Initial Boundary Value Problems for
Scalar and Vector Burgers Equations

By K. T Joseph and P L. Sachdev

In this article we study Burgers equation and vector Burgers equation with
initial and boundary conditions. First we consider the Burgers equation in
the quarter plane x > 0, t > 0 with Riemann type of initial and boundary
conditions and use the Hopf-Cole transformation to linearize the problems
and explicitly solve them. We study two limits, the small viscosity limit and the
large time behavior of solutions. Next, we study the vector Burgers equation
and solve the initial value problem for it when the initial data are gradient
of a scalar function. We investigate the asymptotic behavior of this solution
as time tends to infinity and generalize a result of Hopf to the vector case.
Then we construct the exact N-wave solution as an asymptote of solution of
an initial value problem extending the previous work of Sachdev et al. (1994).
We also study the limit as viscosity parameter goes to 0. Finally, we get an
explicit solution for a boundary value problem in a cylinder.

1. Introduction

The nonlinear parabolic partial differential equation
b, =t ()
u,+=(u"), = =zu
t 2 X 2 XX
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was first introduced by J. M. Burgers [1] as the simplest model for fluid flow.
This equation describes the interplay between nonlinearity and diffusion, see
Sachdev [2] and the references therein for physical interpretation and impor-
tant solutions. A remarkable feature of this equation is that its solution with
initial conditions of the form

u(x, 0) = uy(x) 2)
can be explicitly written down. In fact Hopf [3] and Cole [4] independently
showed that the equation (1) can be linearized through the transformation

Uy
u = —V7. (3)

More precisely, assume that the initial data u,(x) are integrable in every
finite interval and that

| )y = o(l+P)
then Hopf [3] showed that if v(x, ¢) satisfies the linear heat equation
v, ==V @)
with initial condition
1 Y
v(x,0) = exp[——/ uo(z)dz] (5)
VJo

then u(x, t) defined by (3) solves (1) and (2) and conversely, if u(x, ?) is a
solution of (1) and (2), then v(x, ) defined by (3) is a solution of (4) and (5)
up to a time-dependent multiplicative factor that is irrelevent in (3). Solving
for v from (4) and (5) and substituting it into (3), he obtained explicit formula
for the solution of (1) and (2); namely,

Y ug(z)dz
Ja(F) exp(— L5 — L) gy
Jreoxp(—C52 - L) ay

and studied the asymptotic behavior of u”(x,t) as t — oo. He also con-
structed explicit weak entropy solution of the inviscid Burgers equation.
Lighthill [5] discovered the N-wave solution of the Burgers equation (1);
namely,

u(x,t) =

(6)

x/t%

Al L ew(2)]

UP(x,t) =

(7)
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Sachdev et al. [6] showed that this solution can be obtained as time asymp-
totic of a pure initial value problem and found explicitly the constant ¢, in
terms of one lobe area of the initial data.

In a more recent paper, [7] proposed the vector Burgers equation

U +UVU = gAU. (8)
They observed that if we seek special solutions of the form
U=V.¢ )

where ¢(x, t) is a scalar function on R" x [0, 00), equation (8) leads to

v[@ 1 %|V¢|2 - §A¢] — 0. (10)

They used this observation to find special solutions of Burgers equation in
cylindrical coordinates with axisymmetry.

Although there are many results for pure initial value problem, bound-
ary value problem has been studied less. Explicit solutions of the Burgers
equation (1) in the quarter plane with integrable initial data and piecewise
constant boundary data were constructed by [8] using Hopf—Cole transfor-
mation. He obtained a formula for its weak limit as viscosity parameter goes
to 0. Using maximum principle, this formula for weak limit was extended to
general boundary data. When the initial and boundary data are two different
constants, the problem was considered in some detail by [9] for » small. Five
distinct cases arose depending on the relative magnitudes of the constants
appearing in the initial and boundary conditions. The solutions required the
introduction of corner layers, shock layers, boundary layers, and transition
layers. In the present article, we write an explicit form of the solution and
recover various cases in the limit v — 0. We also consider large time behav-
ior of the solutions. Again, different cases arise depending on the relative
magnitudes of the constants that appear in the initial and boundary condi-
tions. It would be desirable to have solution for nonconstant initial bound-
ary problem, but as [9] point out, that leads to an integral equation that
seems difficult to solve. Using a generalized Hopf-Cole transformation, [10]
and [11], in a series of papers, studied (1) with more general boundary con-
ditions that include the flux condition at the origin. The asymptotic profile
at infinity of the solution of (1) with flux condition was obtained by [12]. A
table of solutions of the Burgers equation is contained in [13].

