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troduction

sonsider the following initial boundary value problem

U+ 5ul = Fue + q(X) + 1 (1.1)
u(x, 0) = ug(x), (1.2)
u(0,t) = a, (1.3)
u(1,t)=b, (1.4)

strip D={(x,£):0<x<1,t>0}. pis a real parameter and a and b are real
stants. We assume g(x) is continuous in 0<x<1, uy(x) is twice continuously
rentiable in 0 < x < 1, and (14)x(0) = a, (uo)x(1) =b.
ienote by D° = {(x,£):0<x < 1,t>0}. By a classical solution of (1.1)—(1.4) we
1 a function u(x, t) with u(x, t) and u(x, t) continuous in D and u, and u,, continuous
)© which satisfies the partial differential equation (1.1) in D° and the initial and
ndary conditions (1.2)-(1.4) in the usual sense.
Ising the Hopf-Cole transformation, (see Hopf [2]) we linearize the problem
)—(1.4) and obtain an expression for the solution in terms of the eigenvalues and
nfunctions of the eigenvalue problem

3 ¢xx = (q(x) + D)9, (1.5)
$(0) + a¢(0) =0, (1.6)
$.(1) + bg(1) =0. ' (1.7)

: prove the validity of the expression for u(x,t) and study its asymptotic behaviour
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as t— oo using the following facts concerning the eigenvalues and eigenfunctions of
(1.5)—(1.7), (see Birkhoff and Rota [1]).
(a) The spectrum of (1.5)—(1.7) is discrete and can be ordered

lo>Ay> e, (1.8)

Ay = —1(n?n?)+ O(1) as n—co. 1.9)

n

(b) Let ¢,(x) be the normalized eigenfunctions corresponding to /,, the set
{¢u(x),n=0,1,2,...} is a complete set for L*[0, 1].
Also ¢,(x) has the following estimates uniformly in xe[0,1]

nm 0(1)

¢n(x)=\/§cos—x+'—" as n— oo, (1.10)
J2oon

Px)= —nnsin—n—Tt—x—}—O(l) as n— 0. (1.11)

N
(c) ¢o(x)+#0 Vxe(0,1).

Since ¢q(x) #0 Vxe(0, 1) we can assume ¢q(x) > 0 for xe(0, 1). We claim that
$o(x)>0 Vxe[0,1]. (1.12)

If ¢4(0) = 0, then by the boundary condition (1.6) (¢,)(0) = 0, then @(x) = 0, because
¢o(x) solves

20 =(q(x) + 9,

¢(0)=0,

and this has only one solution ¢(x) = 0. By the same argument (1) is also not equal
to 0. The claim is proved. In our discussion we always take ¢,(x) normalized so that

Jl $3(x)dx =1

0
and
Po(x)>0 Vxe[0,1].

This paper is organized as follows. In §2 we prove the uniqueness of classical
solution of (1.1)~(1.4) and obtain a valid expression for it. The asymptotic behaviour
of the solution as t— oo is analysed in §3. In §4 are given some comments on the
stationary problem and the Dirichlet problem for the Burger’s equation is studied in §5.

2. An expression for classical solution of (1.1)-(1.49)

Fir.st we prove the uniqueness of classical solution of (1.1)—(1.4) by standard energy
estimates. Let u,(x,t) and u,(x,f) be two solutions and let Z(x, t) = uy(x, 1) — uy(x, t).
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Then from (1.1)-(1.4) we get, Z(x,t) which is solved as

Zi+ 30+ )12, =32, . @.1)
Z,0,t)=0, _ 2.2)
Z(1,1)=0, 23)
Z(x,0)=0. (24)

Multiplying (2.1) by Z and integrating by parts w.r.t x, we get using (2.2) and (2.3)
1d

I 1!
— Z X(x,t)dx + = (u1 +uy), 2. Zdx=—=| Z¥x,t)dx. (2.5)
2dt 2 2],

Let

Cr= [y + uy)il.

sup
0<x<1
0<t<T

From (2.5) we obtain, for 0<t< T

——J Z%(x,t)dx
1 12/ f1 12
< - f ﬁ(x,t)dx+2CT(j Zﬁ(x,t)dx) <j Zz(x,t)dx>
0 0 0
1
yA

1 1
< ——j Z2(x,t)dx + ‘- ZXx, t)dx+C%J 2(x,t)dx
0 Jo 0

1
= C%j Z*(x,t) dx.

