

***norpA* and *itpr* mutants reveal roles for phospholipase C and inositol (1,4,5)-trisphosphate receptor in *Drosophila melanogaster* renal function**

Valerie P. Pollock¹, Jonathan C. Radford¹, Susan Pyne², Gaiti Hasan³, Julian A. T. Dow¹ and Shireen-A. Davies^{1,*}

¹*Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, UK*, ²*Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK* and ³*National Centre for Biological Sciences, UAS-GVKV Campus, Bangalore 560065, India*

*Author for correspondence (e-mail: s.a.davies@bio.gla.ac.uk)

Accepted 2 December 2002

Summary

Mutants of *norpA*, encoding phospholipase C β (PLC β), and *itpr*, encoding inositol (1,4,5)-trisphosphate receptor (IP₃R), both attenuate response to diuretic peptides of *Drosophila melanogaster* renal (Malpighian) tubules. Intact tubules from *norpA* mutants severely reduced diuresis stimulated by the principal cell- and stellate cell-specific neuropeptides, CAP_{2b} and *Drosophila* leucokinin (Drosokinin), respectively, suggesting a role for PLC β in both these cell types. Measurement of IP₃ production in wild-type tubules and in Drosokinin-receptor-transfected S2 cells stimulated with CAP_{2b} and Drosokinin, respectively, confirmed that both neuropeptides elevate IP₃ levels.

In *itpr* hypomorphs, basal IP₃ levels are lower, although CAP_{2b}-stimulated IP₃ levels are not significantly reduced compared with wild type. However, CAP_{2b}-stimulated fluid transport is significantly reduced in *itpr* alleles. Rescue of the *itpr*^{90B.0} allele with wild-type *itpr* restores CAP_{2b}-stimulated fluid transport levels to wild type.

Drosokinin-stimulated fluid transport is also reduced in homozygous and heterozygous *itpr* mutants.

Measurements of cytosolic calcium levels in intact tubules of wild-type and *itpr* mutants using targeted expression of the calcium reporter, aequorin, show that mutations in *itpr* attenuated both CAP_{2b}- and Drosokinin-stimulated calcium responses. The reductions in calcium signals are associated with corresponding reductions in fluid transport rates.

Thus, we describe a role for *norpA* and *itpr* in renal epithelia and show that both CAP_{2b} and Drosokinin are PLC β -dependent, IP₃-mobilising neuropeptides in *Drosophila*. IP₃R contributes to the calcium signalling cascades initiated by these peptides in both principal and stellate cells.

Key words: CAP_{2b}, leucokinin, photoreception, TRP, TRPL, Drosokinin, *Drosophila*, inositol (1,4,5)-trisphosphate receptor (IP₃R), *itpr*, *norpA*.

Introduction

The accepted paradigm for hormonally stimulated increases in intracellular cytosolic calcium concentration ([Ca²⁺]_i) in non-excitable cells centres on G-protein-coupled activation of phospholipase C β (PLC β) upon ligand-receptor binding, resulting in an increase in intracellular levels of the second messengers diacylglycerol (DAG) and inositol (1,4,5)-trisphosphate (IP₃). IP₃ binds to its receptor on the endoplasmic reticulum (ER), IP₃R, which functions as a calcium-release channel. Calcium is released from intracellular stores, with associated calcium entry via plasma membrane calcium channels by an unknown mechanism termed 'capacitative calcium entry' (Berridge, 1997; Putney, 1997).

The processes of calcium signalling *in vivo* have been intensely investigated in *Drosophila* phototransduction, where novel calcium channels and associated signalling proteins

have been discovered in forward genetic screens (Hardie and Raghu, 2001). Importantly, studies in *Drosophila* have subsequently revealed vertebrate and human homologues of such signalling complexes (Harteneck et al., 2000). Light-driven phototransduction has been shown to be PLC-dependent; as such, most studies of PLC function *in vivo* in *Drosophila* have utilised the photoreceptor model. Two genes encode PLC β in *Drosophila*: *norpA* and *Plc21C*. Mutants in *norpA* severely reduce phototransduction (Pak et al., 1970). Molecular cloning of the gene, together with biochemical analyses of PLC activity in the eye of *norpA* mutants showed that *norpA* encodes a retinal-specific PLC similar to bovine brain PLC (Bloomquist et al., 1988). By contrast, *Plc21C* is more generally expressed, with a 7 kb transcript in the eye and central nervous system (CNS) and a 5.6 kb transcript in heads and bodies (Shortridge et al., 1991).

Mutagenic analysis of the IP₃R has also been informative in insects. In *Drosophila*, a single gene, *itpr-83*, encodes IP₃R (Hasan and Rosbash, 1992; Yoshikawa et al., 1992). *Drosophila* IP₃R has most similarity to type I IP₃R in vertebrates. Embryonic expression of *itpr* has been documented, and a delayed-development phenotype has been identified in mutants (Venkatesh and Hasan, 1997). In the adult, expression has been shown in photoreceptors, brain and antennae, with expression also documented in the eye, which suggests a role for IP₃R in chemosensation and in visual processes. However, in spite of the documented role of PLC in the eye, recent work has shown that IP₃ signalling is unnecessary for phototransduction to occur (Hardie and Raghu, 1998; Venkatesh and Hasan, 1997).

While *norpA* and *itpr* have been assigned neural roles – indeed, *norpA* is generally considered to be visual system specific – it is likely that much more general roles for these genes exist but have yet to be documented due to lack of an informative physiological phenotype. The *Drosophila* Malpighian tubule is an ideal genetic model for transporting epithelia and provides a robust phenotype for the integrative physiology of cell signalling and transport genes (Dow and Davies, 2001). Previous work has established that ion transport and cell signalling process are compartmentalised into different tubule cell subtypes: the principal and stellate cells (Dow and Davies, 2001). Furthermore, direct measurements of cell-specific intracellular calcium signalling mechanisms using targeted aequorin show a direct modulation of fluid transport by agents that mobilise intracellular calcium (O'Donnell et al., 1998; Rosay et al., 1997; Terhzaz et al., 1999; MacPherson et al., 2001). The *Drosophila* neurohormones capa-1 (a member of the CAP_{2b} family; Kean et al., 2002) and *Drosophila* leucokinin (Drosokinin; Terhzaz et al., 1999) have been shown to stimulate fluid transport rates, which are associated with increases in cytoplasmic calcium concentration in principal and stellate cells, respectively, in tubule main segment. The CAP_{2b} response is dependent on extracellular calcium (Rosay et al., 1997); furthermore, it has been recently demonstrated that TRP/TRPL (transient receptor potential/TRP-like) and L-type calcium channels play a role in this response (MacPherson et al., 2000, 2001). However, the relative contribution of intracellular calcium stores to these neurohormone-induced responses is still unclear. Use of the ER Ca²⁺-ATPase inhibitor thapsigargin in the presence of extracellular calcium results in elevation of intracellular calcium levels in both principal and stellate cells and increased fluid transport rates (Rosay et al., 1997). However, in the absence of extracellular calcium the response is abolished in principal cells but remains in stellate cells. Thus, it appears that the contribution of ER calcium stores, and thus of calcium signalling via IP₃R to capacitative calcium entry in tubule cells, is cell-type specific. Alternatively, the putative thapsigargin-sensitive pool in principal cells is very small and is emptied too rapidly to monitor. It is thus of interest to try to dissect the different contributions of calcium signalling genes in the context of principal and stellate cell function.

In this study, we show that mutations in *norpA* reduce stimulation of fluid transport by both CAP_{2b} and Drosokinin. Furthermore, CAP_{2b} and Drosokinin both elevate IP₃ levels. Thus, PLC β and IP₃ are involved in stimulated fluid transport; we have thus utilised *itpr* mutants to define the contribution of IP₃R to neurohormone-mediated increases in epithelial fluid transport. Genetic blockade of IP₃R function results in inhibition of neuropeptide-fluid transport rates associated with either CAP_{2b} or Drosokinin. In *itpr* mutants, downregulation of fluid transport is associated with reductions in neuropeptide-stimulated intracellular calcium levels. Thus, PLC β -mediated IP₃ signalling plays a functional role in calcium signalling and epithelial fluid transport in *Drosophila*, confirming that the important *norpA* and *itpr* genes are not neural specific.