The aim of the present article is to study Burgers equation (1) and the vec-
tor Burgers equation (8) with initial and boundary conditions and investigate
the asymptotic behavior as ¢ tends to co and as v tends to 0. In Section 2, we
treat the Burgers equation (1) in the quarter plane with Reimann type ini-
tial boundary data, solve it exactly, and study the asymptotic limits as ¢ tends
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to oo or as the viscosity coefficient v tends to 0. In Section 3 we study the vec-
tor Burgers equation, solve exactly the initial value problem for it when the
initial data can be written as gradients of a scalar function and carry out the
study of the limits as ¢ tends to co or v tends to 0. We also study a boundary
value problem for the vector Burgers equation in the same section.

2. Initial boundary value problem for Burgers equation and
its asymptotics

In this section, we consider the Burgers equation

14

w+ 5(), = ()
in x > 0, t > 0, with initial condition
u(x,0) = uy (12)
and the boundary condition
u(0,t) = ug, (13)

where u; and uy are constants. Using standard Hopf-Cole transformation,
we reduce this problem to a linear one and solve it explicitly. Before the
statement of the result we introduce some notations:

A (x, 1) = /Ooo exp(—M — %)dy,

2ty
* (x+y)P  wy
A (x, t) = —_—— - —=d
+(x7 ) /0 eXp< 217/ v y7
00 2
B'(x,t) = /0 exp(—% + @)dy. (14)

With these notations we prove the following result.
A solution of the initial boundary value problem (11)—(13) is given by

u’'(x,t)=upg

(up—ug)[A” (x, 1) — AL (x, )]

n : , (15a)
A (x, )+ A% (x, 1) +2ugtexp(— 5 )+ (Cug/v)(ugt — x)B"(x, t)
when u; + upz =0 and
- A” (x,t) — A% (x,t
oty = = LA (1)~ A ) (155)

v (uj—up) qv 2u v ’
AV (x, 1) + G AL (x, 1) + G5B (x, 1)

when u; + up # 0.
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To prove this result, we use Hopf—Cole transformation. First, we set

(e ) = = [ u0) = ulay (16)
From (11)—(13), we get
O
w; 2 Uy, = 2wxx7
w(x,0) =0, w,(0,t) =ug —u,. (17)
Now setting
w
V= exp(—;), (18)

we get from (17)

14
Uy + Upv, = vax’

v, (0, t) + (ug — u;))v(0, t) =0,

v(x,0) = 1. (19)
Making the final transformation
u;x  upt
p=expl——+—|v (20)
v 2v

we get from (19) the following problem for p:

N 14
pt - 2pxx

— exp(HE
p(x,0) = eXp( ” )
Vpx(07 t) + qu(Oa t) =0.

This problem has the explicit solution (see [8])

= o o] 52 ]2

ury 2(up/v)
) exp(-L)d (2772)11}/2

| /Ooo /ywexp[_ug(yv— ) (xt2) _g}dzdy. (21)

2tv
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Now from (16), (18), and (20), we have
w(x,t)=w, +u; = —v(logv), + u,
= —v[(log p), + u;/v] + u; = —v(log p),.
In other words

Px
W= —vtx, (22)
P

To write the formula in a convenient form we note that

o[ ol -5
= /-oo exp(%)ﬁz{exp[— (x ;—wz)z} }dz

= —exp[% - M} — @{/yoo exp[% - (x;wz)2:|dz}. (23)

14 14

Here, the first equality is obtained by just writing the exponential of a sum
as a product and using the fact that

(x+z)2:| s, exp[—(x+z)2],

J —
* exp[ vt 2vt

and the second equality is obtained by the use of integration by parts.
Similarly,

ax{/ooo exp[_Z’y - (x;rwy)z]dy}
= _exp<—x—2) + ﬂ{/OOOGXP[_M”V - (x+y)2}dY}- (24)

2ty v

ST Bl Tl
2

= ewp(—) - 2] [Tew[ 2 - o gk )

Now, it follows from (21), (23), (24), and (25) that

and

px(x, t) =

= ——u; A7 (x, t) —u; A% (x, t
G AL ) AL )

+2up A7 (x, 1) + 2ug B C¥(x, t)j|
14
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and

1 14 14 2& 14
p(x, t) = W[A_(x, t)+ AL (x, )+ ” C"(x, t):|,

where 4", A% and B’ are given by (14), and

C'(x, 1) = /0‘” /y"oexp<_u3()’—z) RS %)dzdy.

v 2ty

Substituting these formulas for p and p, in (22), we get

urA” (x,t) —uy A% (x, t) + 2upg A% (x, t) + uB.MTBC”(x, 1)

uy(x’ t) = v v 2up v
A (x, t) + A (x, ) + ZECY(x, 1)

(u; — uB)[A’j(x, t) — A% (x, t)} + uB[A'i(x, t)+ A (x, t) + 2’%CV(JC, t)]
B A" (x,0) + A%(x, 1) + ZECY(x, 1)

