems, for instance, the kinetics of growth of crystalline nuclei in the melt
around its critical size. The latent heat generation being, in this example, responsible for
the creation of nonuniform temperature field across the surface of the nucleus. Nonuniform
temperature field can also be generated by shining light on semiconductors. One can
have nonuniform temperature field also because of nonuniform distribution of electrons
and of phonons (or of quasiparticles in general) with different characteristic temperatures
in a solid. It has been suggested that the nonuniform temperature field can produce
current in a closed ring [3,6,9]. There has been a lot of theoretical work reported in
recent times on thermal ratchets [10]. These works are inspired by the observed
predominantly unidirectional protein (macromolecule) motion in biological systems
even in the absence of obvious external forces and thermal gradients. The idea of
relative stability of states in nonuniform temperature systems can help to understand
the working of the thermal ratchets better [11, 12]. These are but few examples where
nonuniform temperature field can have important bearing on the dynamical evolution.
A systematic formalism to deal with such a situation is, therefore, essential.

In the following sections we proceed systematically to set up a formalism from
microscopic theory. We derive the Kramers equation for space dependent friction
coefficient and nonuniform temperature field. We then g0 over to obtain the correct
Smoluchowski limit of the Fokker—Planck equation. Before concluding we also give
the correct Langevin equation in the overdamped limit that is approximated properly
to order n(g)~*.

2. Microscopic derivation of Langevin equa'tion in a space dependent friction field

To obtain Langevin equation in a space dependent friction field we consider the motion
of a subsystem (Brownian particle) described by its coordinate Q and momentum P and
subjected to an external potential field V(Q) of the system. We assume the subsystem to
be in contact with a thermal (phonon) bath. The bath oscillators are described by
coordinates g, and momentum p, with characteristic frequencies w,. For our calcula-
tion we consider the total Hamiltonian

2
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where M is the Brownian particle mass and m, are the masses of the bath oscillators.
The interaction of the subsystem with the thermal bath [13] is through the linear
coordinate—coordinate coupling term 4.9, A(Q). From (1) one obtains the following
equations of motion

. P ,

Q=p (2a)
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and
b= —mwlq,+1,A(Q), (2d)

where A'(Q) is the derivative of A(Q) with respect to Q. After solving (2c) and (2d) for g, |
using the method of Laplace transform and substituting its value in (2b), we obtain the
Langevin equation of motion for Q and P.

=1, 6

P=—V(Q - n[AQT 1+ 4@ 3b)

Thus, the effect of interaction of the Brownian particle with the thermal bath is to
introduce a friction term and a fluctuating term S (2) in the equation of its motion. The
fluctuating term is given by

fO=Y Aa[qu(O)cos«ox +40

sin(th):l, ‘ (4a)
%€

where g,(0) and 4,(0) are the initial positions and velocities of the bath variables. The
force f(r) is fluctuating in character because of the associated uncertainties in these
initial conditions of the bath variables. However, as the thermal bath is characterized
by its temperature T, the equilibrium distribution of bath variables 1s given by the
Boltzmannian form, so that f(z) follows the following statistics

{f@®>=0 ‘ (4b)
and ‘
2
l’;kzz cos(w,(t —1'))

SOy =Y
2 27 (40)

=2k Tnd(t —1t').

To arrive at equations (3b) and the last term of (4c) we have assumed [13, 14, 15] ohmic
spectral density for the bath oscillators, ie.,

©)=2F 250 - w) = nwexp(— o
plw =3 o, W — ,) = nwexp(— w/w,).

The upper cut-off frequency w, is assumed to be much larger than the characteristic
frequencies of the system. Equations (3b) and (4c) correspond to the well known
Markovian limit and are valid for time scales ¢ > 1/w,, which can be made arbitrarily
small by appropriately choosing .. For details we refer to [14, 15]. It should be noted
that the transient terms have been neglected at time scalest > ! to arrive at (3b), and
1s perfectly valid under Markovian approximation [15]. It is noted that 4'(Q) = con-
stant corresponds to a uniform friction coefficient. Redefining, #[4'(Q)]1* = #(Q) and

f (t)/\/_T—n — f(t), and putting M = 1, we get,
0=P, | (5a)

P=—V'(Q)—n(Q)P +/7(Q) Tf (%), (5b)
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with '
SOf W) =2kgo(t—1). (3¢)
It is instructive to note that one could take #(Q) to be constant piecewise along Q; in

each piece of these Q segments (5b) would correspond to a constant friction coefficient
but with the same statistical character of /(¢) as in any other Q intervals.

