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Abstract

We have calculated the persistent spin current of an open ring induced by

the Aharonov-Casher phase. For unpolarized electrons there exist no persis-

tent charge currents, but persistent spin currents. We show that, in general,

the magnitude of the persistent spin current in a ring depends on the direc-

tion of the direct current flow from one reservoir to another. The persistent

spin current is modulated by the cosine function of the spin precession an-

gle. The nonadiabatic Aharonov-Casher phase gives anomalous behaviors.

The Aharonov-Anandan phase is determined by the solid angle of spin pre-

cession. When the nonadiabatic Aharonov-Anandan phase approaches a con-

stant value with the increase of the electric field, the periodic behavior of the

spin persistent current occurs in an adiabatic limit. In this limit the periodic

behavior of the persistent spin current could be understood by the effective

spin-dependent Aharonov-Bohm flux.
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The electric and magnetic properties of mesoscopic systems have recently received much

attention in the light of several experimental observations [1–4]. Mesoscopic physics deals

with the structure made of metallic or semiconducting material on a nanometer scale. The

length scale associated with the dimensions in these systems are much smaller than the in-

elastic mean free path or phase breaking length. In this regime, an electron maintains phase

coherence across the entire sample. In general, a system with a large degree of freedom is

called mesoscopic if the length up to which the wave function retains phase coherence exceed-

ing the size of the system. The main characteristics of mesoscopic systems is the quantum

coherence. These systems, which are now accessible experimentally, provide an ideal test

ground for the quantum mechanical models beyond the atomic realm. These systems have

revealed, several interesting and previously unexpected quantum effects at low temperatures

[1,4–6], which are associated with the quantum interference of electron waves, quantization

of energy levels, and discreteness of electron charge. Persistent currents in mesoscopic nor-

mal metal rings are purely mesoscopic effects in the sense that they are strongly suppressed

when the ring size exceeds the characteristic dephasing length of the electrons or the inelastic

mean free path [7,8]. Studies have been extended to include multichannel rings, spin-orbit

coupling, disorder, electron-electron interaction effects, etc. [1,9,10].

Theoretical treatments up to date have been mostly concentrated on isolated rings.

Persistent current occur not only in isolated rings but also in the rings connected via leads to

electron reservoirs, namely open systems [11–13]. In a recent experiment Maily et al. have

measured the persistent currents in both closed and open rings [8]. Recently Jayannavar et

al. noted the several novel effects related to persistent currents can arise in open systems,

which have no analogue in closed or isolated systems [14–17]. Especially the directional

dependence of persistent current in open system can be useful for separating the persistent

current from noises.

In 1984, Aharonov and Casher (AC) [18] noticed the possibility of the dual effect of

the AB phase and discovered the AC phase for a neutral magnetic moment encircling a

charged line. In a fundamental generalization of Berry’s idea [19], Aharonov and Anandan
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(AA) removed the adiabatic restriction and studied the geometric phase for the nonadiabatic

cyclic evolution [20]. By removing the dynamical part, Aharonov and Anandan defined the

nonadiabatic geometric phase for the cyclic evolution called the AA phase. Qian and Su

[21] has demonstrated the existence of the AA phase in the AC effect. In the adiabatic limit

this AA phase becomes the spin-orbit Berry phase introduced by Aronov and Lyanda-Geller

[22]. Loss, Goldbart, and Balatsky discovered that Berry phase can induce persistent spin

currents [23]. And Balatsky and Altshuler noticed spin-orbit interaction produces persistent

spin and mass currents [24]. Along this line of study of the spin phase effects on the

electron transport problem, Ryu [25] has shown that various spin motive forces [26] can be

described in a unified fashion based on the Goldhabor-Anandan [27] gauge theory for a low

energy spin particle. The persistent current induced by the Aharonov-Casher (AC) phase

is much smaller than the persistent current induced by the Aharonov-Bohm (AB) phase, so

the directional dependence will be extremely useful for the detection of that current. The

transport behavior induced by the AC phase is recently studied [28,29].