B (u; — uB)[A’i(x, 1) — A% (x, t)]
A )+ AY(x, 1) + 2B CY(x, 1)

+ ug. (26)

Now we express C” in terms of A’ and B”. There are two cases to consider.
The first one is when u; + ug = 0 . In this case,

C'(x,t) = /Ooo /yoo exp[—M _ty & tvz)z}dzdy

v v 2

00 [ 2
:/ 1./ exp[%— (x+2) ]dzdy
0 y v 2ty

2tv
_ = ugy (x+y)’
B ZV/O &yexp[ v 2tv ]
=3} 2
+(u3t—x)/ eXp|:uBy (x+y) ]
0 2tv

2 2
_ - B ugy (x+y)
=t exp(—) + (ugt x)/ exp[ T ]d

— 1 exp(—zx—;) + (upt — x)B*(x, 1). 27)
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When u; +up # 0,
00 OO _ 2
C¥(x, 1) = / / exp[——uB(y ) _wy (x+2) ]dzdy
0 y

v v 2tv

00 00 2
=/ eXp[_(u,+u3)y]/ exp[% (x+2) }dzdy
0 v y v 2ty

= _(”Ii—uB) /Ooo dy exp[——(u’ -l;uB)y]

0 2
/ exp[% — (x+2) }dzdy
y v 2ty
o > ugy (x+y)
(g + “B){/(; exp[ v 2tv ]dy

00 2
_/ exp[_m - <xz+_y>}dy}
0 v tv

[B”(x, 1) = AL (x, )]. (28)

_ 14
(ur +ug)
Using (27) for the case u; +up = 0 and (28) for the case u; +up # 0 in (26),
the formula (25) for u” follows.

2.1. Study of the limit as v — 0

Here, we compute the pointwise limit of u”(x, t) as the viscosity parameter
v — 0. Let H(x) be the usual Heaviside function and s = (u; + uz)/2,
then for x > 0, ¢ > 0, we have the following formula for the pointwise limit
function u(x, t) = lim,_,, u”(x, t).

Case 1. up > u; and (u; +ug) >0
u(x,t) =uH(x — st) + ugH (st — x)
Case 2. u; >0, ug >0 and u; > ug
u(x,t) = ugH(ugt — x) + (x/t)H(u;t — x)H(x — ugt) + u;H(x — u;t)
Case 3. u; <0and (u; +ug) <0
u(x,t) =u;

Case 4. u; =0and ug < 0or u; > 0and uz <0 and u; + ug # 0 or
u; > 0and u; +up =0,

u(x, t) = (x/t)H(u;t —x) + uH(x — u;t).
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To study the lim,_ , u”(x, t), we write (15) for »” in terms of the standard
“erfc” and use its asymptotic form. For this, we denote

erfe(s) = [ exp(—)a: (29)
y
ut  ux\ [ (y — x + ut)?
)= 1) [ g 7],
v v 0 tv
Wt oux o0
= ()1 eXp(z—Iv - %) / .., exp(=y*)dy
(z'r»)l/l2
Wt oux —X 4 ut
= (tV)(l/z) eXp(z—Iy — #)e?fC(W) (30)
Similarly,
5 _ _
) 1 upt  upx X +uyt
A+(X, t) = (tV)( / )CXP<E + T)@’fc _W_ 5 (31)
and
5 _ _
, — (/2 upt upx X —ugt
B'(x,t) = (w) exp( > ” erfc o) (32)

To study the asymptotic behavior of u” as v — oo we study the behavior of
A", A% and B” using the asymptotic expansions of the erfc; namely,

1 1

afe0) = |5 = g +o( ) [y @)

and

1 1

erfe(—y) = () [5 o o(%)] (), y = 00 (34)

From (30)—(34), we have the following as v — 0. If —x + u;# > 0

() x?
ar(e iy m — (- 35
~(x 1) —X 4+ u,t °xp 2vt (35a)
and for —x + u;t <0
2t upx () x?
A (x.0)~ Q) Wexp( L WX ) o2 35b
= 1) (2mtv) " exp v v —x—{—u,teXp 2vt (355)

For x + u;t >0

2
AL (x, 1)~ P () exp(—%) (35¢)

+u,t
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and for x + u;t < 0

A" (x,t)~ (2mtw) D) exp(ft + u,x) - X(L)exp(—x—z> (35d)

v +u,t 2vt

For x —ugt >0

B'(x,t) ~ p (hz exp(—x—z) (35¢)

Bt 2vt

and for x —uzt <0

B'(x,t)~ (27Ttv)(1/2)exp(u3t qu) __ exp(—x—2> (35f)

