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Self-segregation in chemical reactions, diffusion in a catalytic
environment and an ideal polymer near a defect
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Abstract. We study a family of equivalent continuum models in one dimension. All these
models map onto a single equation and include simple chemical reactions, diffusion in
presence of a trap or a source and an ideal polymer chain near an attractive or repulsive
site. We have obtained analytical results for the survival probability, total growth rate,
statistical properties of nearest-neighbour distribution between a trap and unreacted particle
and mean-squared displacement of the polymer chain. Our results are compared with the
known-asymptotic results in the theory of discrete random walks on a lattice in presence of
a defect.
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1. Introduction

The subject of random walks in presence of defects has been extensively studied over
several years and is now a classical subject by itself (Haus and Kehr 1987; Havlin
and ben-Avraham 1987; Weiss and Rubin 1983). Most of the earlier studies were
restricted to defects which being immobile traps (quenched defects). The motivations
were the study of various reactions in physical, chemical as well as in biological
sciences. Some of the examples include the migration of optical excitations (excitons)
in solids which terminate upon reaching a trapping site (in this case the energy of
excitons is dissipated or converted into other form of energy at the trapping site),
diffusion-controlled reactions, dielectric relaxation, chemical binding of interstitial
hydrogen in metals by impurities etc (Havlin and ben-Avraham 1987). A relatively
good understanding of the survival probability or the rate at which the random
walkers decay in such a media has now emerged (Balagurov and Vaks 1975;
Grassberger and Procaccia 1982; Donsker and Varadhan 1979). It should also be
noted that most of the analytical results are obtained in asymptotic (time) domain.
Several extensions of the above mentioned phenomena are being studied extensively,
namely, motions on fractal media (Webman 1984), interaction effects (Bunde et al
1985, 1986) and quantum effects (Parris 1989; Jayannavar 1991b). Very recently
(Jayannavar 1991b) it has been explicitly shown that the well-known results on the
asymptotic average survival probability (ASP) are difficult to observe in real physical
situations. This is due to the fact that the ASP is a non-self averaging quantity i.e.,
the fluctuations dominate the mean value in asymptotic domain. Now we hope that
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the study of the fluctuation effects in the ensemble of macroscopically identical samples
will emerge. One can also treat the defects as catalytic sources of diffusing particles
(random walkers) (ben-Avraham et al 1989; Redner and Kang 1984; Valsakumar and
Murthy 1990; Jayannavar and K&hler 1990). This problem is equally relevant to the
production of neutrons and population dynamics (Ebeling et al 1984).

In this paper we study the motion of diffusing particles in the presence of a single
defect in one dimension. We exploit the analogy to various other fields. We have
obtained explicit results for thz survival probability, total growth rate, statistical
properties of nearest-neighbour distance at a trap and mean-squared displacement
of the polymer near the attractive site. All these quantities will be defined in the
sections to follow. Several studies exist on the problems of discrete random walks on
one-dimensional lattice in the presence of single defect (trap or source) (Weiss and
Rubin 1983; Weiss 1981; Redner and Kang 1984; ben-Avraham et al 1989); however,
some of the analytical results can be obtained only in thc asymptotic (time) domain.
Basically we have studied a continuum version of these problems and obtained some
exact results, valid for all time (t). We recover the known asymptotic results in the
appropriate limit. Within a continuum description, the particle density ooeys the
reaction-diffusion equation (ben-Avraham et al 1989; Jayannavar and Kohler 1990),