Materials and methods

Materials

Coelenterazine was purchased from Molecular Probes (Leiden, The Netherlands) and dissolved in ethanol before use. Schneider's medium was obtained from GIBCO Life Technologies (Invitrogen Ltd, Paisley, UK). Neuropeptides CAP_{2b} (pyroELYAFPRV-amide; Davies et al., 1995) and Drosokinin (NSVVLGKKQRFHSWG-amide; Terhzaz et al., 1999) were synthesised by Research Genetics, Inc. (Invitrogen Ltd). All other chemicals were obtained from Sigma (Pool, UK).

Drosophila stocks

Drosophila melanogaster (Meigen) were maintained on a 12 h:12 h L:D cycle on standard cornmeal–yeast–agar medium at 25°C. Oregon R (OrR) wild-type flies used were those described previously (Dow et al., 1994). Mutant lines of *norpA* (Bloomquist et al., 1988; Pearn et al., 1996) and *itpr* (Venkatesh and Hasan, 1997) have been described previously. *itpr* lines were used as out-crossed lines to OrR to rule out the effects of balancer chromosomes on the tubule phenotype. Multiple alleles were utilised in this study in order to control for any effects of genetic background in individual lines. Choice of alleles was based on the health of the lines. Lines used were as follows: *norpA*^{H52}/*norpA*^{H52} (temperature-sensitive allele); *norpA*^{P24}/*norpA*^{P24} (kind gifts of R. C. Hardie, University of Cambridge); *itpr*^{XRI2/+} (X-ray inversion); *itpr*^{90B.0/+}, *itpr*^{I1664/+}, *itpr*^{I1664}/*itpr*^{XRI2}, *itpr*^{I1664}/*itpr*^{90B.0} and *itpr*^{I1664}/*itpr*^{I1664} (P-element insertions); *itpr*^{WC361}/*itpr*^{UG3} (EMS alleles). *itpr* lines were slow-growing due to eclosion defects (Venkatesh and Hasan, 1997). Additionally, the following lines were also utilised: hsGAL4;*itpr*^{90B.0} and UAS-*itpr* (Venkatesh et al., 2001). Temperature-sensitive (*ts*) and hsGAL4 lines were heat-shocked at 37°C for 30 min and left to recover at 23°C before experimentation.

To produce flies in which tubule calcium measurements could be made using the calcium reporter aequorin (Rosay et al., 1997; Terhzaz et al., 1999), it was necessary to generate *itpr* lines in an aequorin background under control of an

hsGAL4 promoter. These were based on an X-chromosome insertion of UAS-aeq, and an hsGAL4 construct on chromosome 2, leaving chromosome 3 free for *itpr* alleles. The following lines were generated and utilised for this study: aeq;hsGAL4;*itpr*^{XR12}+/+, aeq;hsGAL4;*itpr*^{90B.0}+/+, aeq;hsGAL4;*itpr*^{I664}+/+, aeq;hsGAL4;*itpr*^{I664}/*itpr*^{I664} and aeq;hsGAL4;*itpr*^{WC361}/*itpr*^{UG3}. Extremely poor viability of the *itpr*^{I664}/*itpr*^{XR12} and *itpr*^{I664}/*itpr*^{90B.0} heteroalleles in the aequorin background did not allow use of these lines for calcium measurements. Verification of aequorin expression was achieved at several stages of the crossing procedure by measuring total light output by dissected, intact tubules after lysis in Triton/CaCl₂ as described below. The presence of the appropriate *itpr* allele was verified in progeny of aeq;*itpr* flies by RT-PCR. Maintenance of the *itpr* phenotype was assessed by fluid transport assays in the presence of either CAP_{2b} or Drosokinin.

Transport (fluid secretion) assays

Flies were cooled on ice and then decapitated prior to isolation of whole tubules. Malpighian tubules were isolated into 10 µl drops of a 1:1 mixture of Schneider's medium and *Drosophila* saline (NaCl, 117.5 mmol l⁻¹; KCl, 20 mmol l⁻¹; CaCl₂, 2 mmol l⁻¹; MgCl₂, 8.5 mmol l⁻¹; NaHCO₃, 10.2 mmol l⁻¹; NaH₂PO₄, 4.3 mmol l⁻¹; Hepes, 15 mmol l⁻¹; glucose 20 mmol l⁻¹) under liquid paraffin, and fluid secretion rates were measured as described previously (Dow et al., 1994) under the different conditions described in the text. CAP_{2b} and Drosokinin were added as solutions in assay medium at 30 min.

Heterologous expression of the Drosokinin receptor

The recently characterised Drosokinin receptor (Radford et al., 2002) was used to assay Drosokinin-stimulated IP₃ production. In order to transfect S2 cells with Drosokinin receptor, the protocol described below was adopted.

Expression constructs

Primers were designed for the Drosokinin receptor (*CG1062*; Radford et al., 2002) to allow amplification from the start to the stop codon of the coding sequence. Forward primers were designed to include a 5' Kozak translational initiation sequence (G/ANNATGG). Amplification was carried out with EXPAND High Fidelity Polymerase (Roche Diagnostics Ltd, Lewes, UK) according to manufacturers instructions. Forward (GACATGGACTTAATCGAGCAGGAG) and reverse (TTAAAGTGGTTGCCACAAGGAC) primers were used to generate a fragment of 1626 bp. OrR cDNA was used as template. The PCR product was purified by gel extraction and directly cloned into the pMT-V5/His TOPO TA inducible expression vector (Invitrogen). The construct was verified by restriction enzyme digestion and sequencing to ensure that no mutations had been induced during cloning.

S2 cell culture

S2 cells were maintained in DES (*Drosophila* expression system) medium (Invitrogen) supplemented with 10% heat-

inactivated foetal calf serum (FCS; Invitrogen). Cells were grown in suspension at an initial density of 2–4×10⁶ cells ml⁻¹ at 23°C. S2 cells were transiently transfected at a density of 1×10⁶ cells ml⁻¹ using calcium phosphate (Invitrogen), according to manufacturer's instructions. Cells were transfected with 20 µg of the Drosokinin receptor expression construct and were used 24 h post-induction of the metallothionein promoter with Cu²⁺ ions.

Mass measurement of inositol (1,4,5)-trisphosphate (IP₃) levels

IP₃ levels in tubules were measured by a quantitative radioligand-binding assay as described elsewhere (Palmer et al., 1989) using an IP₃-binding protein preparation derived from bovine adrenal gland.

Tubule preparations

Tubules (20 per sample) were dissected from wild-type and *itpr* mutants into 9 µl of Schneider's medium. Samples were stimulated with CAP_{2b} (10⁻⁷ mol l⁻¹) for 0 s (control), 2 s or 5 s in a final sample volume of 10 µl and performed in triplicate. Initial experiments showed that IP₃ levels peaked at 5 s post-stimulation (data not shown); this time was used for all subsequent experiments.

S2 cell preparations

To stimulate S2 cells, Drosokinin (Terhzaz et al., 1999) was diluted to working concentration in DES medium/FCS, then added to 5×10⁴ cells (approximating to 5000 transfected cells) in DES medium/FCS to a final concentration of 10⁻⁷ mol l⁻¹ for the appropriate time. Initial experiments showed that peak IP₃ generation occurred at 10 s after peptide stimulation (data not shown). Cells were co-transfected with an eGFP (enhanced green fluorescent protein) control plasmid in order to measure transfection efficiency using a haemocytometer. The same transfection batch was used for all samples in any one data set; stimulations were performed in duplicate.

For both tubule and S2 cell preparations, reactions were terminated with 10% (v/v) ice-cold perchloric acid and samples were homogenised using a Polytron homogeniser on ice. Cellular debris was removed by centrifugation and the supernatants neutralised with 1.5 mol l⁻¹ KOH/60 mmol l⁻¹ Hepes in the presence of 2 µl Universal Indicator. Precipitated salts were spun down and the supernatants transferred to fresh tubes. Additions of 2500 d.p.m. [³H]Ins(1,4,5)P₃ ([³H]IP₃; specific activity 370–1850 GBq mmol⁻¹; Amersham Biosciences UK Ltd, Little Chalfont, UK), incubation buffer and binding protein were made [final concentrations: 25 mmol l⁻¹ Tris-HCl (pH 9); 5 mmol l⁻¹ NaHCO₃; 1 mmol l⁻¹ EDTA; 1 mmol l⁻¹ EGTA; 0.25 mmol l⁻¹ dithiothreitol (DTT); 1 mg ml⁻¹ bovine serum albumin (Fraction V); 0.4 mg ml⁻¹ binding protein] to a final volume of 400 µl, and the samples were incubated on ice for 45 min prior to centrifugation at 12 000 g (4°C) for 1 min. Supernatants were removed by aspiration, the pellets dissolved in 1 ml of scintillation fluid and the radioactivity therein determined by scintillation counting. A

standard curve, using 0–40 pmol IP₃ per sample, was generated in parallel. Non-specific binding was determined using 100 pmol IP₃. Standard curves were plotted as %B/Bo versus pmol of unlabelled IP₃, where B is the specific binding of [³H]IP₃ (at a given concentration of unlabelled IP₃), and Bo is the maximal specific binding of [³H]IP₃ (at 0 pmol of unlabelled IP₃). A similar calculation was made using values of specific binding of [³H]IP₃ of tissue samples and the IP₃ content therein determined using the standard curve.