0

By Grownwall’s lemma and (2.4) we get

1
J( Z%x,0)<0 V<0<t<T
0

Thus Z2(x,t)=0 for 0<t< T; since T is arbitrary we get Z(x,£)=0 ie. u;(x, )=
uy(x, )¥(x, t)eD.

Next we construct the unique classical solution of (1.1)~(1.4). First we need the
following:

Lemma 2.1. Let v(x, t) be the solution of

0y = 3 U — (q(X) + 10, (2:6)
v(0,1) + av(0,t) =0, 2.7)
v(1,8) + bu(1,£) =0, (2.8)
u(x, 0) = exp [ —uy(x)]- 2.9)
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Then
(i) v(x,t)>0.
(ii) The function
u(x,t) = —logu(x, 1)

is a solution of (1.1)—(1.4)

Proof. To prove (i), set

o(x, f) = exp(— Cx + MOW(x, 1), " (2.10)
where
C =min(a,b)
CZ
M=1+ sup ~——q(x)—u|.
0sx<1 2

To prove v(x, t) > 0, it is enough to prove W(x, t) > 0. We prove this for the case C = a,
the other case being a similar one.

Assume the contrary, i.e. min W(x,7) <0. Now from (2.6)-(2.10) we have W(x,t)
which is solved as

W0,£) + (a— C)W(0,1) =0, (2.12)
WAL+ (b - COW(1,1) =0, (2.13)
W (x,0) = exp [ Cx — ug(x)]. (2.14)

Notice that the coefficient of W, (C2/2)—g(x) — u— M <0 by the definition of M so
that the maximum principle can be applied (see Smoller [31). The maximum principle
min of W(x,t) has to occur at the boundaries and if min is achieved at x = 0, then
W.0,7) >0 and if it occurs at x = 1, W,(1,1) < 0.

By assumption min W(x, ) <0. So evidently min is not achieved for ¢t = 0. Since
a=C, W,0,t)=0 (by (2.12)) so again min cannot be achieved at x = 0. From (2.13)

WAL,1) = (a— b)W(L, 1),

But.a — b <0, which implies that W/(x, t) cannot achieve a non-positive minimum at
x= 1. So we have min W(x, t)>0.

To prove (ii) notice that from (j)
u(x,t) = —logv(x, t) (2.15)

is well defined. A simple calculation gives

— —%Uxx + (q(x) + ”)U
U, =
v

I




——
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where we used (2.6)
U, = —0,/v
e = (— Vs + 03)/0%.
It follows that u(x,t) given by (2.15) is solved as
U+ 3uE =S + g(x) + .
From (2.16), (2.7) and (2.8) we get
u0,5)=a,
u(1,t)=>b.

The proof of lemma is complete.

185

(2.16)

Let 4, and ¢,(x) be as in §1. In the next lemma we get an expression for the solution

of (1.1)~(1.4).

Lemma 2.2. Let u(x,t) be the classical solution of (1.1)—(1.4) then

u(x,1) = — log [i exp [(4, — Wt]a,d(9)]

where

a,= 4[ exp [ —u(x)1dx(x) dx.