P(x,t 0?P(x,t
0 (gt )= Oi’j ) 4 V5()P(x, 1), (1)
where P(x,t) is the particle density, D is the diffusion constant. The defect is located
at the origin (x = 0) and represents a source or a trap respectively, when V2 0. The
trapping reaction 4 + B — B is one of the simplest models for the diffusion-controlled
reactions in physical, chemical and biological sciences (Taitelbaum ez al 1990). We
consider a system of mobile identical particles (4 type) diffusing in one dimension in
the presence of an imperfect static trap (B). Partial reaction takes place when A particles
come in contact with B particles (V is proportional to local reaction rate). This can
also be thought of as a reaction between activated A chemical species, which arrive
at the trap (catalyst), get deactivated and converted into some other chemical species.
It is now well known that due to the reaction, self-organization takes place among
the diffusing particles. This self organization can be expressed in terms of a depletion
zone for A particles formed around the trap leading to self-segregation. A measure
of such self-organization can be characterized in terms of statistical properties of the
distance from the trap to nearest unreacted 4 particles (Weiss et al 1989) which will
be studied in §(3.2). The gradual development of correlations among the reacting
particles leads to a dramatic deviation in the global reaction kinetics as compared
to the earlier traditional studies in physical chemistry (Smoluchowski 1917). Another
measure of the self-segregation is referred to as 6-distance, ie. a distance from the
trap to a point where the concentration of A’s is equal-to a given fraction 8 of its
bulk value (Havlin et al 1990; Taitelbaum 1991).

Equation (1) can also be interpreted as an unnormalized probability density of an
ideal polymer of length I(= t) in the presence of a single attractive or repulsive impurity
(Nattermann and Renz 1989), respectively, when V 2 0. In §§ (3.3) and (4.2) we calculate
the mean-squared end-to-end distance (MSEED) of a polymer in the presence of
repulsive and attractive impurity, respectively, given that initially one end of the
polymer is fixed on the defect site (Majumdar 1990; ben-Avraham et al 1989)
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Furthermore, when the potential term in (1), i.e., Vd(x), is replaced by i V(x), where
i is the imaginary quantity and V(x) being random, the problem reduces to that of
spin depolarization of a diffusing particle in an environment with random magnetic
fields (Jayannavar and Kohler 1990). The replacement of the potential by a random
space-time dependent potential V(x,t) coupled with some additionali transformations
maps the eq. (1) onto the fluctuations on growing interfaces, randomly stirred flows,
directed polymer in random media and interface problems in the two dimensional
Ising spin system, etc. (Kardar et al 1986; Medina et al 1989).

2. Mathematical method

One can readily notice that (1) is similar to the quantum problem of a single particle
moving in a delta-function potential (Jayannavar and Kohler 1990). In particular, if
we replace time t by the imaginary time (—it), 1/2m by D, and Vé(x) by — Vé(x) in
Schrodinger equation (h = 1) we get (1). Using this identification one can immediately
write down the eigenfunctions and eigenvalues of (1) from the known results in
quantum problems (Postma 1984; Blinder 1988). Due to the basic symmetry in the
problem one can readily write down the eigenfunctions as symmetric (even) ®¢ and
antisymmetric (odd) @, functions. For negative V,

_sin(kx)

1 |Vl .
Dg(x) =- FERNTE l:cos(kx) + —~—sm(k|x|):I. (2b)
ﬁ( P4 |4 ) kD
k*D?
Eigenvalues associated with @ ,(x) and ®g(x) are E(k)=k2D. If V is positive
i (s
0,00= 2 32
1 v
Pg(x) = FERNTE [cos(kx) - ——sm(klxl):i (3b)
57;(1 +1—> kD
\/ k2D2
®y(x) = /o exp (— | x|). (39)

Eigenvalues associated with solutions (3a) and (3b) are E(k) = k* D and the eigenvalue
associated with the bound state solution ®z(x) is given by Ez= —1(V?/D) and
a=(V/2D). In the literature such solutions can be found in the discrete version of
quantum problems e.g., the one-dimensional tight-binding Hamiltonian in the
presence of a single defect (Bilek and Skala 1986). If the initial condition for particle
density P(x,t=0) is given, then the general solution for (1) can be written down
explicitly as,

P(x,1) = Y, C;®;(x)exp(— E;1) )

where C; = |2, P(x,t=0)®,(x)dx, ®;(x)'s are the complete set of eigenfunctions.
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3. Solutions when the defect site is a partial trap (V <0)

In this section we explicitly use the eigenfunctions (2a) and (2b) to calculate various

physical quantities.

