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The wavefunction envelope in one-dimensional random potentials
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Abstract. We propose a formalism for the study of mean resistance of a one dimensional
chain of random potentials. We obtain the resistance as a function of the length of the chain.
In the asymptotic limit, this is related to the wavefunction envelope, The formalism demands
loss of translational symmetry, but is general enough to include potentials with spatial
correlations which are not long ranged and also those whose randomness is inhomogeneous.
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The spectrum of random Hamiltonians has been a subject of intense study for the
last two decades, following the pioneering work of Anderson (1958). Related to the
above problem is the behaviour of the wavefunction for a given energy. One of the
most interesting results in this connection is the fact that in one dimensional potentials
even infinitesimal randomness in the potential leads to a pure point spectrum for
almost all realisations of the potential, with exponentially decaying wavefunction
envelopes (Kunz and Souillard 1980; Royer 1982; Delyon etal 1983). Delyon etal -
presented a formalism that allows generalization to random potentials which do not
possess statistical homogeneity, or which have short ranged correlations in space.
This is the subject matter of our study.

Several situations on non-homogeneous random potentials have been studied in
the literature. A typical such potentials is V(x) = f | x| ~“v(x), where v(x) is a homogene-
ously random potentjal. The problem is closely related to the physically interesting
problem of an independently random Kronig-Penny model in the presence of a
uniform electric field, such that we have V(x)= Xy, d(x—n)—Fx (Delyon et ql 1983).
For the former, Delyon et al have given a proof that almost surely

(i) if 0 <a<1/2, the entire spectrum is pure point with eigenfunction envelopes
decaying as stretched exponentials of the form exp (— [x]7%. (@) Ifa = 1/2, the spectrum
is pure point with power law decaying states if x > x; and singularly continuous if
X <X, in |E| <2, (iii) If a > 1/2, the spectrum is absolutely continuous (Kotani 1986;
Souillard 1986) with extended eigenstates.

In Kronig-Penny model Souillard finds that () 0< F < F 1 almost surely we have a
point spectrum with power law decaying eigenstates. (ii) F > F, almost surely we
have an absolutely continuous spectrum with extended states.

Vijaygovindan et gl (1986) have studied the mean resistance of the same model.
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They observe a smooth crossover from the power law to exponentially decaying
states. The former is relevant at large fields and large lengths.

We shall develop a formalism to study the mean resistance of a one-dimensional
potential. It would include non-homogeneously random potentials as well as those
with spatially correlated potentials which are nevertheless without translational
symmetry. A classic example of this is the Fibonacci chain (Mookerjee and
Singh 1986). Our approach will be based on the invariant embedding principle
(Chandrasekhar 1960; Bellman and Wing 1975). In particular, we shall use the variant
used by Heinrichs (1986) involving the potential, rather than Kumar’s (1985) version
involving the potential derivatives.

The model Hamiltonian is given by

H = (—12/2m) d*/dx? + V(x)
V(x) =/ (x)v(x) | (1)

where f(x) is a non-random function which describes the non-homogeneity of the
potential distribution (it is a constant for homogeneously random potentials). v(x) is
a Gaussian random function with

(x> =0; (ox)o(x)) = g(x — x). 2

The disordered potential stretches from x =0 to x = L. A plane wave is incident
at one end, partially reflected and partially transmitted. In our approach we address
ourselves only to emergent quantities like the transmission and reflection coefficients.

The complex amplitude reflection coefficient R(x) obeys the Stochastic-Riccati
equation

iki{:—i’i) = V()[R + 1] — 2[k2 — V(x)TR(), v 3)

where k is the wavenumber of the incident wave related to the energy by k= \/I—ET
in atomic units (Bellman and Wing 1975).

If R(x) = r(x)exp [ip(x)] where r(x) and p(x) are real functions, then the Landauer
(1970) expression for the resistance p(x) in-natural units of (h/e?) is

_ r(x)
o) =z | - @

The Riccati eq. (3) with the transformation (4) may be written as a pair of coupled
non-linear stochastic equations

d
‘Z‘?‘: —@(r(x)-&%}c))cosp(x)-i—?.( —Yg—)>

d 2V
2 2V () Lo+ 17 s i, 5

For deterministic potentials the phase p(x) is a specific function of x. Equations (5)
have in no way made use of the randomness in the potentials. Such equations have
been used as the basis of elaborate numerical calculations on one dimensional quantum
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wells both periodic as well as incommensurate. In random one-dimensional potential;s,
the phase p(x) rapidly becomes random with increasing x and the phase memory is
lost. The equations may then be decoupled by averaging over the. randqm phase in
addition to averaging over the different realizations of the poteptnal. Thls has been
implicitly done in all the work quoted above on random one?dlmensnonal systems.
The averaging is carried out using the Novikov theorem (Novikov 1964; Madhukar

and Post 1977) for Gaussian random functions
d ‘
O SPOVDup = — /R) KVI)FLV(x)1)s,

FIV(x)] = sin p(x)p(x) [p(x) + 1].