In our present treatment we consider a one-dimensional metal loop of length L coupled

to two electron reservoirs as shown in Fig. 1. In the ring there is a cylindrically symmetric

electric field to produce a spin-orbit interaction. This spin-orbit interaction gives the AC

phase with cyclic evolution. This idealization to one-dimension corresponds experimentally

to a network of high-mobility quantum wires with narrow width such that only the lower

subband is filled. Our calculations are for noninteracting systems of electrons. In such a

geometry the AC effect manifests itself not only in a transport phenomenon but also in a

persistent current. The left and right reservoirs are characterized by chemical potentials µ1

and µ2, respectively. We have introduced a δ-function impurity of strength V at a length

Ld(= 2L) to the right of the metal loop (marked by × in Fig. 1). The presence of the

impurity breaks the spatial symmetry of the system. We also restrict to the case of L1 = L2,

to avoid the additional contribution arising due to the difference in transport current across

upper and lower arms. If µ1 > µ2 the net current flows from the left to the right and vice

versa, if µ1 < µ2. The scattering of the electronic wave function occurs at the junctions J1, J2
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and at the impurity site I. In our model we have complete spatial separation between elastic

processes in the loop and the inelastic processes in the reservoirs. The inelastic processes in

the reservoir are essential to obtain a finite conductance.

When µ1 > µ2, the steady flux of electrons with an energy E is injected from the reservoir

1. These electrons moving to the right are first scattered at the junction J1 and subsequently

at J2 and I (together with multiple reflections at J1, J2, and I). The electrons emitted by

the reservoir 2 are first scattered at I and subsequently at J2 and J1. Since there is no

spatial symmetry, for these two different cases the electron wave function (scattering states)

has a different complex amplitude at J1 and J2. The persistent current in a metallic loop

is sensitive to the boundary condition, and hence we observe that the magnitude of the

persistent current depends on the direction of the current flow. Obviously the conductance

of an entire network (calculated via the quantum transmission coefficient) does not depend

on the direction of the current flow. This implies that there is no simple scaling relation

between the persistent currents and the conductance of the entire network.

First we consider the situation wherein the direct current flows from the left reservoir

to the right reservoir. In the presence of cylindrically symmetric electric fields E, the one-

particle Hamiltonian for non-interacting electrons is given by

H =
1

2me
(p− µ

c
σ × E)2, (1)

where σ × E

2
represents a spin-orbit coupling and σα with α = 1, 2, 3 are Pauli matrices.

Adopting a cylindrical coordinate system and the electric field E = E(cos χr̂ − sin χẑ) we

have the following Hamiltonian in a closed ring

H =
h̄2

2mea2

(

−i∂φ − µEa

2h̄c
(sin χ cosφσx + sin χ sin φσy + cos χσz)

)2

, (2)

where a is the radius of the ring. The eigenfunctions Ψn,± and eigenvalues En,± of Hamilto-

nian (2) in a closed ring are obtained as [30]

Ψn,± =
1√
2π

einφ









cos β±

2

±eiφ sin β±

2









,
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En,± =
h̄2

2ma2

(

n − Φ±
AC

2π

)2

, (3)

and Φ±
AC = −π(1 − λ±) ,

where λ± ≡ ±
√

ω2
1 + (ω3 + 1)2 are eigenvalues of ω1σ

1 + (ω3 + 1)σ3, and the angle β± are

defined by tan β+ ≡ ω1/(ω3 + 1), and β− = π − β+. Here ω1 and ω3 are denoted by

ω1 ≡ µEa
h̄c

sin χ and ω3 ≡ µEa
h̄c

cos χ and µ = eh̄/2mec is the Bohr magneton. The evolution

of a spin state in the presence of the electric field is determined by the following parallel

transporter [30].