3. Microscopic Markovian Langevin equation with space dependent friction and temperature

We have so far derived the Langevin equation of motion (from a microscopic
Hamiltonian) of a Brownian particle with space dependent friction keeping the
temperature constant. We, now, consider a system for which the temperature too is
space dependent T'(Q). At this point it is pertinent to note the following important fact,
however. It is quite well known that when a charged Brownian particle is subjected to
an electric field charge current results. Similarly, when it is subjected to a thermal
gradient thermal current flows in the system. However, in the former case the effect of
the electric field can be incorporated in the particle Hamiltonian as a potential term
whereas temperature gradient cannot be incorporated as the potential term in the
Hamiltonian formalism. Therefore, in order-to incorporate the effect of the temperature
inhomogeneity we reason as follows. The Brownian particle comes in contact with
acontinuous sequence of independent temperature baths as its coordinate Q changesin
time. Equivalently, each space point of the system is in equilibrium with a thermal bath
of characteristic temperature T(Q). In what follows we accept this idea and incorporate
temperature inhomogeneity into the equations of motion (5). Henceforth, for nota-
tional simplicity, the coordinate Q and momentum P are replaced by the corresponding
lower case letters g and p, respectively, reserving P for probability distribution.

For the sake of argument we consider, for the time being, the system to be subdivided
in space g into several small segments and represent the segments Ag around q by
indices i. Each segment is connected to an independent thermal bath at temperature T;
with corresponding random forces f;(t). The last term on the right hand side of (5b), is

therefore replaced by ./7(q) T,f(t) for the segment i. As the two different segments are
each coupled to an independent temperature bath we have SO f(E)> =2kgd;6(t — t').
Because f(t) is d-correlated in time, as the particle evolves dynamically the fluctuation
force f;(¢) experienced by the Brownian particle while in the Space segment i at time
t will have no memory about the fluctuating force experienced by it at some previous
time ¢’ while in the space segment j # i. Hence the space-dependentindex iin f;(t) can be
ignored. Now, taking a continuum limit, the stochastic equations of motion of the
Brownian particle, in an inhomogeneous medium with space dependent friction and
nonuniform temperature, are given by, '

q: D, ‘ ’ (63)
and ‘
. p=—V(9)—n@p+/n(q) T(q)f(2), (6b)
‘with : ‘ ‘ '
S@SE)) =2kgd(t —1). (6¢)

Itis also important to note and repeat that as long as the random force is delta correlated
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in time, the final results remain unaffected provided we incorporate space dependence
in f(t)— f(g,) such that {f(q, 1) f(g.1)> =2g(g — ¢')8(t — ') with g(0) = 1.

4. Derivation of Kramers and Smoluchowski equations

It is, now, a straightforward exercise to derive the corresponding Fokker—Planck
equation. We put M =1 so that p =, the velocity of the Brownian particle. The
stochastic differential equations (6a) and (6b) can be converted into an equation for
probability density P(g,v,t) using the well-known van Kampen lemma [16]. To this
end, we consider a cloud of initial phase points of density p(q, v, t) in (g, v) phase space
each point (g, v) of which is evolving in time according to (6a) and (6b). The phase fluid
evolves according to the stochastic Liouville equation (continuity equation)

L V)=V, ). | )

t

In order to obtain the equation for the evolution of P(g,v,t) we ensemble average
(<+-+>) eq. (7) over all realizations of the random force of given statistics and use the
well-known result (van Kampen lemma) [16] '

{p>=P(g,v,1). (@)

The averaging procedure is carried out after substituting for ¢ and o in (7) from (6).
A term like {pf(z)> appears which is evaluated using the Novikov theorem [17]. For
details see refs [18,19]. From this we obtain the desired Fokker—Planck equation

0P(q,v,1) _ J0P(q,v,1) ., O0P(q,v,1)
ar ¢ 0q — V@ dv

0 0 .
+ W(Q)E—U{UP(% 0, t) + kB T(q)gl; P(Q» v, [)} (9)

This is the Kramers equation for space dependent friction coefficient n(q) and nonuni-
form temperature T(q), derived from microscopic theory. It should be noted that van
Kampen had assumed (9) as the model Kramers equation to start with to study the
diffusion of a Brownian particle in a ring due to the combined effect of space dependent
friction coefficient and the temperature inhomogeneity [6]. Equations (6) and (9) are
valid for all friction coefficients, low as well as high. It is, however, hard to slove (9) in
general cases. Moreover, in many of the practical situations one does not need the
detailed motion of the Brownian particle at time scales much smaller than the
characteristic time scales of order #~*. Therefore, sometimes it is unnecessary to retain
the fast variables v. :

