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Abstract. Recently several theories have been proposed to account for the state reduction
due to measurement. The resulting evolution is given by a new density matrix equation which
suppresses linear superpositions of states with large spatial separations. We raise some pertinent
questions regarding these theories. We also show that the evolution for the density matrix
obtained in these theories has a classical analog.
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1. Introduction

Quantum mechanics has so far been in perfect agreement with all experiments, yet
the debate continues with regard to its interpretation. Quantum mechanics contradicts
our general view of macroscopic objects. The linearity of the Schrédinger equation
leads to superpositions of macroscopically distinguishable states and hence Schrodinger’s
cat paradox. Particularly in quantum mechanics, if we describe an initial state of a
composite system in terms of non-factorized state vectors, for later times, state of a
system continues to be in a non-factorized state even while their constituents (may
be macroscopic in size) are far off in spatial domain and non-interacting. This fact
forbids us from attributing a physical individuality to the components of the composite

~ system (quantum non-separability). On the other hand we have the well tested theory

namely, classical mechanics which describes the behaviour of the macroscopic composite
objects with well defined individual physical attributes. Now the question arises
as to whether we can obtain classical attributes from the quantum theory. To answer
this question specifically, several state reduction theories have been developed. One
class of theories treats the macroscopic body as a complex one interacting with an
inevitable environment [1]. In fact one can show that the environment surrounding
a quantum system induces decoherence leading to a classical behaviour [1, 2]. For
macroscopic objects, quantum coherence would be destroyed in a very short time
scale. These theories emphasize the fact that the loss of coherence can be regarded
as an act of measurement [1]. If the quantum system is coupled to an environment
through a dynamical variable of the system say A, then the variable A is called a
“pointer” variable [3, 4]. Pointer variable can also be defined as a dynamical variable
A of the system which commutes with the interaction Hamiltonian. This guarantees
that the pointer observable is a constant of motion of the interaction Hamiltonian.
Naturally, if the system is in an eigen state of 4, the interaction with an environment
will leave it unperturbed. The environment selects the preferred basis (pointer basis),
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ie. an environment acts as if it is measuring a dynamical variable 4 of the system.
Consequently the density matrix of the system reduces rapidly to the diagonal form

(mixed state) in the pointer basis representation. The rate of the reduction depends |

on the strength of the coupling with the environment. This loss of coherence destroys
the superpositions and hence gives rise to classical behaviour. One can now understand
~ easily the nature of the system being quantum or classical, by its ability to retain
quantum coherence. However, the procedure we have mentioned above subsumes
the system and the environment to form a closed system. The evolution of the system
plus environment is a Hamiltonian evolution and we look for the projected evolution
of the system alone. This is true when we prescribe the total Hamiltonian, i.e. system,
environment and interaction. One can also take a practical view that the measurement
isa complex process and is an external act. Since we do not know the total Hamiltonian
precisely it is difficult to formulate the reduced dynamics of a system through a
Hamiltonian evolution.

The second class of theories takes a viewpoint that the system evolves deterministically
according to the Schrodinger equation. When the quantum system interacts with an
apparatus, set up for measuring a dynamical variable of the system, the state of the
system changes abruptly after the measurement. The measurement collapses the state
of the system into an eigen state of the measured dynamical variable. This second
process cannot be treated in the framework of the Schrddinger equation. In order
to reconcile with these two different types of evolutions and to suppress the unwanted
linear superpositions of states far apart in spatial regions, Ghiradi et al have introduced
quantum mechanics with spontaneous localization [5]. In this treatment, one invokes
the position measurement, the particle besides evolving through a Hamiltonian
dynamics, is subjected to repeated collapse corresponding to localization in space at
random times. For a single particle in one-dimension the instantaneous localization
process corresponds to

Yo—exp[— X — %)* 1y, 1y

which occurs at random interval of time. In each localization process the co-ordinate
x is a random variable with probability distribution given by