0
Proof. Tt is easy to check that v(x, t) is a solution of (2.6)—(2.9) iff
v(x, t) = exp (—pt)V*(x, 1),
where V*(x,t) is the solution of

Ve

3k — qx)V*,

V*0,t) + aV*0,t)=0,

V*(1,t)+ bV*(1,t) =0,

V*(x,0) = exp [ —uo(x)] = V().
By separation of variable we obtain

V¥, 0) =Y exp (nt)an o)
0
where

1
ay = f exp [ —uo(x)]dn(x) dx.
0

From (1.5), (1.9), (1.10) and (1.11) it follows that for n>N, N sufficiently large

[P0 < Cn*, k=0,1,2

(217

(2.18)

(2.19)

(2.20)




186 K T Joseph

lexp(A,t| <1 Vt=0 (2.21)
lexp(A,t)| < Cexp[—3(n?nH)8] Vi=d>0.

C >0 is a constant independent of x,t and n and ¢%® denote the kth derivative w.r.t.
x of ¢,(x). To get an estimate for a,, notice that V¥(x) = exp [ —uy(x)] satisfies

V*(0) + aV*(0) =0 (2.22)
V(1) +bV*(1) =0.

Multiplying (1.5) by V§(x), integrating w.r.t. x, integrating by parts and using (2.22),
we get

1 1
3|, se0reren=i | sivsmex
fornz=N

a, = f G(x)V5(x) dx—rj (V) (x)¢a(x) dx

so that, forn>N
C
’anl g"n—zlbn’a (223)
where

b, = L (V8)'(x)¢(x) dx

From (2.21) and (2.23) it follows 'that V*(x,t) is continuous in D. Also

V(D)= exp(Lt)adlx)
0
=Y exp(hiad(x) + 3 exp (b (2.24)
0 N
Now
)a,$r(x)| < C? i—lz—lbnl-n ‘ (2.25)
Nn
and
§|bn|2= f (V3% dx (2.26)
0

by completeness of eigenfunctions. From (2.24)—(2.26) it follows that

N-1 0 1/2 0 1/2
[VE(x, 1) < ; exp(int)an¢;(X)+C2<};n—lf> (Zlan)
N

so that the series is absolutely convergent and hence V*(x, ) is continuous in D.
Using the estimates (2.21), (2.23) and (2.26) and using the same argument as before,
Ve, 1) and Vi¥(x,t) are also continuous in 0 < x < 1, £t > > 0. Now by (2.19)

v(x, 1) = exp (—pt)V*(x, 1) = ZSXP [( — w)la,,(x)




e

I W

Asymptotic analysis by Hopf-Cole spectral theory 187

and by lemma 2.1

u(xa t) == 10g <2 exp [(/’Ln - “)t]an¢n(x)>

is the classical solution of (1.1)—(1.4). The proof of lemma (2.2) is complete.

Next we study the asymptotic behaviour of the solution u(x,t) constructed in this
section.

3. Asymptotic behaviour of the classical solution of (1.1)-(1.4)

In this section u(x, t) denotes the unique classical solution of (1.1)-(1.4) constructed
in §2. We shall prove the following.

Theorem. (i) Let u= Ay; then

sup |u(x,t) + log(aedo(x))| < Cexp [(4; — Ao)t].

0<x<1

(i) Let p# Aq; then for t > 1

u(x, t) (o — ) + log (ag9o(x))

su
A t t

0sx<1

C
< ?exp [(A, = Ag)t].

where Ao and do(x) are asin§l, aq is given by (2.18) and C a positive constant independent
of x and t.

Proof. From lemma 2.2 we have

u(x, 1) = —log {; exp[(4, — u)t]antbn(X)}-
To prove (i), notice that when p= 4,, the above expression for u{x, t) becomes

u(x,t) = — log [aocbo(x) + i expL(h— Ao)r]anqsn(x)}

Z ay \( PnlX)
= —log [ao¢o(x)] —log [1 + ; exp [(2, — 2o)t] (5;)< ¢o(x))]
ay >0 and infy<,<; Polx)>0 by (1.12). Using the estimate (2.21) we have, for t > 1

& a, \ $.(%)
; exp [(4, — Ao)t] (ao > 609

< Cexp[(A, — Ao)t]

so that we get

|u(x, 1) + 1og [aoho(x)]| < log {1 + Cexp[(A: — Ao)t1}-

Butfor0<y<1

log(1+y)<y
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we get
|u(x, 1) + log (agpe(x)| < Cexp[(; — Ao)t].