2 v X—upgt 2t

There are several cases to consider. First, we consider

Case 1. up > u;, u;+ug> 0.
First we take up the subcase up > 0, u; < 0, and u; + uy > 0. The line
x = (u; + ug)/2t divides the quarter plane x > 0, t > 0 into two regions.
In the region x < (u; + ug)/2t, x — ugt < (u; —ug)/2t < 0. Using the
asymptotic formulae (35b)—(35¢) in (15b) we get, as v — 0,

(u; — ug)[m'"? — 0(1) exp(“)]
7'/2 + O(1) exp(“) + /2 exp e[ _x 4 Cutts)g)’

w(x,t) ~ug+

u
(“1+”B)

Because u; < 0 and uz — u; > 0, we get, for x < (u; + ug)/2t,

lim u”(x,t) = ug.

v—0

By a similar argument, we have, for x > (u; + ug)/2t and x < ugt,

(u; — up)[m l/2—0(1)@(10(“)]
1/2+0(1) exp(”’x)—l— eXp (up— ul)[ —x+ (MIZMB)t]’

u'(x,t) ~ug+

(”1+”B)

so that

hmu (x,t) =ug+ (u; — ug) = uy.

v—0

If x > (u; +ug)t/2 and x > ugt, as before, from (15b) and (35b)—(35¢),
we get

(u; — ”13)[77'1/2 - O(l)eXP(lLVx)]

Y(x, 1)~y + :
WD O exp(E) + O( )

so that

lim u”(x, t) = ug + (u; — ug) = uy.

v—0

The other subcases uz > 0, u; > 0, u; < ug, and ug > 0, u; = 0 are similar.
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Case 2. u; >0,ug >0, ug < uy.

In the region x — uzt < 0, we have —x + u;¢ > 0, and so from (15b) and
(35a), (35¢), and (35f) we get

w2 - 5]

2(—x+uyt) 2(x4u;t)
(2t)'/? u—upg  (2w)'?

Qupm!/? (x—ugt)? "
2(—x+uzt) urtug *2(x+ust) + uptug exXp 2tv

uw(x,t) ~ ug+

Therefore, for x < ugt, we have
lim u”(x, t) = ug.
v—0

On the other hand, in the region x > u,t, we have x > ugt so that

u(x,t) ~ ug

212 2

N (u; — ”B)[Wl 2 2<(xt+)u[t) 28 P( %)]
12 Q)% (uj—up) (x—u;t)? Qw)!? 2u (x—u;t)?

™ /2 — 2(x+uzt) (ui+u§) €Xp [ - ” ] + p ( , )

2w (x—upt) uj+ug cXp 2w

and we get

limu”(x, t) = u;.

v—0
In the region ugzt < x < u;t, we have
u(x,t) ~ ug

2ty

2m)1/2 2 2)1/2 2
(ur = up)| 32 OXP(—57) — 2o exp(—3)

2(x+uyt) 2tv
(2t1/)]/ (uj—up) (w)'? Qw)'? 2u 2
2(—x+ust) exp( 2tv) (uiJrui) 2(x+4uyt) ¢ ( 2tv) + 2(x—ugt) u,+ZB CXp — (x_v)

and we find that

1
(Lt uB)[ x+u,t - x+u,t]
limu”(x,t) = ug +
v—0 1 U—up | 1 2up 1
—x+tupt ujtug  x+upt ujtug x—upt

On simplification, we have, for ugt < x < u;t

x
lim u”(x, t) = .

v—0

This completes case 2.
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Case 3. u; <0, u;+ug<0.
First we consider the subcase u; < 0, ug < 0, u; — uy < 0. We get from
(15b) and (35b)—(35e),
(u; — ”B)[Wl/2 - O(I)eXp(zuTIx)]
771/2+O(1)u,—u3 CXp(Zqu)—l—O(l) 2ug eXp(_(x—u,z)2>

w(x,t) =ug+

ujtupg v u;tup 2vt
so that, for x > 0,
lin% w(x,t) =ug+ (u; —ug) = uy.
For the other subcases the analysis is similar and so we omit the details.

Case 4. u; =0and ug <0 or u; > 0 and uy < 0 and u; + uy non-zero
or u; >0 and u; + ug =0.
For the first subcase, for x > 0, we get

)12
T

12 _ @wm)'”? 2 @w)'2 2y’
™ /2 - 2x exp(—%) + 2(x—upt) eXp(_%)

u(x,t) ~ ug — ug

so that

limu”(x,t) = ug —ug = 0.

v—0

For the subcase u; > 0, up < 0, u; + up not zero, following the previous
analysis, we have in the region x > u,f,

u’(x,t)

2 1/2 _ 2
(u; — ”B)[ﬂ'l/z - 2((xt:u&-)u,t) exp(— L 2th) )]

12 o w—up Qw)'? _ Gmwy)? 2up ()2 _ G2’
™ + uptug 2(x+u;t) X 2ty + uptug 2(x+upgt) CXp 2tv

:uB+

So we get for x > u,t,
limu”(x, t) = u,.
v—0

In the region x < u;t, we have

1 1
. Y (ul - uB)[—x+u,t - x+u,z]
limu”(x, t) = ug + =
»—0 1 + u—ug 1 + 2up 1
—Xx+turt u;tug x+uyt urt+ug x—ugt

X
t

The other subcases can be treated similarly. This completes the proof of the
result.
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2.2. Large time behavior

Next, we study the limit of u”(x, t) as t — oo where u(x, t) is the solution of
(1)~(3) given by (15);, j = 1, 2 with a fixed coefficient of viscosity » > 0. We
prove the following result.

