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Abstract. In this paper we study a special case of the initial value problem for a 2 x 2 system
of nonstrictly hyperbolic conservation laws studied by Lefloch, whose solution does not
belong to the class of L* functions always but may contain J-measures as well. Lefloch’s
theory leaves open the possibility of nonuniqueness for some initial data. We give here a
uniqueness criteria to select the entropy solution for the Riemann problem. We write the
system in a matrix form and use a finite difference scheme of Lax to the initial value problem
and obtain an explicit formula for the approximate solution. Then the solution of initial
value problem is obtained as the limit of this approximate solution.
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1. Introduction

The standard theory of hyperbolic systems of conservation laws assumes usually the
systems to be strictly hyperbolic with genuinely nonlinear or linearly degenerate
characteristic fields, see Lax [6] and Glimm [1]. But many of the hyperbolic systems
which come in applications do not satisfy these assumptions and such cases were
studied by many authors [3, 5, 8]. In all these papers solutions are found in the sense
of distributions, say in the class of L® functions. In a very interesting paper, Lefloch
[7] considered a system of conservation laws, namely

u 0 ‘ )
| b—t~+—a—£f(u)=0, (1.1)

v 0
h =0
Py + ax(a(u)v) ,

with initial conditions
u(x, 0) =uo(x), v(x,0) = vy(x), (1.2)

where a(u) = f'(u) and f: R— R is a strictly convex function. For systems of this type
generally there is neither existence nor uniqueness in the class of entropy weak
solutions in the sense of distributions. He has shown that when u,eL'(R)nBV(R)
and v,e*(R)AL'(R) (1.1) and (1.2) has at least one solution (u, v)e L°(R .., BV(R)) x
L*(R ., M(R)) given by
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— N
ulx, 1) = (/% (U&(’—‘-—))
t S
0 yo(x,t; E%ﬁ“’
u(x,t) = — f vo(z)dz,
0x J_ . ) |
where y = y,(x, t) minimizes 1

min [fy uo(z)dz+tf*(x—;~}~)>]

and f* is the convex dual of f(u) and M(R) is the space of bounaed borel measures
on R. Further he proved that if u, satisfies

duo g, - (1.3)
dx

in the sense of distributions for some Ko, then the problem (1.1) and (1.2) has one
and only one entropy solution. If we take

Ug(x) = {

u; ifx<0
ug ifx>0
then (1.3) is equivalent to saying
(g —u)p(0) <K, for all peCZ(R), ¢ >0

and this will be true for some K, and for all ®eCF(R), ¢ 20, iff u; > ug. In fact for
the Riemann problem, i.e., when the initial data for (1.1) is of the form

(u(x, 0), ofx, 0)) = 0 7 X <0 (1.4)
(ug,vg) ifx>0,
Lefloch [7] has given an infinite number of solution for the case uy; < up.

In this paper we study a criteria to choose the correct entropy solution. Classically,
vanishing viscosity method or proper numerical approximations are used to choose
the correct entropy solution. Following Hopf [2], vanishing viscosity method was
used by Joseph [4] to pick up the unique solution for the Riemann problem when
S =u?/2 in (1.1). It was shown that in the case, u; < ug, which is the case of non-
uniqueness, the v component of the vanishing viscosity solution is

vy, ifx<ugt
o(x,t)= ¢ 0, fupt <x <upgt
Vg, ifx > ugt.
In other words in the rarefaction fan region of u component, the v component is zero.

In the present paper, we consider the special case f(u) =log[ae* + be™*],a+b =1,
a>0, b>0 are constants in (1.1). Then we have

u, + (log(ae* + be™)),. =0, (1.5

ae* — be™*
b+ ————0v) =0,
ae“+be " ]
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and study the unique choice of solution. Here we use a numerical approximation of
Lax [6], which he used to pick the correct entropy solution for a scalar conservation
law. For the Riemann problem, we show that in the rarefaction fan region of u, the
v component is zero, see Theorem 1. These examples suggest a uniqueness criteria at
least for the Riemann problem.