Ω(φ) = P exp

[

i
µEa

2h̄c

∫ φ

0
(sin χ cos φ′σ1 + sin χ sin φ′σ2 + cos χσ3)dφ′

]

, (4)

where P is the path ordering operator. It relates the wave function Ψ(φ) to Ψ(0). In

general, the spin state that has been parallel transported around the ring does not return

to the initial spin state. However, for the special initial spin state, the spin state after a

parallel transport around the ring returns to the initial state except the phase factor as

Ψ(2π) = exp[iΦ
(±)
AC ]Ψ(0). This spin state is the eigenstate of ω1σ

1 + (ω3 + 1)σ3 [30]. Then

the spin state at φ is obtained as

Ψ(±)(φ) = ei(1−λ±)φ/2









cos β±

2

±eiφ sin β±

2









. (5)

After a cyclic evolution this spin state returns to the initial state apart from the AC phase.

To derive an expression for the persistent current and the transmission coefficient, we

apply the one-dimensional quantum waveguide theory developed in Ref. [31]. We use the

local coordinate system for each circuit such that the x coordinate is taken along the electron

current flow. The origin of each local coordinate is taken at each junction. At each junction

charge density and current are conserved, and electron spins are matched. We assume that an

electron spin is not changed while electron passes a junction and neglect the spin-flip process

as in Ref. [22]. Since the two reservoirs are mutually phase incoherent, we have to solve the

problem separately for the electrons emitted from the left and the right reservoirs. First

we consider the case wherein electrons are emitted from the left reservoirs. The reservoirs
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emit electron carriers with the Fermi distribution f(E) = (exp[(E − µ1)/kBT ] + 1)−1. This

results in a current flowing from the left to the right.

The textured electric field can be made by putting the extra charge in the center of the

ring together with a circular gate along the ring. Then except for the point I (where we

have introduced a δ-function potential), in the input and output leads, there is no normal

electric field, and the Hamiltonian (1) becomes that for the free particle

H =
1

2me
p2

x, (6)

since py = 0 and Ez = 0 in the leads. Thus the incident and reflected spin states acquire only

the phases of ikx and −ikx, respectively. Since it is always possible to use the eigenstates

of the ring at φ = 0 (J1) as the basis of general incident spin states, and there is no spin

flip process, we can treat the eigenstates of the ring at φ = 0 as the incident spin states

separately. This spin state changes its direction during the movement along the ring as

described in Eq. (5).

When an electron is transported from the input junction in the clockwise direction along

the upper loop, it picks up a phase γ = 1/2Φ±
AC at the output junction. And when the

electron is transported in the counter clockwise direction along the lower loop, the elec-

tron acquires the phase δ = −1/2Φ±
AC. Thus the total phase around the loop becomes

(γ − δ) = Φ±
AC. Since the effect of the electric field on the above spin state brings the phase

shift of wave function, the energy of the electron in the loop E = h̄2[k±
1 − Φ±

AC/2πr]2/2m

should be equal to the energy of the injected electron h̄2k2/2m. Thus we take the wave vector

k±
1 = k+Φ±

AC/2πr for the electron moving along the clockwise direction, and k±
2 = k−Φ±

AC

2πr
for

the electron moving in the opposite direction. Let the spin state
(

cos β±/2 , ± eiφ sin β±/2
)t

be X±
φ , where t means the transpose of the vector. Then the wave functions in the circuits

can be written as

6



Ψ±
1 = (eikx + a±e−ikx)X±

0 ,

Ψ±
2 = (c±1 eik±

1
x + c±2 e−ik±

2
x)X±

φ ,

Ψ±
3 = (d±

1 eik±

2
x + d±

2 e−ik±

1
x)X±

φ′ ,

Ψ±
4 = (f±

1 eik±

2
x + f±

2 e−ik±

1
x)X±

π ,

Ψ±
5 = g±eikxX±

π ,

(7)

where the wavefunctions Ψ1−5 are for the following regions, input lead, J1 − J2 upper arm,

J1 − J2 lower arm, J2 − I and output lead, respectively. We use the Griffith boundary con-

ditions [32–34] at the junctions. We have obtained analytical expressions for the persistent

currents. However, here we present our results graphically since the analytical expression is

too lengthy.