Protein concentrations in tubule samples were assessed by Lowry assays. Three replicate samples were pooled for assay of IP₃ content in order to obtain measurable levels of IP₃. Duplicate samples were assayed for each experimental sample.

Measurements of [Ca²⁺]_i using an aequorin transgene under heat-shock control

hsGAL4;aeq (Rosay et al., 1997) were used as control animals, and protocols used were essentially those previously described. For each assay, 20–40 tubules from 4–14-day-old adults were dissected in Schneider's medium 2 h after heat-shock (37°C for 30 min). Tubules were pooled in 160 µl of the same buffer and aequorin reconstituted with the cofactor coelenterazine (final concentration, 2.5 µmol l⁻¹). Bioluminescence recordings were made with a luminometer (LB9507; Berthold, Pforzheim, Germany); recordings were made every 0.1 s for each tube. Each tube of 20 tubules was used for a single data point: after recording [Ca²⁺]_i levels, tissues were disrupted in 350 µl lysis solution [1% (v/v) Triton X-100/100 mmol l⁻¹ CaCl₂], causing discharge of the remaining aequorin and allowing estimation of the total amount of aequorin in the sample. Calibration of the aequorin system and calculation of [Ca²⁺]_i were performed as previously described (Rosay et al., 1997). Mock injections with Schneider's medium were applied to all samples prior to treatment with neuropeptides.

Results

PLC β contributes to CAP_{2b} and Drosokinin-induced fluid transport

Two *norpA* alleles of differing severity were available for study. *norpA*^{P24} eyes do not express *norpA* protein, as assessed by western blots, and show markedly reduced PLC activity (Pearn et al., 1996); as expected, *norpA*^{P24} shows no electroretinogram response to any light stimulus. This allele, therefore, would be expected to display a severe phenotype if *norpA* acted in tubule function. In *norpA*^{H52}, however, some *norpA* transcript is detectable at the restrictive temperature, although this is severely reduced compared with wild type (Bloomquist et al., 1988). As such, any epithelial phenotype would not be expected to be as severe as that of *norpA*^{P24}.

Both *norpA* mutants manifest an epithelial phenotype (Fig. 1). No significant change in basal secretion rate was observed repeatedly in *norpA* mutants; however, both alleles, *norpA*^{H52} and *norpA*^{P24}, severely attenuated CAP_{2b}-induced

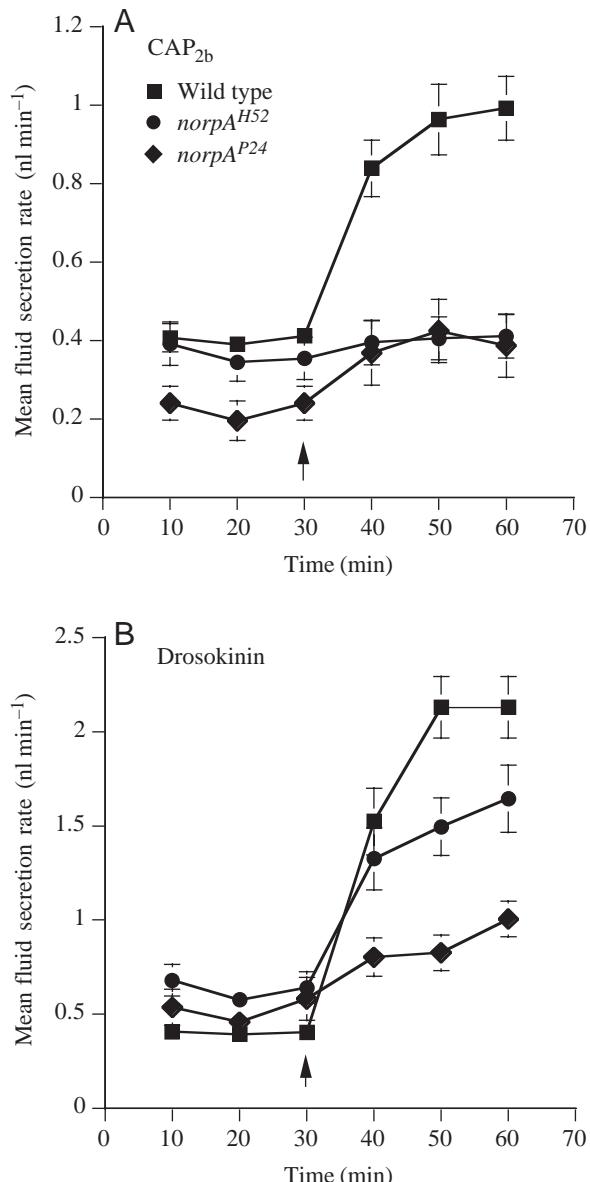


Fig. 1. An epithelial phenotype for *norpA*: phospholipase C β (PLC β) is required for neuropeptide stimulation of principal and stellate cells. Fluid transport assays were performed on intact tubules from wild-type (Oregon R), *norpA*^{H52} and *norpA*^{P24} flies as described in the Materials and methods. Either (A) 10⁻⁷ mol l⁻¹ CAP_{2b} or (B) 10⁻⁷ mol l⁻¹ Drosokinin were added at 30 min (arrow), and transport rates were measured for a further 30 min. Data are expressed as mean secretion rates \pm s.e.m. (N=8).

secretion to similar extents (Fig. 1A). By contrast, for Drosokinin-stimulated fluid transport, the *norpA* alleles were distinguishable (Fig. 1B); in the eye, *norpA*^{P24} displays a much more severe phenotype compared with *norpA*^{H52}. Kinetics of the fluid secretion response in all lines were similar.

Thus, the data show that fluid transport induced by both CAP_{2b} and Drosokinin requires a PLC β -dependent signalling pathway; as such, *norpA* function is not confined to phototransduction.

Table 1. *CAP2b* and *Drosokinin* stimulate IP_3 production

Ligand	Tissue	Control	Stimulation
CAP2b	Oregon R Malpighian tubules	$0.75 \pm 0.11 \text{ nmol } \mu\text{g protein}^{-1}$	$1.26 \pm 0.10^* \text{ nmol } \mu\text{g protein}^{-1}$
Drosokinin	Drosokinin-receptor-transfected S2 cells	$1.08 \pm 0.08 \text{ pmol } 5000 \text{ cells}^{-1}$	$9.45 \pm 2.39^* \text{ pmol } 5000 \text{ cells}^{-1}$

Significant differences between inositol (1,4,5)-trisphosphate (IP_3) content in control and stimulated samples are denoted by * ($P < 0.05$, Student's *t*-test, unpaired samples, $N=4$).

CAP2b and *Drosokinin* stimulate IP_3 production

CAP2b and *Drosokinin* have both been shown to act through intracellular calcium; so, if their action relies on PLC (Fig. 1), they should also each act to raise IP_3 in tubules. Table 1 shows that *CAP2b*, which acts only on principal cells, increases IP_3 levels in intact wild-type tubules. This, together with the data in Fig. 1, shows that *CAP2b* acts *via* a phosphoinositide (PI)-PLC-dependent mechanism.

Aedes leucokinins have been shown to stimulate IP_3 production in mosquito tubules (Cady and Hagedorn, 1999). However, as *Drosokinin* exerts its effects solely *via* stellate cells in *Drosophila* tubules (Terhzaz et al., 1999), and as *Drosophila* tubules each contain only 22 stellate cells (Sozen et al., 1997), *Drosokinin*-stimulated IP_3 levels could not be reliably quantified in intact tubules (data not shown). Accordingly, an *in vitro* approach was used. *Drosophila* S2 cells transfected with the *Drosokinin* receptor have been shown to display increased cytosolic intracellular calcium when stimulated with *Drosokinin* (Radford et al., 2002). Data in Table 1 show that *Drosokinin* increases IP_3 content in these cells by approximately eightfold. As the *Drosokinin* receptor has been localised to only stellate cells *in vivo* (Radford et al., 2002), it is probable that *Drosokinin* stimulates IP_3 production in stellate cells in intact tubules. As with *CAP2b*, *Drosokinin* action requires activation of PI-PLC.