To prove (ii) arguing as before, we get

u(x, 1) = —log {exp [(Ao — Wt]aodo(x) }

_ log[l + i exp [(4, — 4o)f] (;%)( 202‘(;)] (3.4)

log {1 + i exp[(4, — Ao)t] <%> 2:23 ]I < Cexp[(4, — dp)t]. (3.5)

As before, for t > 1,

Also
log {exp [(4 — w)tlago(x) } = (A — p)t + log(aodo(x)). (3.6)

Using (3.5) and (3.6) in (3.4) we get for t > 1
u(x, t)
t

sup
0<x<1

0+ log (a9$0(x))

C
; <'t"eXP [(Ay — Ao)t].

+ (4o —

The proof of the theorem is complete.

4. Some remarks on the stationary problem

Consider the stationary problem

P32 =3Dex + q(%) + Ao, (4.1)
px0)=a, (4.2)
p(1)=b, 4.3)

where 1, is as in §1. Consider the one-parameter family of functions
pa(x) = —log (ago(x)), o« >0 (4.4)

@o(x) is as in §1 with condition (1.12). By a direct calculation it is easy to verify that
Po(x) is a solution of (4.1)~(4.3) for each « > 0. The theorem in §3, part (i) says that,
in the case = A,, the solution u(x, t) of (4.1)~(4.4) converges to p,(x).

The second part of the theorem says that if p s Ay, u(x,t)— o0 as t—co. The
stationary problem

Pi/2 =3P+ q(x) + 1, (4.5)
p«0)=a, | (4.6)
pl)=b 4.7

does not have any solution if u # 4,. In fact as in lemma 2.1 one can easily check
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that p(x) is a solution to (4.5)~(4.7) iff the function

h=exp(—p) 43)
is a solution to

hex = [a(x) + uh, 49)

h(0) + ah(0) =0, (4.10)

h(1) + bh(1) =0. (4.11)

But (4.9)—(4.11) has a non-zero solution iff p=4,, n=0,1,2,..., and A, is as in §1.
Further the corresponding solution has to be positive, by (4.8). This happen iff u = 4,.

5. Burger’s equation
The method presented in previous sections can be used to get a closed form

expression and asymptotic behaviour of the solution of the Burger’s equation in
D ={|x,1):a<x<1,6>0}. Let u(x,t) be the unique solution to

Uy + (U?/2)y = Tl (5.1)
u(x, 0) = u(x), (52)
u©,t)=a, (5.3)
u(l,1)=b, (5.4)

a and b are constants, uy(x) is C*[0, 1] and ug(0) = a, uo(l) = b. Then it can be easily
seen as in lemmas 2.1 and 2.2 that

3 exp (la0)a,pL()
0 (5.5)

u(x,t)=—

¥ exp (L0
Ao > Ay >+ — — o0 are the eigenvalues of
%qsxx = }.(b,
¢(0) +ap(0) =0,
¢.(1) +bep(1)=0

and ¢,(x), n=0,1,... are the normalized eigenfunctions corresponding to 4, with
Po(x)>0 and

a,= j exp(—r uo(y>dy)¢n(x)dx. (56)
0 o

As in §3, it is easy to prove the following.
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Theorem. Let u{x,t) be the solution of (5.1)~(5.4); then
u(x,t) = — [log ¢o(x)1 + OLexp [(4; — Ao)t]

uniformly in xe[0,1].

Proof. From (5.5) we have,

[¢a(x> + iexp [(s— A0)] (j—) ¢:<x)]
== o)

2 TEATEAY S
x,:1+21:exp[(i,,—,lo)]<ao><¢o>]
[qsa(x) DY CRERY )]
B dolx)

x [1+ O(exp [(4; — Ao)t])]1~* uniformly in x

= ¢0(x)[1+0(exp[(111 Ao)t])]

uniformly in xe[0, 1]. The proof of theorem is complete. q.e.d.
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