Before stating our main results let us introduce the difference approximation. To
do this first we note that (1.5) can be written in the matrix form

A, + [log(ae? + be™ )], =0, (1.6)

A=(“ 0). (17)
v u ‘

Let Ax and At be spatial and time mesh sizes and let
A}~ A(kAx,nAt), k=0,+1,+2,..., n=0,12,... (1.8)

where

and following Lax [6], define the difference approximation

At _ _ ne1 ane
AZ=A;—1+E[Q(A:—LA: 1)_g(Ak I:Ak+i)]’ (19)
where the numerical flux g(A4, B) is given by
g(A, B)=log[ae* + beF]. (1.10)
Here we can take At= Ax=A, since the characteristic speed of the eigenvalues

A=A, = Ee————gf——— of (1.5) which are less than one in modulus. Then we note that (1.9)
ae" + be™"

and (1.10) become

A" = A""! +log[ae®~i + be™ 4 '] —log[aett ™" + be~4i+1] (1.11)
with initial conditipn
o 9
Ag=(”g 0). (1.12)
U Uy

When

A= (u 0) ’
0 u
(1.11)is nothing but the Lax scheme for the scalar equation u, + (log[ae* + be™*]), =0.

With the notations
s = (log[ae"® + be™"®] —log [ae"= + be™*£])/(ug — ) (1.13)

and

ae'®r — be 'R gt —be™'r
R(uy, ug, vy, v5) =s(vg — vr) — vy + UL, (1.14)
(g, g 01, O) = S(0m = 01 g™ +be "= * ge't +be "t -

we shall prove the following results.
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Theorem 1. Let (u®(x,1),v*(x,t)) be the approximate solution of (1.1) defined by (1.11)
and (1.12) with Riemann initial data (1.4), then

Y.
lm (ui(x, 2), vA(x, 1)) = (u(x, 1), v(x, 1)) :
A-0 fo
exists in the sense of distributions and (u(x, ), u(x,t)) is given by the following explicit
Sormula:
(i) When uy > ug, then
(5, 2), 05, 1) =, + (4 ~ u)H(x — st), v, + (0 — 0 H(x — s1)
+ R(ug, ug, vy, vg)td, -, }, %
where H(x) is the Heaviside function. 1
(ii) When uy <ug, then tié
UL ~uy, 4
(i, 1) f<(—-~——£j——— :
ae't + be - )
1 bt+x UL he UL uUR __ —ug
(u(x,t), v(x, 1)) = (~ log (--‘—>, O) ifu__t <x <ur
2 "\at—x ae'* 4 pe ~u- ae“® + be™Hr
UR —uR
(g, ) if x> ae be
B ae“® + he~r

(i) When u;, = ug =1, then

@o), if x <ali),
(#,vg), if x> a()t.

- (ulx, 1), v(x, z)):{

Theorem 2. Let the initial data u°(x) and v(x)eL®(R) A L*(R). Then (u’(x,t), v3(x, 1))
defined by (1.11) and (1.12) tends to (u(x, 2),v(x, 1)) in the sense of distributions and is
given by

F/:T,’

i

i
.

1 —
u(x, t) = *log[é-w]’
2 at~x+y0(xat)
o(x,t) = —— ve(2)dz,
0x yo(x,1)

where y = y.(x, t) maximizes

L
max [ f uo(z)dz — tf* (x—:_y)]
x—t<ysx+tl Jy L

Here f*(J) is the convex dual of f(u) =log[ae* + be™*] and 1s given by
FHA) =(1/2)log(1 + 1) +4(1 — A7t —1/21og{4al * bt ~4.