3.1 Survival probability of diffusing particles

The survival probability of diffusing particles is defined as P(t) = [, P(x,t)dx. Tt is
clear from (1) that P(t) is not a conserved quantity and it can be interpreted as the
probability for a diffusing particle to survive until time ¢ without being trapped. In
principle this quantity can be related to the global reaction rate. One way to define
the reaction rate is that after calculating P,(f) we rewrite it in a differential form
namely dP(t)/dt = — A(1) P,(t), where A(t) defines the time-dependent reaction rate.
However, this definition is not unique. For simplicity we consider a diffusing particle
to be at the origin at time t =0, ie., P(x,t = 0) = 5(x). Now using the known eigen-
solutions and eq. (4), we obtain a closed form solution for the survival probability as

Py(t) = exp(V2¢/D)erfe(V.//D) » (5)

where erfc(x) =1 — erf(x) and erf(x) = Z/ﬁ [Zexp(—y?)dy.
This result is exact and valid for all time ¢t. In figure 1 we have plotted P,(t) as a

function of £(¥?/D). In the small time domain (¢ < D/V2), P,(t)~1—2V. t/zD and

in the asymptotic domain (¢t — o) it is given by - '

t D[, D
BB ~3 E?[l_let]'

i 1 1
S 2 10 15 20
tHv/D)—=
Figure 1. Plot for the survival probability P () as a function of rescaled time tV3/D.
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This asymptotic dependence (¢~ */?) agrees with the result obtained by ben-Avraham
et al (1989) and this is a special feature of one-dimensional system, where random
walk is recurrent.

3.2 Statistical properties of the nearest-neighbour distance at a single imperfect trap

In the previous studies on one-dimensional problem, the trap is treated as either
perfect (Weiss et al 1989) or imperfect with radiation boundary condition (Taitelbaum
et al 1990). In the perfect trap, diffusing particles arriving at the trap site are absorbed
instantaneously, whereas in the imperfect trap with the radiation boundary condition,
a partial absorption takes place at the trap site, rest being reflected by the trap. It
should be noted that in both cases a diffusing particle on one side of the trap never
crosses to the other side of the trap. In our treatment we remove such a restriction,
ie., diffusing particles impinging on a trap can partially get absorbed and partially
move away to either side of the trap. Such a situation is relevant to several physical
systems, say for example the motion of excitons (energy transport) or other elementary
excitations in molecular aggregates in the presence of quenched impurities which act
like traps. However, we show that our exact results are equivalent to those obtained
by using the radiation boundary condition, only when initial particles are uniformly
distributed throughout the space (— co to + co) with an appropriate redefinition of
coefficients. This equivalence is a coincidence. For a particular choice of initial
condition, namely P(x,t=0)=§(x — x,), one gets

P(x,t|xq) =%f exp(— k? tD)l:sin(kx)sin(kxo)

N {cos(kx) + (V/kD)sin(k|x|)} {cos(kxo) + (V/kD)sin(k|x,|)}
1+ (V?*/k?D?)

]dk. (6)

Integrals in the above expression can be evaluated exactly, but the final result for
P(x,t|xy) is too long to reproduce here.

Now given an expression for P(x,t|x,) we can study the statistical properties of
the nearest-neighbour distance. Following the analysis of Weiss et al (1989), let Q(L, t)
be the probability that the nearest-neighbour particle is located at a distance > L
from the origin. This distribution function is given by

Q(L,¢) =exp[—- ch dxfao P(x,tlxo)dx:l, )]
0 )

where ¢ is the initial constant density of the diffusing particles. We have assumed
that initially the particles are distributed uniformly throughout the space, i.e., from
— oo to + o and we are considering the one-sided distribution function only. The
one-sided probability density function (PDF) of the nearest-neighbour distance from
the trap is given by f(L,t)= —(dQ/0L). The double integral in (7) can be readily

evaluated using (6), leading to the result
Dt\?
) - 2(——) (1 — exp(— L?/4Dv))