In the open system, the transport current is symmetric with respect to the AC flux.

Hence the persistent current is defined as the antisymmetric part of the ring current with

respect to the AC flux. As is well known, the Hamiltonian considered has the time-reversal

symmetry. Because of this time reversal symmetry the persistent charge currents for the

unpolarized incident electrons always vanish. In the presence of the net spin polarization

the AC effect leads to charge currents proportional to n↑ − n↓, where n↑ and n↓ are the

number of spin up electrons and down electrons, respectively. In Fig. 2 we have plotted

the persistent charge currents for the incident spin-up eigenstate of the ring at φ = 0 in

the dimensionless unit J/k as a function of the normalized field strength η for tilt angles

χ = 0(A), π/2(B), 3π/4(C), and π(D), the dimensionless momentum kL = 7, and the

impurity strength V L = 10. In Fig. 2 the solid and dashed curves represent the magnitudes

of the persistent charge currents flowing in the loop J+
C

L
/k, and J+

C
R
/k, respectively for the

spin-up eigenstate of the ring. Where the subscript L and R represent when the dc current

flows in the left and right directions, respectively. One can readily notice from Fig. 2 the

difference between the values of the persistent charge current for the electron emitted from

the left reservoir (solid line) and that for the electron emitted from the right reservoir (dashed

line). This shows clearly that the persistent charge currents in a metal loop connected to
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two reservoirs depend on the direction of direct current flow from one reservoir to the other.

For V = 0 we can recover the symmetric case, so there is no directional dependence on the

persistent charge currents. We can also see the anomalous behaviors in the persistent charge

current when the normalized electric field η is small and χ 6= 0, π. This anomalous behavior

comes from the nonadiabatic AC phase. The persistent charge currents for the spin-down

eigenstate of the ring is exactly opposite to the spin-up persistent charge currents because

of the time reversal symmetry.

The persistent spin current Ja
S is defined as the antisymmetric part of < Ψr|(p − µr/c ·

σ × E)φσ
a/h̄|Ψr >. Where a = 1, 2 and 3 is the spin indices and |Ψr > is the state on the

ring. It has the additional contribution from σa operator to the persistent charge current.

Because of the cylindrical symmetry, the persistent spin current with the x and y direction

vanishes. From < Ψn,α|σ3|Ψn,α >= cos βα, and cosβ−
= − cos β+, the persistent spin current

< J3
S > of spin-down eigenstate of the ring is the same as that of spin-up eigenstate. This

implies that the persistent spin current would be independent of spin polarization. It should

be noticed that the magnetic field necessary for spin polarization is not required to observe

the persistent spin current, different from the persistent charge current. Fig. 3 shows the

persistent spin current as a function of normalized electric field strength η for the same

values as that of the persistent charge current. In the case of χ 6= 0, π, the anomalous

behavior is more definite than that of the persistent charge current, because of the additional

contribution from the modulation cos β+.

We give a simple picture to understand the anomalous behavior of persistent spin current

intuitively. We consider the spin up eigenstate only in the following since SO interaction

term is time-reversal invariant. It is also the eigenstate of ω1σ
1 +(ω3 +1)σ3 with spin up. In

a ring the system has a cylindrical symmetry, so the spin direction at φ has the polar angle

β+ and the azimuthal angle φ. It means that the spin precesses about ẑ direction with an

angle β+ during the cyclic evolution. From the similarity of the mathematical structure of

the AC effect with the AB effect we can rewrite the spin-orbit coupling term as the effective
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spin dependent gauge field e
c
Aeff , with Aeff = µ

h̄e
(S × E). Where S is the spin operator.