In most of the problems of physical interest (overdamped case) the marginal
distribution P(g, r) suffices to describe the motion of a Brownian particle. In the case of
uniform systems, that is, when = constantand T = constant, the reduction of P(g, v, 1)
to P(q,t) is well known and goes by the name of adiabatic elimination. One simply sets
p=0in(6b) to obtain the overdamped Langevin equation. From these one obtains the
Fokker—Planck equation for P(g, t). The overdamped Langevin equation so obtained
is correct to order #~*. For inhomogeneous systems, however, the integration of (7) to
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-obtam the equation. for P(q.1)is not easy. Moreover, simply ignoring the p term in 16h)
1S not correct. For instance, the resulting marginal distrib'uiicm function so q‘thms};&i
does not conform to the correct equilibrium distribution. However. Sancho éz al | :‘ﬁ’é
have given asystematic procedure to gooverto the overdamped Langevin equmwﬂ;'u%
a system with space dependent friction coefficient but at uniform t'@mpermuré The
overdamped Langevin €quation obtained by Sancho er al is correct o wrde} [ 3; i
and leads to physically valid equilibrium distribution function, | ™
Following the prescription of Sancho et gl [20], we obtain the overdamped Langevin

equation for an inhomogeneous system with nonuniform temperature field T(giand is
given as |

V'(g) T Tiapt 2
= T\ 0oy ql
1@ 3@ T@ @)+ i) T +(T<q;g>‘ o o)

with
SO = 2kpd(t — 1),

The corresponding Fokker-Planck equation for the overdamped case (the Smolu-
chowski equation), with kg set equal to 1, is

0P(g,1) ¢

1| é
2 34 1@ [a-q T(g)P(g,n + V’(Q)Pft].t)}. (1

As pointed out earlier by van Kampen, the diffusion equation {11}in the absence of
external potential has neither the form CP/ct= (E",,"ﬁq*’)D(q‘)P(q‘L nor ¢P 7t = {7 {g)
D(q)(8/8q)P(q). 1t is clear that T(q) and n(q) influence the motion of the Brownian
particle in different ways and their combined effect cannot be plugged together as the
effect of an effective diffusion coefficient D(g). We note that our equation (11} agrees
with one of the forms obtained by van Kampen [6-8].

As already mentioned earlier the friction coefficient #(q) only affects the relaxation
process and not the equilibrium distribution function in a constant temperature field.
Given enough time the system finds its equilibrium state. In contrast, the case of
nonuniform temperature field changes the concept of steady states. It can be readily
verified that if the external potential is unbounded at infinity,ie.. V(g)— x asg— + x,
then the system evolves to a steady state P(g) obtained by setting the probability
current equal to zero

C q
= — - ' Ndq' 12}
P(q,1) T@ eXp< f (V'(q)/T(q'))dgq ) (
where C is a normalization constant. The solution in no way resembles the distribution
decided by the usual Boltzmann factor alone. P, is not a local function of Vig). The
non-local dependence of P (q) on T(q) and V(q) forces the relative stability of the system
in two different local minima to depend sensitively on the temperature profile along the
entire pathway connecting the two minima [2-5]. Moreover for particular choices of
T'(q) it may so happen that P,(q) may show extrema at positions compl;tely unrelated
to the minima of the external potential ¥(g). Such a system with nonuniform tempera-
ture field is inherently nonequilibrium and P (g) describes distribution of nonequilib-

rium steady states.
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5. Conclusion

We have given a systematic microscopic derivation of Kramers equation of motion of
a Brownian particle in a medium where friction coefficient is space dependent and
having nonuniform temperature. We further obtain the Smoluchowski limit of the
Kramers equation following the procedure given by Sancho et al [20]. We thus arrive
at the correct overdamped Langevin equation for such a system. The MmiCroscopic
treatment followed in this work helps resolve the controversy regarding the correct
form of the diffusion equation followed by a Brownian particle in an inhomogeneous
medium. We argue that the microscopic derivation of the equations makes their
application to systems such as the thermal ratchets self-consistent [10-12]. Moreover,
in many cases the numerical solution of the Langevin equation is much more
transparent to appreciate physically, and the derived overdamped Langevin equation
could thus be of some practical use.
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