Q(L,t)=exp[—c{Leﬂ( -

L
2./Dt
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+ %[exp(~— L*/4Dt)exp(V./t/D + (L/Z\/D—E))2

1 CA R vaDyerse| v(L)
erfc <—5> +2\/_D_tjj—exp( /)erfc[ (E) ]

+erf(2 LDJJH' | Y

Differentiating (8) with respect to L one can evaluate f(L,t). Equation (8) is our exact
result and it coincides with the result obtained by Taitelbaum et al (1990), if we
redefine our (V/D) by k. In Taitelbaum et al (1990), x is a measure of the reaction
strength and appears as a constant in the radiation boundary condition. Equivalence
of our result to that by Taitelbaum et al (1990) is some what accidential, given that
our expression of P(x,t|x,) is completely different and does not obey the radiation
boundary condition. Moreover, imposition of the radiation boundary condition
prevents particle communication from one side of the trap to the other, whereas in
our treatment such a restriction does not exist. The similarity of our result to that
by Taitelbaum et al (1990) can be understood as follows. Since in our treatment,
initially, particles are uniformly distributed throughout the space, the solution of
P(x,t) is symmetric for all time. When the particles arrive at the trap from the right
hand side, some of them are partially absorbed while the remaining particles
symmetrically diffuse away to either side of the trap. The same thing is true for
particles coming from the left hand side. Now due to the symmetry one can think
that particles arriving at the trap from the right are partially absorbed while the rest
are reflected back. This is because the number of particles (or flux) which are
transmitted to the left are exactly compensated by the transmitted particles (flux)
arriving at the trap from the opposite side. Hence, on this physical ground we expect
the results to be similar, but with redefined coefficients.

It should also be remembered that in the limit of V' — + oo we obtain the result
for a perfect trap (Weiss et al 1989) and for ¥ —0 we recover the result for no trap.
In the case of the problem with radiation boundary condition (Taitelbaum et al 1990),
x—0 implies that the trap becomes a reflector. If initially particles are distributed
throughout the space with no trap or a perfect reflector, then the probability density
does not evolve in time and hence we obtain the same result, Q(L, t) =exp(— cL).
Using similar analysis (Weiss et al 1989) the PDF for the nearest-neighbour particle
of the trap is given as

V3t VL t\172 L
o= sl e (5) " 5 7)
L
+of(375) Jorw.o 0

For small time as £ —0, Q(L, t) behaves like exp(— cL) as expected. For V(t/D)*/? > 1
and Dt > L?, the function Q(L,t) takes a Gaussian form with a peak at L= — D/V,

¢ D\* [D\?
eto~enl s (1) - (7)1 o

1
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Consequently in the same limit one can write down an expression for f(L,t) as

f(L’t)N

c D
\/@}(L+T/->Q(L’ t). (11)

From (11) the asymptotic value of the average distance { L(t)) from the trap to the
nearest-neighbour untrapped particle is found to be

7.,:3/4(Dt)1/4- [ cD :I [ \/'D3/4 }
L ~
(L) NG TN AT (12)

which asymptotically approaches the value (Dt)““/\/g, independent of the strength
V of the trap. The reaction rate is directly related to the particle flux at the trap

©oP

dx,
x=0

and is given by

J(t) = —c Vexp(V?t/D)erfc(V./t/D), (13)

which follows the asymptotic behaviour, J(t) ~ — ¢./D/xt indicating the anomalous
{fractional power dependence on t) reaction rate. In figure 2 we have plotted f(L,?)
as a function of L(V/D), for ¢ = 0-25, (V/D) = 1 and for various values of Dt. In figure 3
we have plotted f(L,t) as a function of (L/2\/Ii), for Dt =500, ¢=0-25 and for
various values of V/D. In the large time domain f(L,t) is a time dependent skewed
Gaussian function. The large distance (from the trap) form of this function goes over