In the semi-classical approach a spin is a three-dimensional vector with a certain direction.

The µ
h̄e

(S × E) is calculated as µE
2e

cos(β+ − χ)φ̂. This is constant during the motion as far

as the field strength E and the tilt angle χ is fixed. Hence this µ
h̄e

(S × E) is described as

Aeff = Φ
2πa

φ̂. Where Φ = (∇× Aeff) · F is the magnetic flux through the ring section area

F (= πa2). The phase acquired from this effective AB situation - we call this Φeff
AB - is

Φeff
AB =

πea2E

2mec2
cos(β+ − χ). (8)

This effective spin dependent AB phase acquired by a charge e around a flux Φ =

(∇× Aeff) · F turns out to be the same as the dynamical phase acquired by a spin due to

the SO interaction [21,30]. In the AB situation a charge does not precess, but in the AC

situation the spin precesses during the cyclic evolution, bringing an additional effect. The

difference between the effective AB phase for a charge and the AC phase for a spin becomes

the AA phase, which comes from the extra spin degrees of freedom.

The AA phase is associated with the spin precession. To get this phase we parametrize

the path of the spin by the azimuthal angle φ. The spin state |S · n̂; + > satisfies

S · n̂(φ)|S · n̂; + > =
h̄

2
|S · n̂; + > , (9)

where n̂(φ) is the unit vector with polar angle β+ and azimuthal angle φ. And the spin

state |S · n̂; + > becomes X+
φ . Since this spin S remains parallel to n̂(φ) during the rotation,

formally this is identical to the problem considered by Berry for a spin S in an adiabatically

changing magnetic field B(t).

gS · B(t)|B(t), ms > = E|B(t), ms > (10)

where g is related to the gyromagnetic ratio and ms is the component of the spin along the

direction of B(t). Berry showed that γ(C) = −msΩ(C) , where γ(C) is Berry’s phase and

Ω(C) is the solid angle subtended by the curve C with respect to the origin B = 0. In our

case, the phase accumulated is
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γ(C) = − 1

2
Ω(C) , (11)

where Ω(C) is the solid angle subtended by the loop C with respect to n = 0. In this case

C is a circle and Ω(C) = 2π(1− cos β+). This geometric phase γ(C) is the AA phase, and

thus the AA phase becomes −π(1 − cos β+).

From the above intuitive picture, the anomalous behavior is understandable by the pre-

cession of the spin. The AA phase is determined by the solid angle of spin precession and the

dynamical phase is the effective AB phase induced by the spin dependent AB flux. Let us

first consider the adiabatic approximation of the spin evolution. The condition for the adi-

abatic limit is η ≫ 1. In this case the spin state is an eigenstate of the parallel transporter.

The dynamical phase of the adiabatic solution is given by Φ±
dyn ≈ ±

√

ω2
1 + ω2

3 from Eq. (8).

Also the adiabatic approximation of the AA phase is the Berry phase, Φ±
Berry = −π(1∓cos χ).

These phases are equal in Ref. [22] for proper parameter transformation. In this limit, the

spin precession angle β+ becomes the fixed tilt angle χ. The AA phase gives a constant shift

to AC phase. That is, the effective spin dependent Φeff
AB determines the periodic behaviors.

For χ = 0, the AC phase consists of the dynamical phase only and persistent spin current

oscillates periodically. It is clear that the anomalous behaviors of the persistent spin currents

come from the change of the spin precession angle with varying electric field. For a fixed tilt

angle the precession angle β+ of spin-up depends only on the field strength η as

cos β+ =
η cos χ + 1

√

η2 sin χ2 + (η cos χ + 1)2
.

For η > 0, this can be negative for χ > π/2. We can see this change of sign of the persistent

spin current in Fig 3 (C) and (D) in comparison with the persistent charge current.