1. If u; <0, up <0 and u; > ug, then

. Urx 1 Ug —u
tlgg u(x, t) = —u, coth(% + c), c=5 log(ﬁ). (36)
2. If u; <0, u; < ug and ug + u; < 0, then
- _ UX N e bygg [t b
tllglou(x, 1) = u,tanh( ” —|—c),c_ 210g<u,+u3)' (37)
3. If u; =0 and uz < 0, we have
lim u(x, £) = — 8 (38)
t—00 O uB§ ’
4. For all other cases,
lim u(x, t) = ug. (39)

=00

To prove the result first, we get the asymptotic behavior of 4”, A%, and
B¥ as t tends to infinity. Using the asymptotic expansions (33) and (34) in
(30)-(32) we have, as t — oo,

() x?
A )y~ —— - 0 40
“(x 1) —Xx + uyt xp 2wt )’ "= (40a)
2t
A" (x, 1) ~ (2mt) 1/ exp(u—l - M)
2v v
(w) x?
- - 0 40b
—X + uyt P 2vt U= (40b)
, _ (w) x>
A+(x, t)~ru1texp _ﬁ , U >0 (40C)

()

Cx+ugt

2
A (x, 1) ~ 2mw)1?) eXp(L;L + M)
14
(——>, u; <0 (40d)
14

B'(x,t) ~

() x?
- 4
" exp| =5 )> s < 0 (40e)

X
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and

t
B'(x,t) ~ (2mtv)/? exp(uB — @)

2v v
() x?

- e N 0. 40f
X — ugt °xp 2vt s = (40)

, /2 X
Af(x, t) ~ T - W, Uy = (40g)

, /2 X
AV (x, 1) ~ - + W, uy = (40h)

172

Bx, )~ T4 > (40i)

2 T Qw2

First, we consider the case u; < 0, uz < 0. Using (40b), (40d), and (40e) in
(15b), we get

u(x,t) = ug

2, 2
1/2 urt _ ugx 1/2 urt | ugx
(u17u3)|:77'/ exp( 77> —al/ exp<g+7)]
> 2 12 2\’
1/2 upt ugx 1/2 ur—up upt urx 2up  (2v1) _ X2
™ exp( 2v v +m urtug Xp\ 2 + v + ur+up x—upt €Xp 2vt

So, in this case, we get

+

(ur — up)lexp(—=7) — exp(7°)]

lim u(x,t) =ug+ o o
RS P T oxp(— ) + I exp(()

On simplification we get

exp(—=7) — u,w exp(~°)
exp(— ) + "l exp(T)
Now, if u; > ug, by rewriting (41) we get (36), the first part of the result. If
u; < ug, we get (37) of the part two.

Now consider u; < 0 and uz = 0. Using (40b), (40d), and (40i) in (15b),
we get

tlim u(x,t) = uy (41)

urx e urx

Xp (- u,x) Xp(w) = —u tanh(ﬂ).
exp(—=-) +exp(57)

Now, consider the case u; < 0, up > 0 and u; + ugz # 0. As before, we have
from (15b) and (40b), (40d), and (40f) the limit

lim u(x, t) = u;
t—00 14

lim u(x, t) = ug

—0o0
u; — ug)[exp(—“=) — exp(“=
N - ( B)[u xP 2u) p( :3] @
exp(—L) + R exp(<L) + - exp(— %) exp(<E5 )




Boundary Value Problems for Burgers Equations 495

Therefore,

exp(—-L) — I exp(<1)
u,x u;—up u,;

exp(—L= + [ exp(“L)

tlim u(x,t) = u;
provided uy + u; < 0, because in this case, (u% — u?) < 0. On simplification,
we get (37). When u; 4+ up > 0, we have u3 — u? > 0, and so (42) gives

tlim u’(x,t) = ug.