2. Proof of Theorem 1

As a first step in the proof of Theorem 1, we obtain (u*(x, t), v(x, 1)) explicitly. In order
to do this we recall from (1.11), (1.12) and (1.4),

/
|
i
B
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n-t

Al=A""! 4 log[ae i + be =4 1—log[ae® " + be~4ii] 2.1)
forn=1,23,...,k=0,+1,+2,..., with

AR.—.(“R 0) ifk>0
v u
A= . (22)

AL=<“L 0) itk <0.

Uy

-

Let us set
Cr=Ar— A, )

then, (2.1) becomes

Cr=C; ! +log[aet=*C 1 4 pe~4r=Ci™"]

—log[ae =+ 4 pe~4r=Cii1], (2.4)

S
i

Let _
D=3 cC. (2.5)

Taking summation in (2.4) from k to oo, we have

n n-

- Dy=D; ! +log[aetme®k i Pk 4 pe~Arg= (BT =DEID]

—log(ae*® + be ™ *x), (2.6)
Following Lax [6], we use the nonlinear transformation,
D=log E (2.7

in (2.6), and obtain
log E; =log E;™" +log[ae’~(E; ") 'E}_} + be " 4R(E: )~ 1EN; !

5 —log(ae?® + be™4r),
Simplifying this we get .
Ey=aE;} +BE;Y, - | (28)
where
o= ae’®(ae?® + be”**)"! and P =be R(ae'R 4 be~AR)"1, (2.9)
We note that a + = I. It can be easily seen that the solution E} of (2.8)is given by
E:= Z (n) aqﬁn—QE'?+k_2q. ' (2.10)
a=0 \4 '
From (2.2), (2.3), (2.5) and (2.7) we get
b (f 0), ifn+k—2¢30
0 . 0 1 ’
E, +k=29=

‘ e("+k—24)(uL—uR)( 1 0), ifn+k——2‘1<0v

(n+k—2q)(v,—vg) 1
(2.11)
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Using (2.11) in (2.10) we get

En = 0: 0 )9
o\ oo
where |
n
Z (") a9h"~9¢(24~ Mur oSk, L~ uR)
g — g=0 \¢q
k (ae"® + be ™ uRy"
and
M=

i n) albh (24— mur eS(mh.a)ur —uR), {2v3(qbe- " (q - n)aeun)
4=0\q (ae"® + be"¥R)

+S(n,k,q)(vL—vR)}

(ae"® 4 be™tR)"

Here we used the notation S(n, k, q) = 3(n + k—2q— |n+k—2q|). Now
0 0
log E; = (log 8))I + log| I+ ,

AR
lo En_(log@; 0 ) ,
E5= e 1ogar)

By the transformations (2.3), (2.5) and (2.7) we get,
Alog 7 = AD"

ie.

-ayC
k
=A i (A7 — Ap).
Componcntwise this becomes
A ik (] — ug) = Alog "
j=

n"k

AY @—vg)=A—.
J=k o

By using Stirling’s formula,

n n
nlx (—) (2nn)'2, as n— oo,
e

we get

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

n n! n'nll2
q B ql(n—qg)! = 4°q"*(n — gy~ 2m) 2 (n — q)'2’ asn,g,n—qg—» 0.

Let t=nA, x=kA, y=(n+ k — 2g)A be fixed, then

o

el e

e

s

i
i
i
i
x
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t+x— ‘
gA = “"’; Y Qq—mA=x—y. . o (2.19)
We have,
lim Alog 6} = max [Alog (n) + Agloga +‘A(n —q)logh
A0 0<t+x—y)/2<t q

+A(2g — nJug — 3(y — | y1)(uy —ug) — t log(ae"= + be‘""):l.