In Fig. 4 we have plotted the persistent spin currents J+
S

R
/k and J+

S
L
/k as a function

of dimensionless impurity potential V L, for a fixed value of kL = 7, for η = 6 and for tilt

angle π/2. In this case the modulation cosβ+ has a fixed value 0.16. The magnitude J+
S

R
/k

decreases monotonically to zero as V L → ∞. This is due to the fact that in this limit

electrons emitted by the right reservoir do not enter the loop and cannot contribute to the
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persistent spin currents. The absolute magnitude of J+
C

L
/k saturates to a value in the same

limit. This corresponds to a situation where the loop is connected to a single reservoir µL,

where the connection is truncated at the point I (the impurity state). In Fig. 5 we have

plotted the dimensionless conductance T (|g+|2) as a function of kL, for η = 6, for V L = 10

and for χ = π/2. The electrical conductance exhibits a peak for certain values of kL. These

peaks occur due to the resonance of the incident electron energy coincides with one of the

eigenenergies of the ring or with one of the bound state energies of the stub J2 − I. But

the peaks do not appear at the exactly same energy as the eigenenergies since the multiple

scatterings at junctions shift the energy levels. And we can see the effect of the bound state

of the stub J2 − I will decrease as kL becomes much higher than V L.

In conclusion, we have shown that the magnitude of the persistent spin current induced

by the Aharonov-Casher phase in a normal metal loop connected to two reservoirs depends

on the direction of the direct current flow, which should be an experimentally verifiable

feature. In the presence of the AC flux, the Hamiltonian has the time reversal symmetry,

so the persistent charge current always vanishes for unpolarized incident electrons. But

the persistent spin current still exists. That is, if the spin-up electrons of the ring circles

counter-clockwise, then the spin-down electrons evolves clockwise and vise versa. Since the

conductance of the entire network does not depend on the direction of the direct current flow,

there is no simple scale relationship between the persistent spin currents and the conductance

of the entire network. The anomalous behaviors appear when the spin precession angle

changes as a function of the field strength. The periodic behavior in the adiabatic limit can

be understood as the effect of spin dependent AB flux. In this case the spin precession angle

does not change so that the AA phase is constant. The difference between the magnitude of

the persistent spin currents (on the direction of the current flow) can be made significant by

adjusting the impurity potential. This can be achieved experimentally by having a gate in

one of the leads connected to the reservoirs and by appropriately varying the gate voltage.

Such an experiment can also be useful for separating the persistent spin currents from other
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parasitical currents (or signals) associated with measurements. When there are time reversal

symmetry breaking terms in the Hamiltonian, we expect that the persistent charge current

will also appear even for unpolarized incident electrons. The natural terms are the Zeeman

coupling and the AB flux of the localized magnetic field. The directional dependence of

spin and charge currents in the presence of the Zeeman coupling, AB flux and AC flux is

currently under study by us.
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[11] M. Büttiker, Phys. Rev. B 32 1846 (1985).
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FIGURES

FIG. 1. An open metallic loop connected to two electron reservoirs. There exist a cylindrically

symmetric electric field which gives the AC flux.

FIG. 2. The persistent charge current as a function of the normalized electric field η for a fixed

value of kL = 7, V L = 10, tilt angles (A) χ = 0, (B) π/2, (C) 3π/4, and (D) π. The solid line

represents persistent charge current for J+
C

L
/k and the dashed curve represents J+

C
R
/k.

FIG. 3. The persistent spin currents vs η for same values in Fig. 2. The solid line represents

J+
S

L
/k and dashed curve represents J+

S
R
/k. And the dotted line represents the modulation function

as an envelope.

FIG. 4. The persistent spin currents vs the strength of impurity potential for fixed values of

kL = 7, η = 6 and χ = π/2. The solid line represents J+
S

L
/k and dashed curve represents J+

S
R
/k.

FIG. 5. Conductance oscillations vs kL for η = 6, V L = 10 and χ π/2.
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