Q.21

04

Lt

0.05

10 20 30 40 50
L(V/D)—

Figure 2. Plot for f(L,t) as a function of L(V/D) with pafameters V/D =10, ¢ =025 and
for different values of Dt.
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Figure 3. Plot for f(L,1) as a function of (L/2\/D—t) with parameters Dt = 500 and ¢ = 0-25
and for different values of V/D.

to simple exponential. As mentioned earlier, our solution P(x,t[x,) does not obey
the radiation boundary condition. We have got totally different result for f(L,¢)
as compared to the problem with radiation boundary condition, when the initial
distribution is non-uniform and asymmetric. However, as expected in the truly
asymptotic domain, the results cross over to those obtained for a perfect trap for
arbitrary initial distribution of particles. In the asymptotic regime results are
independent of trap strength. This follows from the fact that random walk is a recurrent
in one dimension i.e., if a walker (diffusing particle) comes in contact with a defect,
it comes in contact infinite number of times and eventually absorbed.

3.3 Mean-squared end to end distance of a polymer in presence of a repulsive defect

As mentioned in the introduction, eq. (1) maps onto the polymer problem in the
presence of a repulsive defect (V < 0). More specifically P(x, t) should be interpreted
as the restricted partition function of one dimensional idea] Gaussian polymer chain
oflength I(= t), the diffusion constant D being related to Kuhn'’s step length (Edwards
and Muthukumar 1988; Nattermann and Renz 1989). We now assume that one end
of the polymer is located on (attached to) the defect site, then MSEED is given by

‘ {2 x*P(x, t)dx
> = P dx (14)

Finally ¢ should be replaced by the total length I of the polymer. If we multiply (1)

. N
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Figure 4. Plot for (x2(I)) (V/D)? as a function of [V?/D, in presence of a repulsive defect.

by x? and integrate over space we get after some algebra,

2D b Py(I)dl' _ 2D [y exp(V2I/D)erfe(V /V/D)dl
Py(l) | exp(V2l/Dyerfe(V\ /D)

In figure 4 we have plotted rescaled ¢x2(1)) as a function of rescaled length L In the

)y = (15)

“small length regime [l < (D/V?], the above result takes the form (x*()y ~2Dl+

4V1*2/3_/D/r. In this domain the entropic term associated with the random walk
(or the Gaussian polymer chain) dominates over the energy term. Asymptotically
{x2(1)> ~ 4DI. In the presence of a repulsive defect, polymer swells and asymptotically
{x2(1)) scales linearly with the length [ and is independent of the strength of potential
V. However, the effective diffusion constant (coefficient in front of l) is two times as
compared to the result in the absence of a defect (ben-Avraham et al 1989). It should
be mentioned that ideal Gaussian chain performs a random walk, but in the presence
of a single defect, repeated visits to the defect site in one dimension induces a long
range correlation in the random walk.

4. Solutions when the defect site is a catalytic source (V' >0)

In this section we use the eigenfunctions (3a), (3b) and (3c) to calculate physircall
quantities.

4.1 Particle growth in the presence of a single catalytic defect

In (1), positive V¥ implies that each time a diffusing particle arrives at the defect site,
more particles are created with a multiplication rate proportional to ¥ (Redner and
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Kang 1984; ben-Avraham et al 1989; Valsakumar and Murthy 1990). The newly
created particles along with the others in the medium again create additional particles
due to recurrence of random walkers in one dimension. This multiplication process
continues as the time progresses. This phenomenon of a random multiplication has
been studied (Redner and Kang 1984) for the case of discrete random walks on a
lattice with a single catalytic source where the asymptotic result is obtained. In our
treatment we assume for simplicity that initially at ¢ =0, there is a single diffusing
particle on the defect site and we calculate the total growth of the particles (i.e. total
number of particles) at a later time ¢. This quantity is given by P,(t) = |2, P(x,f)dx.
One can readily obtain P,(t) in a closed form as

P (t)=2exp(V?t/4D) —exp(V? t/D)erfc[ V(%) ” ] (16)