Note that ¥(x) and p(x) are not independently random functions but are related
via the first of (5). Using (5)

dF@)/dx = [V(x)/k][1 + 2p(x)] + 2[k — V(x)/k]p(x) [p(x) + 1] cos p(x).

It is at this point that we have to invoke randomness. In the second term above
the factors V(x), p%(x) and cos p(x) vary in a strongly correlated manner, In fact in
systems where phase memory is retained, the pair of non-linear equations need to be
solved. However, in systems where the phase memory is lost for large enough values
of x (and this includes random variation in ¥(x), homogeneous or otherwise, including
short ranged .order or not) phase averaging leads to this term dropping out, provided
we apply the equations for large enough values of x. For periodic potentials this
approximation is strictly untrue. For quasi-periodic systems, the validity of this
assumption is uncertain

CAFC/dx) = — [V(x)/KI[1 + 2p(x) > 1.

Thus,

F(x)= — (1K) f VLT 424 p(x)S
or

COF[OV ) = —(1/k)[1 + { p(x) > ].

Novikov’s theorem states that
CVRFIV(9]S = f “dx VIV ) oY,

Usigg these equations and averaging over different realizations of the random
potential, we obtain the basic equation for the averaged resistance ¢ PX)>=p

dp/dx = (2/k?) f x dx'G(x, x") [1+ 2p(x")]
where ‘

- G0 X) = VRV(x)) = £(x) f(x)g(x — x') (6)

g(x—x’)=<v(x)v(x’)) is the homogeneous part of the spatial correlations of the
potential. :
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We shall now apply the above equation to different situations of interest

(1) Let f(x)=f, and g(x — x') = d(x — x'). This occurs if we have a purely homogene-
ously random potentials with no short ranged correlations at all. Here dp/dx =
Qf%/k*) (1 +2p), with p=0 at x=0. This gives

plx) = (1/2)[exp (x/xo) — 1]  with x, = k?/f*. (7)

This result is identical with that of Kumar (1985), although a different embedding
technique is used.

(2) Theinhomogeneously random potential with f(x) =f|x| ~*and glx—x)=5(x—x)
(studied by Souillard), so that

dp/dx = (2f%/k?)|x|"2%(1+2p) with =0 at x=0

(a)for0<a<1/2 p=(1/2) [exp(c|x|' ~2%)—1] with the factor c=(4/2/k*) {1/(1-2q)).
The average resistance diverges non-ohmically and the resistivity is infinite. This is
characteristic of localized states and pure point spectra. Since, for large x, p >~ 1/T(x)
where T(x) is the transmission coefficient, which itself reflects the decay of the
wavefunction envelope decay, the above expression indicates that this decay is of the
stretched exponential type. This result is identical to that of Souillard but based on
completely different arguments. (b) for a=1/2, if pP=po at x=x, p=(1/2)[(1+2p,)
(x/x0)*/** — 17 again, using the above arguments, the wavefunction decay is power
law, agreeing with Souillard’s result. (©) For a>1/25=(1/2)[(1+25,) exp {(2/?/k?):
|x[' 72} — ] since a> 1/2, 5 becomes a constant as x becomes large. Thus the resistivity
vanmishes. This is characteristic of extended states and absolutely continuous spectra.
(3) Finally we wish to apply the ideas of (6) to a homogeneously random potential
with f(x) =/, but g(x—x'):(l/a)exp{—a(x——x’)} so that 1/a is a measure cf the
extent of spatial correlation (or short ranged order) of the potentials. In (6) we change
the variable 5 to y=(1+27) and take the Laplace transform of both sides

s(8)=2g(s)5(s) or  §(s) =1/[s—g(s)]. (8)

For our case g(s) = (2f2/k?a) (s +a) which leads to the solution #s)=(1/2)[(1 + a/D):
(s—s1)+(1 —a/D)(s—s,)] where $;=(D—a)2 and s,=(D+a)2 and D=
[a® + 16(f?/ak?)]*2. Inverse transform yields

plx)=(1/2D)[s, exp (s,x) +'s, exp(s,x)—1] ®

for large values of x, P =(s2/2D)exp(x/x,), where Xo=1/s;. Thus although the
potentials have an extent of spatial correlations, the result is substantially similar to
the case (1) without any spatial correlation. We have shown that short ranged order
does not destroy localization in a one-dimensional system and we still have
exponentially decaying wavefunction envelope and pure point spectra.

The aim of the present communication is to study the mean resistance of linear
random systems as a means of examining the wavefunction envelopes. We propose
(6). as the basis of further study. The examples quoted illustrate that the results of
this analysis agree substantially with more detailed and involved mathematical
analysis of the same problems. The added advantage is that in the process we also

have information about the physical response of the one-dimensional systems.
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Conjectures have been made about the spectrum of quasi-crystalline one-dimensional
systems (Valsakumar and Ananthakrishna 1986). Such one-dimensional systems have
potentials which lack translational symmetry and long ranged correlations, but whose
correlations are different from random one-dimensional systems, We propose to make
confirmatory studies on the basis of this formalism.
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