Resting and CAP2b-stimulated levels of IP₃ are significantly reduced in itpr mutants

Intracellular signalling is frequently regulated by feedback. If IP_3 signalling contributes to the biological effects of

neuropeptides in tubules, lesions in the IP_3 R might feed back to downregulate the IP_3 signalling molecule *in vivo*.

Measurement of basal IP_3 levels in wild-type and *itpr* tubules shows that disruption of IP_3 R results in a reduction in resting IP_3 levels. Significant reductions in basal IP_3 levels are

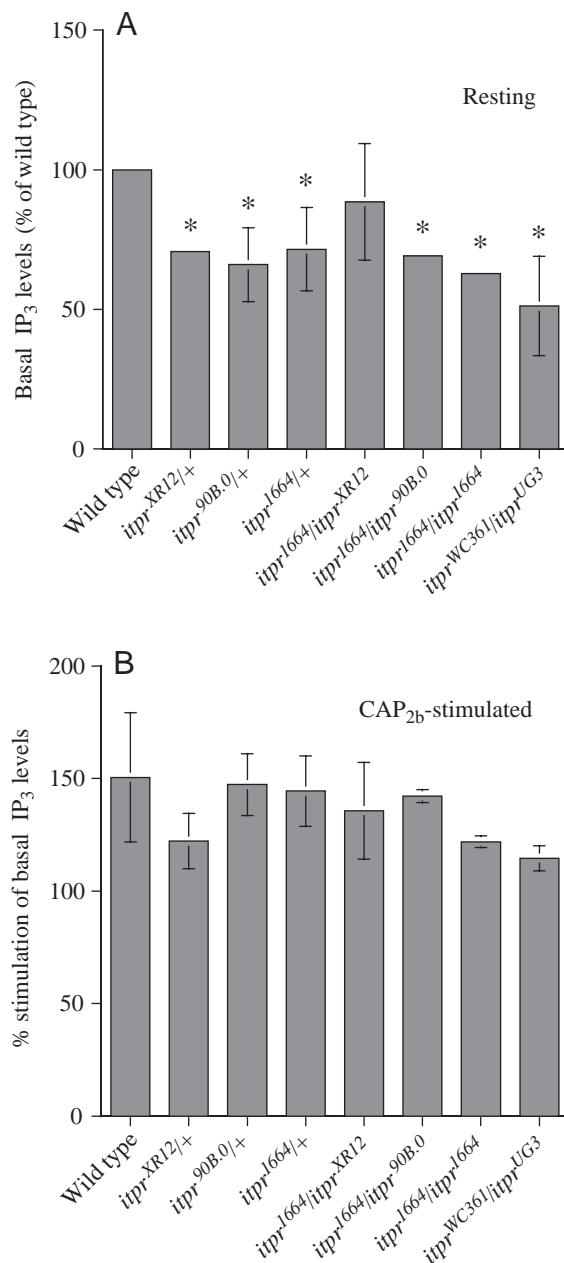


Fig. 2. Resting and *CAP2b*-stimulated inositol (1,4,5)-trisphosphate (IP_3) levels in *itpr* mutants. (A) Resting IP_3 levels are shown for tubules from the following lines: Oregon R (control), *itpr*^{XR12/+}, *itpr*^{90B.0/+}, *itpr*^{1664/+}, *itpr*¹⁶⁶⁴/*itpr*^{XR12}, *itpr*¹⁶⁶⁴/*itpr*^{90B.0}, *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and *itpr*^{WC361}/*itpr*^{UG3}. In order to aid comparison between experiments, data are shown as the % difference between IP_3 levels in *itpr* mutants compared with wild type (100%) \pm S.E.M. ($N=4$). Typical IP_3 content of wild-type tubules was as described in Table 1. (B) *CAP2b* stimulates IP_3 production in *itpr* lines. Stimulated IP_3 levels were measured in *CAP2b*-stimulated tubules ($10^{-7} \text{ mol l}^{-1}$, 5 s). Data are expressed as the % increase of unstimulated IP_3 levels (calculated as $[\text{stimulated } IP_3]/[\text{resting } IP_3] \times 100\%$; $[IP_3]$ measured in $\text{pmol } \mu\text{g protein}^{-1}$) \pm S.E.M. ($N=3-4$). Significant differences between IP_3 content in wild-type and *itpr* lines are denoted by * ($P < 0.05$, Student's *t*-test, unpaired samples).

observed in heterozygous alleles, homozygous *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and heteroallelic lines (Fig. 2A).

IP₃ levels were also measured in neurohormone-stimulated

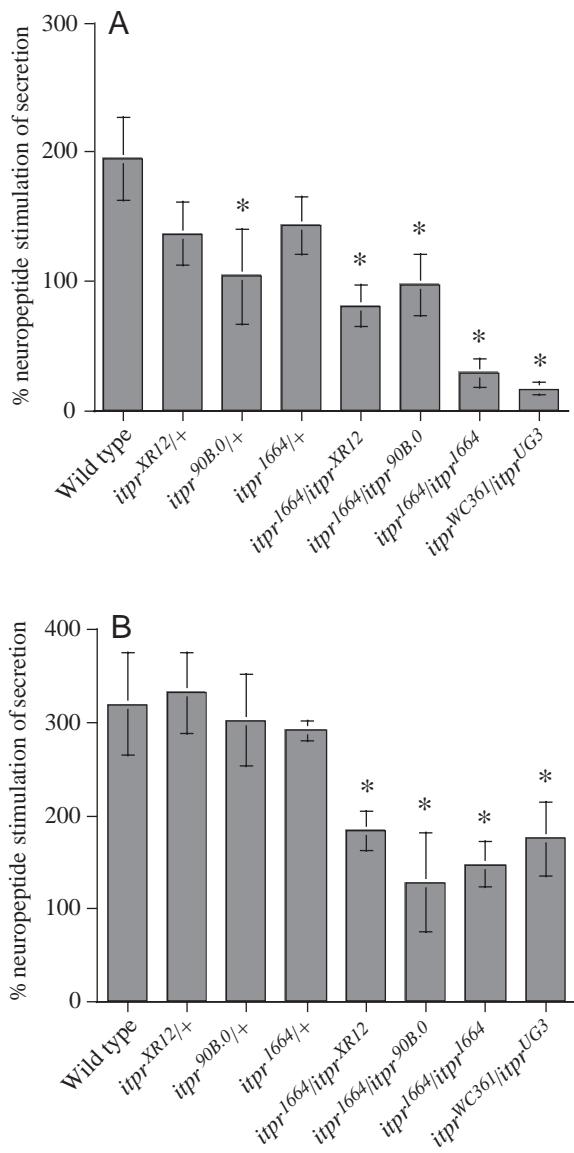


Fig. 3. CAP_{2b}- and Drosokinin-stimulated fluid transport are inhibited in *itpr* mutants. Fluid transport assays were performed on intact tubules as described in Fig. 1 for the following lines: Oregon R (control), *itpr*^{XR12/+}, *itpr*^{90B.0/+}, *itpr*^{1664/+}, *itpr*¹⁶⁶⁴/*itpr*^{XR12}, *itpr*¹⁶⁶⁴/*itpr*^{90B.0}, *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and *itpr*^{WC361}/*itpr*^{UG3}. Either (A) 10⁻⁷ mol l⁻¹ CAP_{2b} or (B) 10⁻⁷ mol l⁻¹ Drosokinin were added at 30 min, and transport rates were measured for a further 30 min. No change in basal secretion rate was observed in *itpr* mutants. Furthermore, kinetics of the fluid secretion response in all lines were similar (data not shown). To aid comparison between stimulated transport rates, data are expressed as the % stimulation of secretion [(maximal stimulated rates minus the mean of three basal secretion rate readings)/(mean basal rate) × 100% ± s.e.m.; N=15–20] upon stimulation with CAP_{2b} or Drosokinin. Stimulated fluid transport rates that are significantly different from wild type are denoted by * (P<0.05, Student's *t*-test, unpaired samples).

intact tubules. As Drosokinin-stimulated IP₃ production was not measurable in intact tubules, experiments were conducted only on CAP_{2b}-stimulated wild-type and *itpr* tubules (Fig. 2B). IP₃ content is increased in all CAP_{2b}-stimulated *itpr* tubules, although to a lesser extent in homozygous *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and heteroallelic *itpr*^{WC361}/*itpr*^{UG3} lines compared with wild type. However, these differences are not statistically significant. Thus, tubules from *itpr* mutants are able to generate IP₃ in response to CAP_{2b}, suggesting that PI-PLC-dependent signalling is not compromised in these lines.