Now, take up the case u; < 0, ug > 0 and u;+uy = 0. From (15a) and (40b),
(40d), and (40f) (after dividing numerator and dinominator of the resulting
2
expression by 7'/2(2mtv)'/? exp(“L') we get
u(x,t)~ug
(up—up)lexp(—-1) —exp(<)]
urx ux ug x2 u ug(ugt—x ugxy’
exp(—*4) +exp( ) + gy eXp(— 3 — %)+ H 2= exp(— )

so that

lim u”(x, t) = ug.

t—00

When u; = 0 and uy < 0, using (40f), (40g), and (40h) in (15b), we get
MBI:Q’ (277“})1/ (v t)1/2:|
2Q2mt) i 4 )

(2wt)1/? x—ugt

u'(x,t) ~ug —

(43)

From (43), we get for u; = 0 and uyz <0,

. X Up
lim u”(x, t) = 1-— = .
=00 (x, 1) ”B[ x_1i| 1 — 48X

ug v

Now, we consider the case u; > 0. First let up < 0 and u; + uz # 0. We have
from (15b) and (40a), (40c), and (40e) after cancelling out common terms,

(ul - MB)[M,—Vx/l - u,-ll—}x/t:|

_ v uj—ug v 2ug tv
(u’ uB)[ulfx/t + uptug up+x/t + u;tup xfuBt]

lim u"(x,t) = up + = ug.
t—00

The case u; + uy = 0 is similar; here we use (15a) instead of (15b).
Now, consider the case u; > 0, ug > 0. As before, using the asymptotics
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(40a), (40c), and (40f) in (15b) and dividing both numerator and dinominator
by 7'/2(tv) exp(—x?/2vt) in the resulting expression, we get

lim u”(x, t)
t—00
1 1
(u; — ”B)I:u,t—x - u,t+x]
=upt 1 up—up 1 2up 12 Gezupt)® -
(ul - uB)I:wtfx + uptug upt+x + utug (27T) eXp( 2wt )]

The case u; > 0 and uyz = 0 is similar. This completes the proof of the result.
Consider the stationary problem for 0 < x < oo

VG, = (4%),> q(0) = ug, g(o0) = u;.

It can be easily checked that this problem has solution if #; < 0 and ug < u;
or u; < 0 and u; + ug < 0 or u; = 0 and ug < 0. Solving the problem
explicitly, we get the functions on the right-hand side of (36)-(38). Here,
we have shown that they are time asymptotes of boundary value problems

(11)—(13).
3. Higher dimensional extensions
Consider vector equivalent of Burgers equation studied by [7]; namely,
U,+UVU = gAU. (44)

[7] observed that if we seek a solution U of (44), which is gradient of some
scalar function ¢,

U=V (45)

then equation (44) becomes

Vol* _v,.]_
Vx[qbt + - EAd)} —0.

This leads to

VOE 2 a6 = 1. (46)

where f(¢) is an arbitrary function of ¢. Because we are interested in the
space derivative V,¢, and this is independent of f(¢), we let f(¢) = 0. If we
are given initial data for U that are gradients of some scalar function ¢, of
the form,

b, +

U(x,0) = Vi do(x) (47)
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(48)

it is enough to find a solution ¢ of
Vo> v
—-A¢p =0

b+ — A

(49)

with initial condition
$(x, 0) = ¢py(x).

We may then use (45) to get the solution U of (44) and (47). To solve (48)
(50)

and (49) we use the Hopf-Cole transformation

0(x,t) = exp(—;).

Using (50) in (48) and (49), we get the linear problem
14
0, = EAG’ (51)
6(x,0) = exp (—M> (52)
14
Solving (51) and (52), we have
[x =y ¢o(»)
"(x, 1) = - - dy. 53
0%, ) (2mvt)? /n exp( 2vt v ¥ (53)
From (45), (50), and (52), we see that the solution to (44) and (47) is given
by
Ve’
U’ =- . 54
— (54)
From (53) and (54), it follows that
fR”(Q) exp(— \x;}yt\ o ¢o£y)>dy (55)
N x—y[? $o '
_bof V(y)>dy

U’(x, 1) I exp(

First, we study the asymptotic behavior of this solution as t — oc.
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3.1. Asymptotic behavior as t — oo, a general result

Here, we assume initial data of the form (47)

U”(x,0) = V()

where ¢, satisfies the estimate
bo(x) = Y di(x:) + o(1), |x| > oo, (56)
1

where ¢i(x),i = 1,2,...,n are differentiable functions from R' to R'.
Assume further that both the limits

im do(x) = b7, lim di(x;) = b7 (57)

exist. With the notations

X (o7 —¢)
E=——,k; =
(vt)2 v

k; §[ z;
gi(&) = exp(—;) /_OO eXP<—?>dZi
k. oo 2
+ exp(j) /;i exp(—%‘)dzi, (59)

fori=1,2,...,n, we prove the following result.