. (2.20)
Also as A—0 in the above fashion, we have
n t >
Alog(q)zlog PSRN \ 2 Y PN \ o (2.21)
‘ ( 2 ) | ( 2 )
and hence from (2.19)—(2.21), we get
lim Alogf}= max [—1/2(y —|y|)(uy —ug)
A—0 . x—tSy<x+t
+ (x —y)ug —t log(ae"® + be ~"®)]
+(t+.; y)loga+( X+J’)logb
v .
+log (2.22)

t+x—y (t+x—y)/2 t___x_l__y t-x+y)/2 |
5 (=)

Let yo(x,t) be the value of y for which maximum is attained on the RHS of (2.22).
An easy calculation shows that the following is true.

Lemma. Let y(x,t) be a point where maximum is attained on the RHS of (2.22), then
Yo(x,t) is given by the following:

(i) Let uy > ug, then

x —a(u)t, ifx<st
o, z)={ )

x —a(ug)t, ifx> st.
(iiy Let u; < upg, then

x—a(uy)t, ifx<a(u)t
Yolx,8) =< 0, ifa(ug)t < x < a(ug)t
x —a(ug)t, ifx > a(ug)t,

where |
a(u) = f'(u) = (ae* — be “)/(ae"* + be™¥)
and s is given by (1.13).
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From the above lemma and (2.22) we have if ug, > ug, then lim,_,Alog 6" =
A,(x,t), where

— (x —aluy)t)(u, —ug) + uga(u)t — Iogl(ae:’“R + be™¥r)

1 1—
+<—f.g_(fl£).)tloga+( ;(u"))tlogb+tlogt

_ (1+;(uL))”O . {( 1+;(uL))t}_<1 —;(uL))tlog(<1~;(uL))t>

if x < st

Al(x’ t) )

I

a(ug)tug — tlog(ae“® + be %) + (1 * ;(uk)> tloga

+l:;—(u‘i)tlog b+tlogt —-'(l—t-az(ﬂg) tlog{(l +;(u")>t}

k—-(l—‘—;(yi))tlog{(l:—g@> t}, if x> st.

If u; <up, then lim, ,,Alogf; = A, (x, t), where

— (x—a(u,)t)(u, —~ug) + uga(u,)t — tlog(ae*® + be'®)

JAta) (1-aw)

a+ tlogh+tlogt

e {(I+a(u,))t}_ <1 —~a(uL))tlog {(l—a(ul))t}’
2 W\ 2 2 2

if x < a(u;)t,

t t— '
xup —tlog [ae*® + be™*®) +—¥loga +—-2—)flog b+tlogt

Ay(x,t)= |
t+ - - :
_ ;x)log(t;x)..(t.zx)log(t 2"), if a(ug)t < x < alug)t
uga(ug)t — t log (ae“® + be ~“®) + —1———'-?—(@ tloga

+ (1«-—;1(%)) tlogh+tlogt —thog {(H_;(uk)) t}

- (lﬂu—")) tlog{(l—:—ag—i)> t} if x> a(ug)t.
{ _ 2 2

Again from (2.13), (2.14) and (2.19), we get

lim AT P8P+ X~ yo(x,1) + vgae™(x—yo(x, )—1)
a-o O} ae"® +be™"r

s >“*"“%§ : i: 4;;?
78
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—2(¥o(%, 8) = |yo(x, ) ) (v, — vg),

% where y,(x, t) maximizes the RHS of (2.22). Using the lemma we have the following: If
< Uy > ug, then

lin(l) A(n/68) = By(x, 1),
where
— (x —a(uy)t(v, —vg))

. vrLae"(@(uy) = 1)1 + be™(1 + a(u,))1]

. Bl(x, t) =1 ae'r + be_"k s if x < st,
valae"™(alug) ~ Dt + be ™™ (L +alug)] .
ae“R + be—ux H .