Diuresis is inhibited by disruption of *itpr*

As mutations in *norpA* result in an epithelial phenotype, we investigated the possibility of uncovering such phenotypes in *itpr* mutants. We show that CAP_{2b} stimulation of fluid transport is inhibited in heterozygous, homozygous and heteroallelic *itpr* alleles (Fig. 3A). Significant inhibition is observed in *itpr*^{90B.0/+}, *itpr*¹⁶⁶⁴/*itpr*^{XR12} and *itpr*¹⁶⁶⁴/*itpr*^{90B.0}. However, CAP_{2b}-stimulated fluid transport is almost completely abolished in the homozygous *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and heteroallelic *itpr*^{WC361}/*itpr*^{UG3} lines. It is possible that the non-correlation between the severity of the alleles (*itpr*¹⁶⁶⁴/*itpr*^{90B.0} versus *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴) and CAP_{2b}-stimulated transport in these alleles is due to either differences in genetic background or by impact of the mutations on other interacting signalling pathways that are activated by CAP_{2b}.

By contrast, Drosokinin-stimulated fluid transport is not affected by either heterozygous *itpr*^{XR12/+}, *itpr*^{90B.0/+} or *itpr*^{1664/+} alleles (Fig. 3B). Significant inhibition is only observed in the heteroallelics *itpr*¹⁶⁶⁴/*itpr*^{XR12}, *itpr*¹⁶⁶⁴/*itpr*^{90B.0} and *itpr*^{WC361}/*itpr*^{UG3} and in the homozygous *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴. Furthermore, there are marked differences in the severity of inhibition between Drosokinin- and CAP_{2b}-stimulated fluid transport, especially in *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and *itpr*^{WC361}/*itpr*^{UG3} alleles.

Thus, *itpr* acts in both principal and stellate cells to transduce CAP_{2b} and Drosokinin diuretic signals.

Rescue of *itpr*^{90B.0} restores CAP_{2b}-stimulated fluid transport levels

Sometimes, phenotypes ascribed to mutant loci in *Drosophila* are subsequently found to be caused by second-site mutations or other genetic accidents incidental to the original study. It is thus desirable to confirm that mutant effects are genuinely due to the locus of interest. Crosses were established between heterozygous hsGAL4;*itpr*^{90B.0} and UAS-*itpr* homozygotes to allow rescue of *itpr*^{90B.0}. Tubules from flies with the w/UAS-*itpr*+/hsGAL4;+/*itpr*^{90B.0} genotype were used in transport assays. Control lines used were OrR and UAS-*itpr*. Non-heat-shocked w/UAS-*itpr*+/hsGAL4;+/*itpr*^{90B.0} were not used as controls, as the heat-shock promoter is 'leaky' and is transcribed at 25°C (G. Hasan, unpublished).

Fig. 4 shows that expression of *itpr* restores CAP_{2b}-stimulated fluid transport to levels indistinguishable from wild-type. Although disruption of *itpr* may compromise

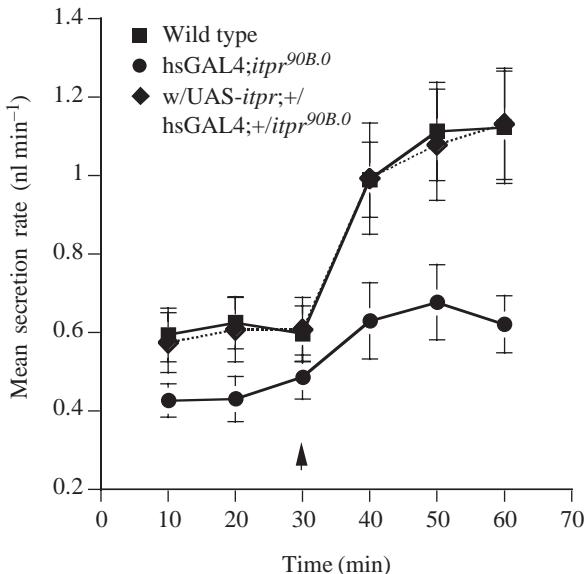


Fig. 4. *itpr* rescues the transport phenotype of the *itpr*^{90B.0} allele. Fluid transport assays were performed on the hsGAL4;*itpr*^{90B.0} line. The data show that CAP_{2b}-stimulated fluid transport is decreased in this line. Rescue of hsGAL4;*itpr*^{90B.0} with UAS-*itpr* results in wild-type levels of stimulated fluid transport. Fluid secretion rates were measured for 30 min prior to addition of neuropeptide (arrow), after which measurements were taken for a further 30 min. Data are expressed as mean fluid secretion rates (nl min⁻¹) \pm S.E.M. (N=6–10). UAS-*itpr* tubules display similar secretion rates to those of wild-type tubules (data not shown).

associated signalling pathways resulting in downregulation of CAP_{2b}-stimulated transport, successful rescue of *itpr*^{90B.0/+} with UAS-*itpr* provides strong evidence that the epithelial phenotype observed in this line is associated with mutated *itpr*.

CAP_{2b}-induced calcium signalling is impaired in *itpr* mutants

Previous work has shown that capa peptides (Kean et al., 2002) increase intracellular calcium in tubule main segment principal cells (Rosay et al., 1997) via plasma membrane calcium channels (MacPherson et al., 2000, 2001). However, release from intracellular stores is not measurable in this cell type (Rosay et al., 1997), thus calling into question the role of IP₃R-sensitive stores in principal cells. If release of calcium from IP₃-sensitive internal stores does occur upon CAP_{2b} stimulation, changes in this response may be observed in *itpr* mutants.

Using targeted aequorin, cytosolic calcium measurements in wild-type and *itpr* tubules stimulated with CAP_{2b} were performed; typical traces are shown in Fig. 5A. Fig. 5Ai shows the biphasic rise, consisting of a rapid primary peak followed by a slow secondary rise in cytosolic calcium in CAP_{2b}-stimulated wild-type aeq:hsGAL4 tubules. This calcium signature is also observed in capa/CAP_{2b}-stimulated wild-type tubules (Kean et al., 2002). The response is reduced in heterozygous *itpr* alleles, aeq:hsGAL4;*itpr*^{XR12/+} and

aeq:hsGAL4;*itpr*^{90B.0/+} (Fig. 5B), which may result in the transport phenotype observed. Interestingly, in heterozygous *itpr*^{1664/+}, the primary response is unaffected, with only the secondary response being reduced; in this line, stimulated fluid transport is not significantly different from control (Fig. 3A). By contrast, the alleles that display the most severe transport phenotype (*itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and *itpr*^{WC361}/*itpr*^{UG3}) also display an attenuated calcium response to CAP_{2b} (Fig. 5Av,vi,B). Both reduction in the primary peak and loss of the secondary rise are observed in these lines. However, none of the *itpr* alleles completely abolish CAP_{2b}-stimulated calcium signalling. This is consistent with *itpr* being an essential gene and with viable alleles all being hypomorphs rather than nulls.

These results thus suggest that IP₃R-mediated calcium release from intracellular stores contributes significantly to calcium signalling, and consequent diuresis, in principal cells.

itpr mutants reduce Drosokinin-induced calcium signals

We have shown previously that leucokinin (Rosay et al., 1997; O'Donnell et al., 1998) and endogenous *Drosophila* leucokinin (Terhzaz et al., 1999) elevate intracellular calcium levels in stellate cells. Furthermore, experiments in calcium-free medium show that stellate cells display emptying of intracellular calcium stores in the presence of the ER-calcium ATPase inhibitor, thapsigargin (Rosay et al., 1997). Thus, Drosokinin-stimulated calcium increases should be reduced in *itpr* mutants.

Data in Fig. 6A show typical traces of Drosokinin-stimulated increases in cytosolic calcium in wild-type and *itpr* tubules. A rapid response is observed in wild-type tubules (Fig. 6Ai; Terhzaz et al., 1999; Radford et al., 2002). This response is severely reduced in *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and *itpr*^{WC361}/*itpr*^{UG3} flies (Fig. 6Av,vi,B). Drosokinin-stimulated fluid transport is also reduced in these lines (Fig. 3B); thus, functional IP₃R contributes to Drosokinin-stimulated calcium signalling and fluid transport.