P(x)alexp[—a(* —%)*1), @

where <...) stands for quantum expectation value in the actual state /,, and o is the
accuracy of the localization process. In every process of measurement when one
collapses the wave function around the mean value of co-ordinate observable in
quantum state y,, one expects this procedure will lead to a classical behaviour in
terms of trajectories. Now due to the randomness in the localization process, the
evolution of y, is governed by a stochastic equation. Finally one arrives at the
reduced equation for the density matrix p(x, x*, £)(= y¥*(x, ) (x',£)), namely,

dp (o o ,

where f(x,x’) is given by {1 —exp[— (o/4)(x — x')?}. Diosi [6, 7] obtains the same
equation (1), by taking into account the modification of quantum dynamics by gravita-
tional effects. In his case f(x,x') = (y/4)(x — x')?. Joos and Zeh [8] have also arrived
at the same master equation for a system interacting with an external environment.
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Using (3) one can readily verify that (d/dt)(trp?) < 1. This implies that under dynamical
evolution pure states are transformed into statistical mixture. These theories have
been widely discussed in literature and in particular Bell [9] has made a clear
exposition of it. ‘" ,

We show below that (3) has a classical analog. Moreover, if a quantum particle is
subjected to a purely classical white noise potential, then the resulting density matrix
evolution is given precisely by (3). We also point out certain inconsistencies regarding
the very notion of the position measurement. Most of the presentation here is based
on our earlier work related to quantum transport problems in a dynamically disorde-
red medium [10].

2. Theory

Consider first a classical particle subjected to a random force,

mifi_t_" o, | @

where f(t) is a Gaussian white noise. One can easily verify that [10] the mean-squared
displacement of the particle {x2(z)>grows as 3. This is because the particle
continues to absorb energy from the fluctuating force and accelerates indefinitely.
Equation (4) represents the well-known Langevin equation in the absence of dissipative
or frictional force [11]. Here we have not provided any dissipative mechanism, which
is a must for a system to equilibrate or to reach a steady state. In short the particle
heats up to infinite temperature. Now corresponding to the above classical equation
the Hamiltonian is given by H = p*2m — xf (). Quantizing this system, the quantum
Hamiltonian is given by
2

H=
2m

V2 —xf(1) ()

where f(¢) is a white noice force with S)>=0, SOF() =2V25(t—1t'). The
angular brackets represent averaging over all realizations of random force. Using
Schrddinger equation one can easily write down the equation for the averaged density
matrix p(x, X', ) { = Y *(x, )y (%, t)}. Following exactly the same procedure due to [10]
we arrive at the same master equation (1), where f(x,x') = (VE/h*)(x — x’). This is
exactly the equation derived earlier by Diosi [6, 7] with a redefinition of the coefficient,
namely Ay/4 = Vi?/h® The potential energy in (5) is given by V(x,t)= —xf(¢), if we
replace this potential by a space time dependent Gaussian noise with statistics given
by {V(x,t)> =0 and {V(x,t) V(x,t')) = g(x—x')é(t — '), we again arrive at (1) for
the averaged density matrix (see equation (8) in [10]). If we assume spatial part of
the correlation function to be g(x —x') = exp((— a/4)(x — x')?), we get the result
derived by Ghirardi et al [5]. Thus we have shown that (3) has a classical analog
and is precisely the density matrix equation obtained for a quantum particle subjected
to classical white noise potential.

Now we will consider the question regarding the position measurement. As mentio--
ned earlier theoretical schemes leading to (3) explicitly invoke the position measure-
ment. Hence naturally one expects the evolution of the wave packet to be blocked
by repeated position measurement. In quantitative terms one expects the slower
growth of width (spread) of the wave packet as compared to the unperturbed free
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evolution (in the absence of a measurement). In fact it is now very well-known that

in the extreme case, a continuous position measurement completely inhibits the time
evolution (quantum zero effect of watched pot effect) [12]. Such a physical effect also
manifests as a reduction in the tunnelling rate due to coordinate coupling to the
environment [13]. In this situation the co-ordinate coupling to the environment
induces effectively a position measurement of a system, thus the width of a wavepacket
evolves slowly thereby suppressing the tunnelling rate. In contrast to such a physical
expectation, state reduction theories based on position measurement lead to faster
evolution for the width (or spread) of the wave packet as compared to the free
evolution. Consider a simple case, where f(x,x') = (VZ/h*)(x —x')* [6, 7]. We now
take initial condition that the particle was prepared initially in a wave packet centred

at origin x =0, ie. Y(x,t=0)=(1/2n*)(1/c*/*)exp[ — x*/406*]. This ensures correct

normalization for the initial density matrix p(x, x',t = 0) = Y (x,t = 0)y*(x,t =0). The
initial wave function has a width (or spatial spread) characterized by {x*) equal to
o%. Following [10] one can evaluate exactly, the time development of the width or
the mean-squared displacement and is given by

242 2
h*t V°t3

200 = g2 + Yo
=0 dma? 3m?