For initial or short time t(< t,=D/V?), P (t) is given by ~ 1+ 2V (t/nD)'/?, and for
asymptotic time (t— c0), P,(t) ~ 2exp(V?t/4D) — 1/V(D/nt)*/?. As expected in the
asymptotic domain, the growth law is purely exponential. The similar exponential
behaviour has been obtained for the discrete random walk in the large time (number
of steps = n) domain, P,(t) grows as exp(an). The coefficient o is proportional to the
bound state energy of a particle on a lattice with a single defect (Redner and Kang
1984). In figure 5 we have plotted P,(t) as a function of ¢(V2/D).

4.2 Mean-squared end to end distance of a polymer in presence of
a single attractive impurity

The analysis of this section is same as that of §(3.3). When V > 0, the defect acts as
an attractive impurity (Majumdar 1990) for a Gaussian polymer chain. If one end of
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Figure 5. Plot for total growth of particles P,(t) as a function of tV2/D.

B T e i

e



Self -segregation 267

the chain is located at (attached to) the impurity sitt MSEED is given by

v

2D {4 P,(I)dl

P,()
_ 2D [} [2exp(V*1'/AD) — exp( V2I'/DYerfe(V (I'/D)*?)1dl
B 2exp(V21/4D) — exp(V21/D)erfe(V (/D)) '

)y =

(17)

In the special case of | < D/V?, (x*()y ~2DIl— 4V(D/m)? 32, whereas in the large
length regime {x*(I)> ~ 8(D/V)* —2D*?/ V(i/n)!?exp(— V?I/AD). Asymptotically the
MSEED saturates exponentially to a constant value (ben-Avraham et al 1989) equal
to 8(D/ V)2 In figure 6 we have plotted rescaled (x*(l)> as a function of [(V?/D). It
should be noted that in the asymptotic (large I) domain the size of the polymer is
related to the localization length (or size) of the eigenfunction of the lowest eigenvalue
associated with Schridinger equation. This analogy can be extended to a polymer in
a quenched random potential. In this case the associated Schrodinger equation maps
onto the well-known Anderson localization probiem in condensed matter physics.
Especially when the random potential is given by a white noise Gaussian form, the
Jocalization length approaches zero as we approach the lowest eigenvalue. In this
case the size of the polymer collapses to zero or to a finite value when the potential
is correlated in space (Nattermann and Renz 1989).

It should also be emphasized that the results obtained for mean squared
displacement in § (3.3) and (4.2) are the same for a diffusing particle obeying nonlinear
v diffusion equation, namely

S
7

e\

aPl(:’ D _ DV2P,(x, 1) + VO(x)P, (x, 1) — VP, (%, )P, (x = 0,1). (18)

A

[ L I 4 Il 1 o L
5 10 15 20 25 30 35

(\VZD) —=
Figure 6. Plot for {x*(I)> (V/D)* as a function of / ¥2/D in presence of an attractive defect.
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In above equation P, (x, ) should be interpreted as a probability density of a particle
to be at space point x and at time ¢t and P (x,t) is a conserved quantity. This equation
has been obtained by writing P, (x, ) = P(x,1)/[ P(x,t) dx and using (1).

5. Conclusions

We have studied the dynamics of diffusion of particles in one-dimensional medium
with a single trap and source. Various physical quantities have been evaluated
explicitly using analogies to other areas of physics. In our treatment the defect is
static i.e., immobile. The problem of treating a single mobile trap seems to be
intractable at present. Only partial answers have been obtained (ben-Avraham and
Weiss 1989; Szabo et al 1988). We hope that along the similar lines one can easily
extend the results to higher dimensions and in the presence of randomly distributed
traps. We have already obtained some preliminary results for survival probability
and its fluctuations and mean squared displacement of polymers in a random medium
both in one and higher dimensions. Work along the direction of understanding
growing interfaces in random media and directed polymers in the presence of stochastic
random potential is in progress.
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