Discussion

The role of PLC *in vivo* has been most studied in *Drosophila* phototransduction. Experimental evidence suggested that *norpA* and *plc21* were expressed in the eye or CNS (Bloomquist et al., 1988; Shortridge et al., 1991); furthermore, the dependence of phototransduction on PI-PLC supported specific roles for these genes in the eye. However, RT-PCR data show that *norpA* and *plc21* are both expressed in tubules (M. R. MacPherson and V. P. Pollock, unpublished). We have shown here that *norpA* mutants display an epithelial phenotype, which is revealed upon neuropeptide stimulation. Furthermore, the severity of the epithelial response for each allele correlates with that observed in the eye and also with the levels of expression of *norpA* and biochemical activity of PLC. However, while we have established an epithelial role for *norpA*, it has been difficult to assess the contribution of *plc21*

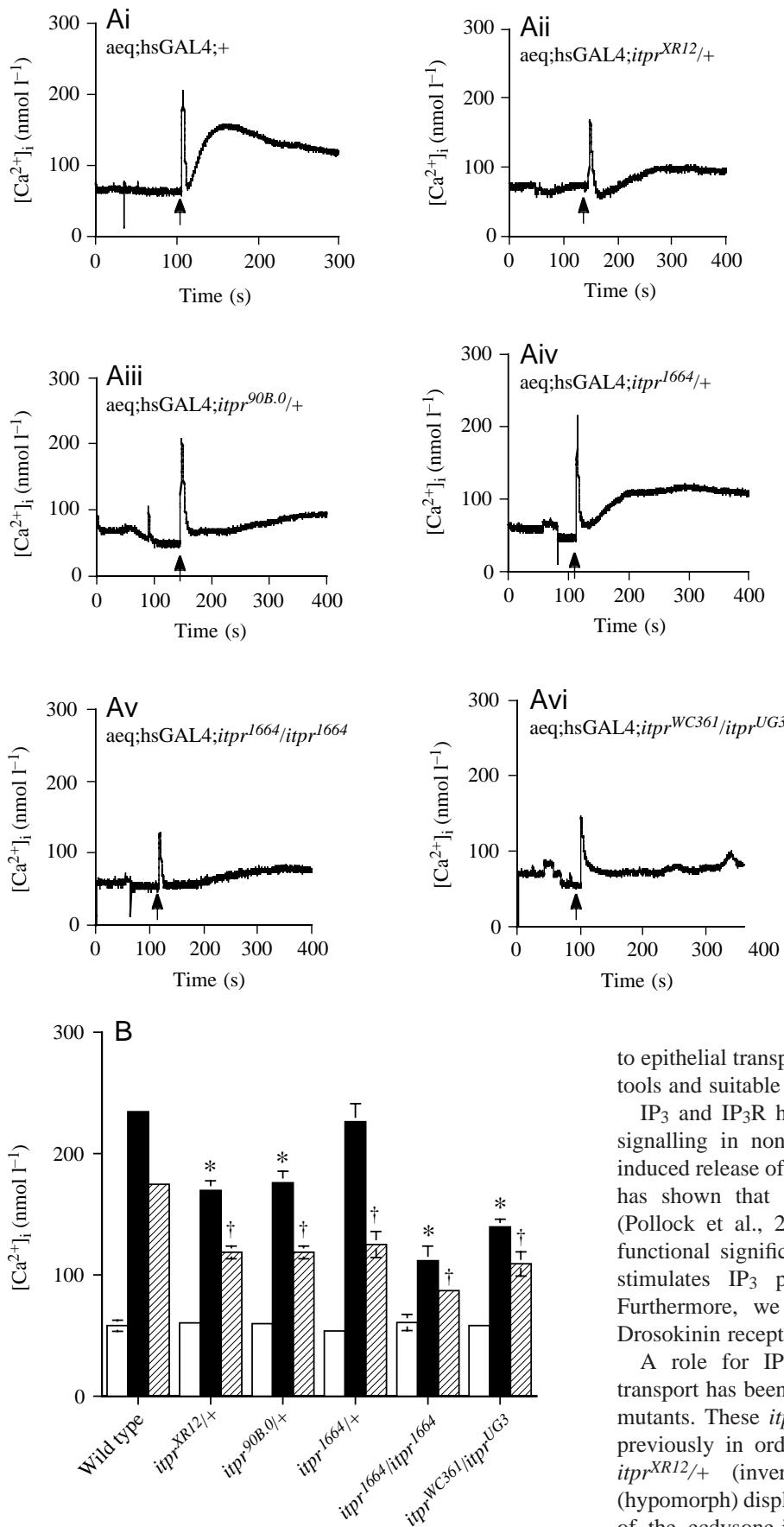
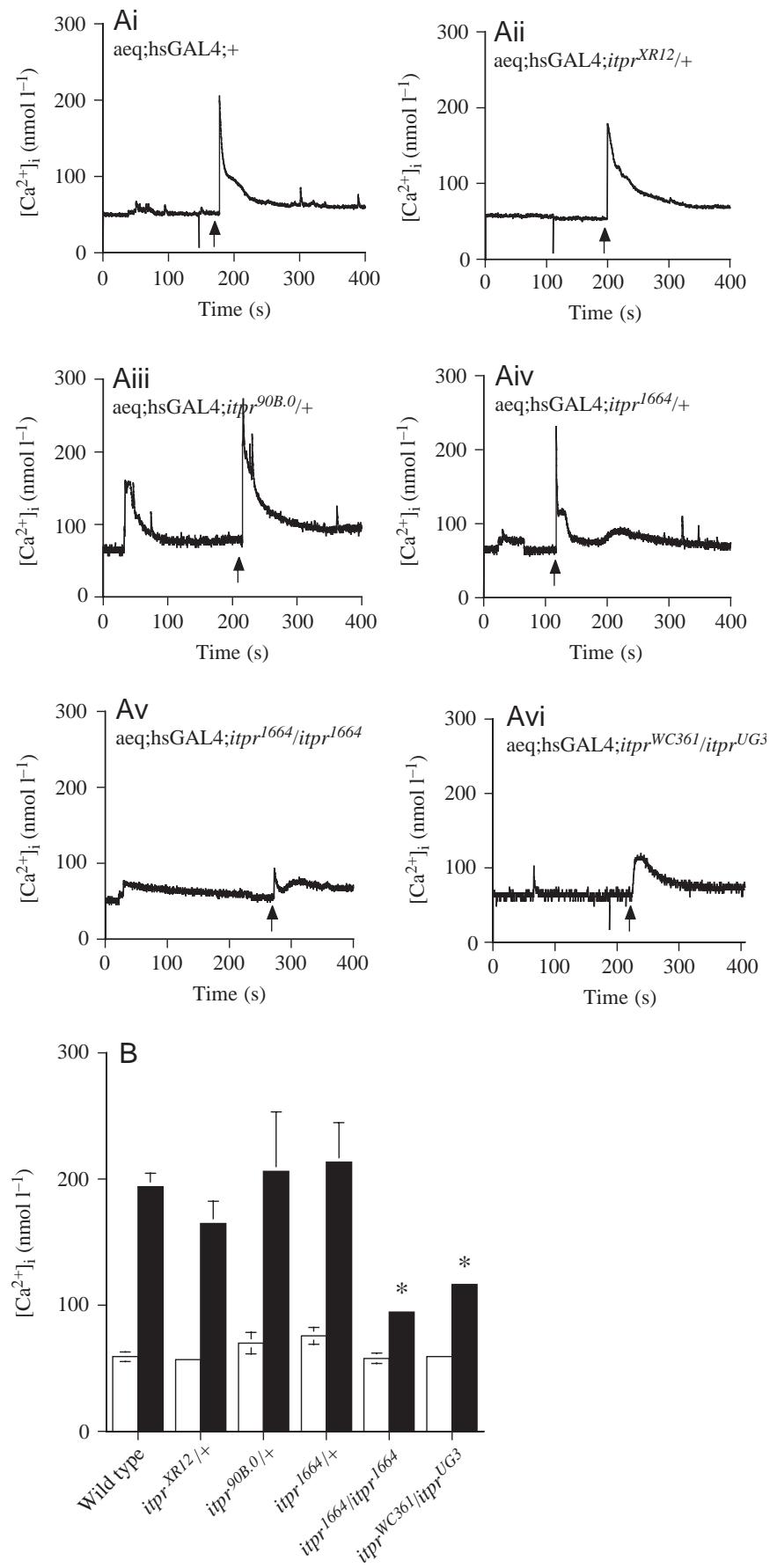