2

V ‘
={x2(0); +§n%t3- ~ (6)

From (6) one can notice that the width of the wave packet spreads at a much faster
rate when compared to the free-evolution {x*(t)), for all times t>0. Hence we
conclude that even though state reduction theories leading to (3) are based on position
measurement, they give inconsistent result, ie. they do not predict blocking of the
width (spread) of the wave function, in fact the contrary is true. If one takes f(x, x')
given by [5], the same behaviour for (x?()> is observed (see equation (17) in [10]).
As shown earlier t* dependence of {x?(t)) observed in these theories is contained in
a classical analog. Also one can see clearly the objection by Ballantine [14] that these
theories do not possess a steady or equilibrium state and the energy conservation is
contained in the classical counterpart itself so has nothing to do with the quantum
mechanics.

We now consider another interesting case when the spatial correlation of a random
potential is given by g(x —x')=exp[—a(x—x)*]. Such a correlation function
conserves the energy on the average [14], indicating that (x2(£)) = (<x*(£)) ).
However, {x*(t)) ~ t°, indicates that the spread of the wave packet is faster.

3. Conclusions

The theories 5, 6, 7] for position measurement are probably good ones for describing
the quantum motion of an accelerating particle interacting with a parametric random
force (but not for the state reduction due to position measurement). Moreover we

have explicitly shown that the problem of non-equilibration and steady state is present .

in the classical analog.

Finally we would like to point out that the scheme due to Ghirardi et al, namely
the quantum evolution blocked by repeated collapse, is quite appealing. However,
the problem is that these treatments are done in a continuum space. In such a situation
the energy operator of a particle is unbounded and hence the particle continually
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gains energy without any limit. If indeed one can carry out the same scheme [15]
for a motion of a particle on a one-band lattice Hamiltonian (where the energy
operator is bounded), one can readily obtain (see references in [10]) the result for
the width of the wave packet as {x?(¢)) ~t. This is a much slower evolution as
compared to the free evolution. This is consistent with the notion of the position
measurement. Such treatments have been successfully used earlier to explain many
physical phenomena, which include, quantum diffusion on lattices, spontaneous
symmetry breaking and blocking of metastable states [16] and some transport related
results in high temperature superconductivity [17].

References

[1] W G Unruh and W H Zurek, Phys. Rev. D40, 1071 (1989) and references therein
[2] A O Caldeira and A J Leggett, Phys. Rev. A31, 1059 {1985)
[3] W H Zurek, Phys. Rev. D24, 1516 (1981)
[4] W H Zurek, Phys. Rev. D26, 1862 (1982)
[5] G C Ghirardi, A Rimini and T Weber, Phys. Rev. D34, 470 (1986)
[6] L Diosi, Phys. Lett. A120, 377 (1987)
[7] L Diosi, Phys. Rev. A40, 1165 (1989)
[8] E Joos and H D Zeh, Z. Phys. B59, 223 (1985)
[91 1 S Bell, in Schrodinger equation — centenary celebration of a polymath, edited by
C W Kilmister (Cambridge: University Press, 1987), p. 41
[10] A M Jayannavar and N Kumar, Phys. Rev. Lett. 48, 533 (1982) and references therein
[11] S Chandrasekhar, in Selected papers in noise and stochastic processes, edited by Nelson Was
(Dover, New York, 1954)
[12] B Misra and E C G Sudarshan, J. Math. Phys. 18, 765 (1977)
[13] A O Caldeira and A J Leggett, Ann. Phys. (N.Y) 149, 374 (1983)
[14] L E Ballentine, Phys. Rev. Ad3, 9 (1991)
[15] A M Jayannavar (1992), (unpublished)
[16] M Simonius, Phys. Rev. Lett. 40, 980 (1978)
[17] N Kumar and A M Jayannavar, Phys. Rev. B45, 5001 (1992)

Pramana — J. Phys., Vol. 40, No. 1, January 1993 29