Let U”(x, t) be the solution of (44) and (47) given by the formula (53)
and (54) with ¢, satisfying the conditions (56) and (57), then we have the
following limit as ¢+ — oo uniformly in ¢ in bounded subsets of R":

() vlen'er) - -(SE EE ) @

To prove this result, we follow [3]. Consider 6” given by (53), where ¢, sat-
isfies the conditions (56) and (57). After a change of variable, the expression
for 6" becomes

(58)

and

|2I°

0" (x,t) = # " exp(—T — %d)O(x — (lv)zz))dz

N (2717)3 /R xp {_ﬁ - %‘?50[(“’)5(5 — z)] }dz
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Now, using (56) we get

(2717)'; /R eXp{‘ﬁ - Zd’o[(lv) (¢ —Z)]}dz
gty [onl-4 - bolwra-sil)er o

as t — oo uniformly on bounded sets of ¢ in R”. Now take the i-th term in
this product. Following the argument of Hopf [3], we get

[“ew]-5 - ot - ]z = em(-2)
x/_iexp(—%‘z>dzi+exp< ’_)/ exp(—%‘z)dz, (62)

Thus we have from (61) and (62),
no 1 1 z?
@m)? lim 0 (£(v0)*, 1) = HeXp<—;¢ ) / (-2 )z

2
+ exp<—1¢i‘>/ exp(—%’)dzi. (63)
14 &

i

0"(x,t) ~

Similarly, we get

(2m)? lim (1) € (£(v1)*, 1)
= gexp(—— ; ) /-51 exp(—?)dz,- + exp(—%c,bi)
X /[OO exp(—%?)dzi |:exp<—¢—l> — exp(—%)} exp( & ) (64)

Because (¢/v):U” = —(vt)2V,6"/6" and ¢” is bounded away from 0, we have,
from (63) and (64),

N i
_<81(§1) gn(fn))
gi6)" T gé))

. 1 : 0 0% 0}
tlg})lo(t/v)iU"[(vt)if, ] — lim (v1)* ( 2o )

This completes the proof.
Here, we observe that for Burgers equation; that is, when n = 1, the
parameter k; can be computed in terms of the mass of the initial data,

(o]

vk, = ¢ — @7 = / uy(y)dy — / . uy(y)dy = / ug(y)dy

o0
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and then formula (60) with n = 1 is exactly Hopf’s [3] result. Also, we note
that the limit function obtained in the result written in the (x, ) variable;
namely,

U (x, 1) = <—v{ log [v, (x,, t)]}

X1

]l

X2

where fori=1,2,...,n,

K\ pu/ent 2
v(x;, 1) = exp(—j) / exp(— )dzi
k\ [
+ exp(—’) / ) exp(— )dz,-
2 x;/(vt)2

is an exact solution of (44).
3.2. N-wave solution of vector Burgers equation

Nl“l'\!l\.) l\)|~N

We start with the solution
0(x, t)—l-i-t 2 exp —ﬁ
c 2ty

of the heat equation (51) where ¢, is a constant. Its space gradient is

Lx oo (Y
v, 0(x, t)_——7t 2 exp Ers

Consider the function U® = —vV /6. By earlier discussion, this is an exact
solution of the vector Burgers equation (44). On simplification, we get

X

U™(x, 1) = = : (65)
el
For n = 1, this exact solution of the Burgers equation was discovered by [5].
Sachdev et al. [6] showed that it can be obtained as time asymptotic of a pure
initial value problem. This solution is called the N-wave solution. Here, we
generalize it for the vector equation (44).

We choose special initial data for (44) whose mass is zero and that is anti-
symmetric with respect to the origin. To solve the problem explicitly, we need
these data to be written as gradients. To construct such initial data, we con-
sider the ball in R” of radius [, with center 0; namely, B(0, [;) = [x : |x| < [y].
We take the initial condition as

U(x,0) = xX[lxlglo](x) (66)
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where x(y <, (%) is the characteristic function of the set [x : |x| < [;]. Note
that this initial data can be written as the gradient

|x|? Iy’
% TX[\X\SIO](X) + 7(1 = X1zt () |-

So the earlier analysis holds, and we get the following formula for the solution
of (44) and (66):

U(x, 1) = —V% (67)

where Q is given by
1 1 x — yP
Qx,t:—/ ex (——[ 2| )d
( ) (27TVt)n/2 REA p 2 |y| ¢ Yy

1 G =P
B ———— —— — dy. 68
W%mmm{zﬁfwfm( )i

We shall prove the following result.
Let U(x, t) be the solution of (44) and (66) as given by (67) and (68), then
we have

tlim U(x,t)=U>(x,1t)

uniformly in the variable £ = x/(2tv)? belonging to a bounded subset of R”,
where U™ is given by (65) with

e e Y T

Here, |B(0, ;)| denotes the volume, if space dimension n > 3, area if n = 2,
and length if n = 1, of B(0, /,).
To prove this result, first we note that Q(x, ¢) can be written as

2
0x, ) =1y + exp( 52 )1 (70)

1 1 |x —y?
I, = / ex (——|:y2+— dy,
L@t Sy T 4 t g

1 |x — y|2>
I, = - exp| —————— |d
2T mm)t Awm p< 2vt g

where
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It can be easily checked by making use of error function and its asymptotics
that, as t — oo,

|x[?
exp o 2 xP
I~ M / eXp(—Z—)dZ, I~ [1 - Mwm lo)|] (71)
Qmvt): Sz, 2v (2mvt)?