Fig. 5. CAP_{2b}-induced cytosolic calcium signals in *itpr* mutants. (A) Typical traces of changes in intracellular Ca²⁺ concentration ([Ca²⁺]_i) in tubule principal cells stimulated by 10⁻⁷ mol l⁻¹ CAP_{2b} (arrows) in the following lines: (i) aeq;hsGAL4;+ (control), (ii) aeq;hsGAL4;itpr^{XR12}+/+, (iii) aeq;hsGAL4;itpr^{90B.0}+/+, (iv) aeq;hsGAL4;itpr¹⁶⁶⁴+/+, (v) aeq;hsGAL4;itpr¹⁶⁶⁴/itpr¹⁶⁶⁴ and (vi) aeq;hsGAL4;itpr^{WC361}/itpr^{UG3}. Each sample contains 20 intact tubules. While no changes in the resting [Ca²⁺]_i is seen in any of the mutants, changes in amplitude of the primary and/or secondary response can be observed in all lines (also in B). (B) Pooled results of changes in tubule [Ca²⁺]_i in *itpr* mutants in response to 10⁻⁷ mol l⁻¹ CAP_{2b} are shown. Results are expressed as means \pm S.E.M. (N=8) for background (open bars), CAP_{2b}-stimulated primary peaks (filled bars) and CAP_{2b}-stimulated secondary peaks (hatched bars) for the lines described in A. The measure of secondary peak is taken as the average [Ca²⁺]_i over 4 min post-stimulation with CAP_{2b}. CAP_{2b}-stimulated primary peaks that are significantly different from aeq;hsGAL4 tubules are denoted by *, and statistically significant differences in secondary peaks compared to wild type are denoted by † (P<0.05, Student's *t*-test, unpaired samples).

to epithelial transport and signalling due to our lack of genetic tools and suitable antibodies.


IP₃ and IP₃R have been shown to be critical for calcium signalling in non-excitable cells *via* a mechanism of IP₃-induced release of calcium from internal stores. Previous work has shown that IP₃R is expressed in Malpighian tubules (Pollock et al., 2000; Blumenthal, 2001). We now ascribe functional significance to this finding and show that CAP_{2b} stimulates IP₃ production in intact *Drosophila* tubules. Furthermore, we show that Drosokinin mobilises IP₃ in Drosokinin receptor-transfected S2 cells.

A role for IP₃R in neurohormone-stimulated epithelial transport has been demonstrated using an allelic series of *itpr* mutants. These *itpr* lines have been extensively investigated previously in order to determine the role of IP₃R *in vivo*. *itpr*^{XR12}+/+ (inversion), *itpr*^{90B.0}+/+ (null) and *itpr*¹⁶⁶⁴+/+ (hypomorph) display delayed moulting and reduced expression of the ecdysone-inducible gene *E74*. In terms of severity,

Fig. 6. Drosokinin-induced cytosolic calcium signals in *itpr* mutants. (A) Typical traces of changes in intracellular Ca^{2+} concentration ($[\text{Ca}^{2+}]_i$) in tubule stellate cells stimulated by $10^{-7} \text{ mol l}^{-1}$ Drosokinin (arrows) in the following lines: (i) aeq;hsGAL4;+ (control), (ii) aeq;hsGAL4; *itpr*^{XR12};+, (iii) aeq;hsGAL4; *itpr*^{90B.0};+, (iv) aeq;hsGAL4; *itpr*¹⁶⁶⁴;+, (v) aeq;hsGAL4; *itpr*¹⁶⁶⁴; *itpr*¹⁶⁶⁴ and (vi) aeq;hsGAL4; *itpr*^{WC361}/*itpr*^{UG3}. Each sample contains 20 intact tubules. While no changes in the resting $[\text{Ca}^{2+}]_i$ is seen in any of the mutants, changes in amplitude of the calcium peak can be observed in aeq;hsGAL4; *itpr*¹⁶⁶⁴/*itpr*¹⁶⁶⁴ and aeq;hsGAL4; *itpr*^{WC361}/*itpr*^{UG3} (also in B). (B) Pooled results of changes in tubule $[\text{Ca}^{2+}]_i$ in *itpr* mutants in response to $10^{-7} \text{ mol l}^{-1}$ Drosokinin. Results are expressed as means \pm S.E.M. ($N=8$) for background (open bars) and Drosokinin-stimulated peaks (filled bars) for the lines described in A. Drosokinin-stimulated primary peaks that are significantly different from aeq;hsGAL4;+ tubules are denoted by * ($P<0.05$, Student's *t*-test, unpaired samples).

itpr^{90B.0} and *itpr*^{XR12} are the most severe alleles (Venkatesh and Hasan, 1997). These lines, as well as *itpr*^{WC361}/*itpr*^{UG3}, have also been used in studies of olfaction, where it has been shown that, in the most severe alleles, olfactory adaptation is not maintained (Deshpande et al., 2000). CAP_{2b}-stimulated epithelial transport is reduced in the null mutant (*itpr*^{90B.0}) compared with wild-type tubules, while the most severe phenotypes are observed in *itpr*¹⁶⁶⁴ homozygotes and the heteroalleles. Rescue of the *itpr*^{90B.0} transport phenotype is demonstrated with UAS-*itpr*, which strongly suggests that the tubule phenotype is associated with disruption in IP₃R. Interestingly, while the null mutant displays a phenotype upon CAP_{2b} stimulation, only the most severe *itpr*¹⁶⁶⁴ homozygotes and the heteroalleles affect Drosokinin-stimulated secretion. Therefore, reduced CAP_{2b}-stimulated fluid transport in *itpr*^{90B.0} may be due to principal cell-specific signalling processes associated with the null mutation.

Intriguingly, resting levels of IP₃ in tubules are significantly reduced in all *itpr* mutants apart from *itpr*¹⁶⁶⁴/*itpr*^{XR12}, suggesting a possible feedback mechanism between receptor (IP₃R) and second messenger (IP₃). However, this is not associated with an epithelial phenotype, as no difference in basal rate is observed in tubules from *itpr* lines as compared to wild-type flies.

We have previously shown that the neuropeptide CAP_{2b} induces a rise in cytosolic calcium in only principal cells that is dependent on extracellular calcium; these calcium signalling events, which may mediate NO/cGMP signalling, correlate with CAP_{2b}-stimulated fluid transport. The CAP_{2b}-induced response is abolished by L-type calcium channel inhibitors and also in mutants for the plasma membrane calcium channels, TRP and TRPL (MacPherson et al., 2000, 2001). Thus, CAP_{2b}-induced calcium signalling occurs via multichannel mechanisms. We demonstrate here that IP₃R plays a role in CAP_{2b}-induced calcium signalling (Fig. 5). Extensive work using *norpA* mutants has shown that *norpA*-encoded PLC plays a critical role in rhabdomeres. Thus, PLC β , which is required for the cleavage of phosphatidylinositol (4,5)-bisphosphate (PIP₂) to IP₃ and diacylglycerol (DAG), is necessary for phototransduction. Interestingly, however, using the *itpr* null and *itpr*¹⁶⁶⁴ mutants, IP₃ signalling has been shown to be unnecessary to activate light-activated conductance (Raghu et al., 2000a). This response is, however, dependent on calcium entry via TRP/TRPL channels. DAG has been shown to activate native TRP and TRPL channels in photoreceptors and recombinant TRPL channels (Chyb et al., 1999). Furthermore, recent studies have supported the role of DAG in TRP/TRPL action: DAG kinase mutants display constitutive activation of TRP and TRPL channels (Raghu et al., 2000b), and, in vertebrate cells, TRPC3 (transient receptor potential-like channel 3) has been shown to be activated by DAG independently of IP₃R (Venkatachalam et al., 2001). Thus, PLC is involved in regulation of TRP/TRPL plasma membrane calcium channels without a requirement for IP₃. It is possible, then, that PLC-activated DAG generation may regulate TRP/TRPL channels in tubules, which may contribute significantly to the 'multichannel' mode of action of CAP_{2b}. Furthermore, if DAG/TRP/TRPL signalling were compromised in some *itpr* lines, this may explain the significant impact of *itpr* alleles (for example, *itpr* null) on CAP_{2b}-stimulated, but not Drosokinin-stimulated, fluid transport and calcium signalling (Figs 3, 5).

Previous work has shown that leucokinin and Drosokinin increase cytosolic calcium concentration in only stellate cells in tubules, which express the Drosokinin receptor (Rosay et al., 1997; Terhzaz et al., 1999; Radford et al., 2002). This suggests that IP₃-mediated calcium signalling may occur in stellate cells. Activation of calcium signalling may be linked to chloride shunt conductance, which is also confined to stellate cells (O'Donnell et al., 1998). It is thus possible that Drosokinin stimulates PLC β -dependent, IP₃-mediated calcium signalling in stellate cells *in vivo*, which increases chloride conductance, resulting in increased fluid transport.