If u; <ug, then

b lim A(n;/6;) = By(x, 1),
A—=0
where
— (x—a(u,)t) (v, —vg) ‘
vg[ae*? — 1))t + be™“*(1 2 :
+ rlae* (a(u, — 1))t + ‘i ( +a(uL))], if x <a(uy)t
ae'* + be ™k
By(x,t) = ? ~uR x—t
2(x, 1) vgbe (t+x)+v_Rae S t)’ if auy)t <x <(ug)t
ae'® + be " R
lvR[ae R(a(ux)a;?:_ +bbee—‘u:!(1 +a(uR))t]’ if x> a(upt.
Now it follows that, if u; > ug
“a | lim | (A, 2) — ug)dy = 4,(x, 1),
B A—=0 Jx
lim f @4y, t) — vg)dy = By(x, 1)
A=0 Jx

and if uy <up

A=0 x

lim (uA(y’ t) - uR) dy = Az(x, t),

lim | (v(y, ) — vg)dy = By(x,b).

A-0O x
Hence

4,

ub(x, 1)~ + ug
if up >ug

vA(x, t) = — —> + vp
0x
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—0A
u”(x, t)— =

+ ug
if up <ug . ]
vA(x, 1) > — 2+ vp
ox

" in the sense of distribution as A— 0. An easy calculation shows that
0A, {uL, if x < st,

R—_—éTx-— Ug, ifx> st,
0B,
Ur— T t[s(vp—vr) —alugvg +alu)v, -6, = +vg + (v, —vg) [1 — H(x —st)],
( ug, if x < a(u,)t
1 bt .
uR_‘_aﬁ= T —log[~—i§}, if a(u)t < x < a(ug)t ‘gf;
Ox 2 at—x 4
| ifx > afug)t, J
( ’
vy, ifx <a(u)t
Vg — .a_BE = <{ 0, ifa(u)t <x<a(ug)t
dx .
L vg, 1fx > a(ug)t.
Proof of (iii) is similar. The proof of Theorem 1 is complete.
3. Proof of Theorem 2 3
To prove Theorem 2, we first note that the approximate solutions are defined by v
: : 1 n-1 %;;
A=At +log[aet-i + be~ 4 '] —log[aet ' + be~4+1], (3.1) S
with
W 0. |
=" ) (32
k (U,? ug ( )
where u = u°(kA), v0 = v°(kA). Following Lax [6], let us introduce
By=) 4
ko 1
and use the nonlinear transformation
B=IlogkE. %‘:ﬂ
We get as before . ggi
E;*' =aE;_, +bE},,, |

whose solution is
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n <] 1 0
CEl=Y (n> a®h" " %exp Yy ©
g=0 \{q j=n+k-2q 0
- . v; 1
J n+zk—2q /

In terms of the original variable A}, we have
Al =log [ENE}, )~ ']

Carrying out the explicit calculations as before, we get

n o0
()a"b"‘qexp{ > u}’}
n q=0 j=n+k-2q
Y, ( )aqb" "exp{ Y u?}
g=0 j=n+k+1-—2q
NP1 O ) W
=q=0 j=n+k—-2q j=n+k—2q

j=k Z <n> aqbﬂ QCXP{ Z u;)}

. g=0 \q j=n+k—2q

Nowlet x = kA t =nA,y=(n+k—2q)Abefixed and let A — 0. Lax has shown that

bt+x—yolx, t)]
at—x+yox,t)

ub(x, t) = u(x, t)—Elo [

where y = y,(x, t) maximizes
max [f uo(z)dz--'tf* (x—y)j|, (3.3)
x=-t<y<x+t y t

F*A) =Llog [(1+A)!+4-(1—= ) ~#] — Hog[4a* **b* ~*].

Again the same analysis of Lax [6] gives

where

lim j vi(x, ) dy=1lim A}’ v} = j vo(z)dz.

A-0 Jx A~0 k Yolx,t)
Here again y = yo(x, ) maximizes (3.3). Since [?v*(y,)dy is a sequence of bounded

function converging to jyo(x o Vodx for ae. (x t), it follows that v*(x,t) converges to

a 0
—_— J‘ vo(2)dz
ax Yo(x,1)

in distribution. The proof of Theorem 2 is complete.
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