Substituting these asymptotics in (70), we get

|x[*

2 X
O(x, t)%exp( é )4_%

X [AZKIO] exp( lzlljz)dz - exp( 0 >|B(O, lo)q. (72)

v.0(x. 1) 1x 1exp(— |2"V|t)
x ’\4____—
viie (2mvt):

x [ f[ » exp(—%)dz - exp(—é—i) |B(0, 10)|]. (73)

Using (72) and (73) in (67), we get

Similarly,

| =
| —

U(x,t) =~

=

~
(ST

t
x)*

exp(—5,r) |z|? 12
m[»/lzlﬁo] exp(—75,-)dz — exp(—5 ) B0, lo)|]

2 2 ’
exp( I ) + %[/pw | exp(—%)dz - exp(—é—?})|B(0, lo)|]

On rearranging the terms, we get
x/t%
1 7 2
12 [1 + % exp(%)]

where ¢ is given by (69). This completes the proof.

U(x,t)~

3.3. Study of the limit v — 0

First, we remark that the following analysis gives an explicit formula for ¢7,
the solution of

1 v
¢t§|v¢)|2 = EA({[’
¢ (x,0) = ¢o(x); (74)
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namely,

& (x, 1) = —Vlog[(zﬂit); /R eXp(_|x2_wy|2 ~ ¢>o]fy))dy]_ 79)

Following the analysis of Hopf [3] and Lax [14], see also Joseph [8], we
get an explicit formula for the solution of the initial value problem for the
Hamilton—Jacobi equation

¢t+%IV¢IZ=0 (76)
B(x.0) = by(): )
namely,
1
$(.0) =lim ¢*(x.0) =min| )+ 5 b= oF | 09)
v—> y t

Note that this is the explicit formula derived for the viscosity solution of
(77) derived by other methods, see [15]. Furthermore, it was shown by [15]
that ¢(x, ) is Lipschitz continuous when ¢(x) is and for almost every (x, ¢)
there is a unique minimizer for (78), which we call y,(x, t). Now, to study
the limit lim,_,, U”(x, t) we note that (54) can be written as

v—(

o= [ (55 )duiep) (79)

t

where, for each (x, r) and v, du(, ,(») is a probability measure given explic-
itly by

exp(—ﬂ _ %(y))dy

2vt v

x—yl? ’
e~ — 50)ay

d/"LI(}x,t) (y) = (80)

Following the argument of Hopf [3] and Lax [14], it can easily be seen that
this measure tends to the §-measure concentrated at y,(x, ¢), the minimizer
of (78), which is unique for almost every (x, ¢). So, for almost all (x, ¢), we
get from (79) and (80)

[x = yo(x, )]

lim U” (x, 1) = t (81)

where y,(x, t) is as before a minimizer of (78).
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3.4. A boundary value problem

The method described before can be used to solve some boundary value
problems as well. Let () be a bounded connected open set with a smooth
boundary. Consider the cylindrical domain D = Q x [0, co0). Consider the
problem

U +U- VU = gAU

U(x,0) =V¢y(x),x € Q

n(x, t) - U(x, )] s0x[0,00) = @ (82)
Here, ¢, is a smooth function from () to R!, « is real constant, and n(x, ) is
the unit outward normal of the boundary points of D. We note that n(x, t) -
U(x, t) is the normal component of U(x, t) at the boundary point (x, ¢) and
when a = 0, (82) says that U(x, t) is tangential to the boundary point (x, t).

Here again, we seek a solution of the form U(x, t) = V¢(x, t) and, as before,
we get

Vo

U(x,t)= ary (83)
where 0 satisfy the linear problem
14
Gt == EAO
0(x,0) = exp(—M>
v
vd,0 + «6|dQ) x [0, c0) = 0. (84)
The explicit solution of (84) is
B(Xa t) = Z Cn eXp(_/\nt) . d)n(x)a (85)
0

where

= [ (=22 )0, ()a,

14

and A, and ¢, are eigenvalues and normalized eigenfunctions of the eigen-
value problem in :

%
——Adp = A

> b =Ard,
vd, ¢ + ad|;o = 0.
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sing (85) in (83), we get
ZTO Cn eXp(_)Lnt)V(ﬁn(x)
2(1)0 Cn eXp(_Ant)(bn(x) .

U(x, 1) = —v (86)

Letting + — oo in (86) we get

Vo,

tlim U(x,t)=—v—

o}
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