Thus, Malpighian tubules, in contrast to photoreceptors, require both functional PLC β and IP₃R for neuropeptide-activated signal transduction in principal and stellate cells. The expression of *plc21* in tubules, however, and the role of DAG on plasma membrane calcium channels suggest that

extremely complex mechanisms of signalling are used by tubule cells.

In summary, we have demonstrated non-neuronal, epithelial phenotypes for *norpA* (PLC β) and *itpr* (IP₃R) and have correlated cell-specific signalling events for both IP₃ and calcium to transport phenotypes.

This work was supported by the BBSRC.

References

Berridge, M. J. (1997). Elementary and global aspects of calcium signalling. *J. Exp. Biol.* **200**, 315-319.

Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G. and Pak, W. L. (1988). Isolation of a putative phospholipase C gene of *Drosophila*, *norpA*, and its role in phototransduction. *Cell* **54**, 723-733.

Blumenthal, E. M. (2001). Characterization of transepithelial potential oscillations in the *Drosophila* Malpighian tubule. *J. Exp. Biol.* **204**, 3075-3084.

Cady, C. and Hagedorn, H. E. (1999). Effects of putative diuretic factors on intracellular second messenger levels in the Malpighian tubules of *Aedes aegypti*. *J. Insect. Physiol.* **45**, 327-337.

Chyb, S., Raghu, P. and Hardie, R. C. (1999). Polyunsaturated fatty acids activate the *Drosophila* light-sensitive channels TRP and TRPL. *Nature* **397**, 255-259.

Davies, S. A., Huesmann, G. R., Maddrell, S. H. P., O'Donnell, M. J., Skaer, N. J. V., Dow, J. A. T. and Tublitz, N. J. (1995). CAP_{2b}, a cardioacceleratory peptide, is present in *Drosophila* and stimulates tubule fluid secretion via cGMP. *Am. J. Physiol.* **269**, R1321-R1326.

Deshpande, M., Venkatesh, K., Rodrigues, V. and Hasan, G. (2000). The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in *Drosophila* antennae. *J. Neurobiol.* **43**, 282-288.

Dow, J. A., Maddrell, S. H., Gortz, A., Skaer, N. J., Brogan, S. and Kaiser, K. (1994). The Malpighian tubules of *Drosophila melanogaster*: a novel phenotype for studies of fluid secretion and its control. *J. Exp. Biol.* **197**, 421-428.

Dow, J. A. T. and Davies, S. A. (2001). The *Drosophila melanogaster* Malpighian tubule. *Adv. Insect Physiol.* **28**, 1-83.

Hardie, R. C. and Raghu, P. (1998). Activation of heterologously expressed *Drosophila* TRPL channels: Ca²⁺ is not required and InsP₃ is not sufficient. *Cell Calcium* **24**, 153-163.

Hardie, R. C. and Raghu, P. (2001). Visual transduction in *Drosophila*. *Nature* **413**, 186-193.

Harteneck, C., Plant, T. D. and Schultz, G. (2000). From worm to man: three subfamilies of TRP channels. *Trends Neurosci.* **23**, 159-166.

Hasan, G. and Rosbash, M. (1992). *Drosophila* homologs of two mammalian intracellular Ca(2+)-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. *Development* **116**, 967-975.

Kean, L., Cazenave, W., Costes, L., Broderick, K. E., Graham, S., Pollock, V. P., Davies, S. A., Veenstra, J. A. and Dow, J. A. (2002). Two nitridergic peptides are encoded by the gene capability in *Drosophila melanogaster*. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **282**, R1297-R1307.

MacPherson, M. R., Pollock, V. P., Broderick, K. B., Dow, J. A. and Davies, S. A. (2000). The role of TRP channels in epithelial fluid transport. *A. Dros. Res. Conf.* **41**, 816B.

MacPherson, M. R., Pollock, V. P., Broderick, K. B., Kean, L., O'Connell, F. C., Dow, J. A. T. and Davies, S.-A. (2001). Model organisms: New insights into ion channel and transporter function: L-type calcium channels regulate epithelial fluid transport in *Drosophila melanogaster*. *Am. J. Physiol. Cell Physiol.* **280**, C394-C407.

O'Donnell, M. J., Rheault, M. R., Davies, S. A., Rosay, P., Harvey, B. J., Maddrell, S. H. P., Kaiser, K. and Dow, J. A. T. (1998). Hormonally-controlled chloride movement across *Drosophila* tubules is via ion channels in stellate cells. *Am. J. Physiol.* **275**, R1039-R1049.

Pak, W. L., Grossfield, J. and Arnold, K. (1970). Mutants of the visual pathway of *Drosophila melanogaster*. *Nature* **227**, 518-520.

Palmer, S., Hughes, K. T., Lee, D. Y. and Wakelam, M. J. (1989). Development of a novel, Ins(1,4,5)P₃-specific binding assay. Its use to

determine the intracellular concentration of Ins(1,4,5)P₃ in unstimulated and vasopressin-stimulated rat hepatocytes. *Cell Signal* **1**, 147-156.

Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G. and Pak, W. L. (1996). Molecular, biochemical, and electrophysiological characterization of *Drosophila* norpA mutants. *J. Biol. Chem.* **271**, 4937-4945.

Pollock, V. P., Davies, S. A., Hasan, G. and Dow, J. A. T. (2000). Disruption of the IP₃R gene in *Drosophila melanogaster* affects epithelial function. *Comp. Biochem. Physiol. A* **126**, S121.

Putney, J. W. J. (1997). Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. *Cell Calcium* **21**, 257-261.

Radford, J. C., Davies, S. A. and Dow, J. A. T. (2002). Systematic GPCR analysis in *Drosophila melanogaster* identifies a leucokinin receptor with novel roles. *J. Biol. Chem.* **277**, 38810-38817.

Raghu, P., Colley, N. J., Webel, R., James, T., Hasan, G., Danin, M., Selinger, Z. and Hardie, R. C. (2000a). Normal phototransduction in *Drosophila* photoreceptors lacking an InsP(3) receptor gene. *Mol. Cell Neurosci.* **15**, 429-445.

Raghu, P., Usher, K., Jonas, S., Chyb, S., Polyanovsky, A. and Hardie, R. C. (2000b). Constitutive activity of the light-sensitive channels TRP and TRPL in the *Drosophila* diacylglycerol kinase mutant, rdgA. *Neuron* **26**, 169-179.

Rosay, P., Davies, S. A., Yu, Y., Sozen, M. A., Kaiser, K. and Dow, J. A. T. (1997). Cell-type specific calcium signalling in a *Drosophila* epithelium. *J. Cell Sci.* **110**, 1683-1692.

Shortridge, R. D., Yoon, J., Lending, C. R., Bloomquist, B. T., Perdew, M. H. and Pak, W. L. (1991). A *Drosophila* phospholipase C gene that is expressed in the central nervous system. *J. Biol. Chem.* **266**, 12474-12480.

Sozen, H. A., Armstrong, J. D., Yang, M. Y., Kaiser, K. and Dow, J. A. T. (1997). Functional domains are specified to single-cell resolution in a *Drosophila* epithelium. *Proc. Natl. Acad. Sci. USA* **94**, 5207-5212.

Terhzaz, S., O'Connell, F. C., Pollock, V. P., Kean, L., Davies, S. A., Veenstra, J. A. and Dow, J. A. (1999). Isolation and characterization of a leucokinin-like peptide of *Drosophila melanogaster*. *J. Exp. Biol.* **202**, 3667-3676.

Venkatachalam, K., Ma, H. T., Ford, D. L. and Gill, D. L. (2001). Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. *J. Biol. Chem.* **276**, 33980-33985.

Venkatesh, K. and Hasan, G. (1997). Disruption of the IP₃ receptor gene of *Drosophila* affects larval metamorphosis and ecdysone release. *Curr. Biol.* **7**, 500-509.

Venkatesh, K., Siddhartha, G., Joshi, R., Patel, S. and Hasan, G. (2001). Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signalling pathways regulate larval molting in *Drosophila*. *Genetics* **158**, 309-318.

Yoshikawa, S., Tanimura, T., Miyawaki, A., Nakamura, M., Yuzaki, M., Furuichi, T. and Mikoshiba, K. (1992). Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in *Drosophila melanogaster*. *J. Biol. Chem.* **267**, 16613-16619.