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In this article we study Burgers equation and vector Burgers equation with
initial and boundary conditions. First we consider the Burgers equation in
the quarter plane x > 0, t > 0 with Riemann type of initial and boundary
conditions and use the Hopf–Cole transformation to linearize the problems
and explicitly solve them. We study two limits, the small viscosity limit and the
large time behavior of solutions. Next, we study the vector Burgers equation
and solve the initial value problem for it when the initial data are gradient
of a scalar function. We investigate the asymptotic behavior of this solution
as time tends to infinity and generalize a result of Hopf to the vector case.
Then we construct the exact N-wave solution as an asymptote of solution of
an initial value problem extending the previous work of Sachdev et al. (1994).
We also study the limit as viscosity parameter goes to 0. Finally, we get an
explicit solution for a boundary value problem in a cylinder.

1. Introduction

The nonlinear parabolic partial differential equation

ut +
1
2
�u2�x = ν

2
uxx (1)
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was first introduced by J. M. Burgers [1] as the simplest model for fluid flow.
This equation describes the interplay between nonlinearity and diffusion, see
Sachdev [2] and the references therein for physical interpretation and impor-
tant solutions. A remarkable feature of this equation is that its solution with
initial conditions of the form

u�x� 0� = u0�x� (2)

can be explicitly written down. In fact Hopf [3] and Cole [4] independently
showed that the equation (1) can be linearized through the transformation

u = −ν
vx

v
� (3)

More precisely, assume that the initial data u0�x� are integrable in every
finite interval and that ∫ x

0
u0�y�dy = o��x�2��

then Hopf [3] showed that if v�x� t� satisfies the linear heat equation

vt =
ν

2
vxx (4)

with initial condition

v�x� 0� = exp
[
−1

ν

∫ y

0
u0�z�dz

]
(5)

then u�x� t� defined by (3) solves (1) and (2) and conversely, if u�x� t� is a
solution of (1) and (2), then v�x� t� defined by (3) is a solution of (4) and (5)
up to a time-dependent multiplicative factor that is irrelevent in (3). Solving
for v from (4) and (5) and substituting it into (3), he obtained explicit formula
for the solution of (1) and (2); namely,

uν�x� t� =
∫
R
�x−y

t
� exp

(
−�x−y�2

2νt −
∫ y
0 u0�z�dz

ν

)
dy

∫
R
exp

(
−�x−y�2

2νt −
∫ y
0 u0�z�dz

ν

)
dy

(6)

and studied the asymptotic behavior of uν�x� t� as t → ∞. He also con-
structed explicit weak entropy solution of the inviscid Burgers equation.
Lighthill [5] discovered the N-wave solution of the Burgers equation (1);
namely,

U∞�x� t� = x/t
1
2

t
1
2

[
1+ t

1
2

c0
exp

(
�x�2
2tν

)] � (7)
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Sachdev et al. [6] showed that this solution can be obtained as time asymp-
totic of a pure initial value problem and found explicitly the constant c0 in
terms of one lobe area of the initial data.
In a more recent paper, [7] proposed the vector Burgers equation

Ut + U∇U = ν

2
�U� (8)

They observed that if we seek special solutions of the form

U = ∇xφ (9)

where φ�x� t� is a scalar function on Rn × �0�∞�, equation (8) leads to

∇
[
φt +

1
2
�∇φ�2 − ν

2
�φ

]
= 0� (10)

They used this observation to find special solutions of Burgers equation in
cylindrical coordinates with axisymmetry.
Although there are many results for pure initial value problem, bound-

ary value problem has been studied less. Explicit solutions of the Burgers
equation (1) in the quarter plane with integrable initial data and piecewise
constant boundary data were constructed by [8] using Hopf–Cole transfor-
mation. He obtained a formula for its weak limit as viscosity parameter goes
to 0. Using maximum principle, this formula for weak limit was extended to
general boundary data. When the initial and boundary data are two different
constants, the problem was considered in some detail by [9] for ν small. Five
distinct cases arose depending on the relative magnitudes of the constants
appearing in the initial and boundary conditions. The solutions required the
introduction of corner layers, shock layers, boundary layers, and transition
layers. In the present article, we write an explicit form of the solution and
recover various cases in the limit ν → 0. We also consider large time behav-
ior of the solutions. Again, different cases arise depending on the relative
magnitudes of the constants that appear in the initial and boundary condi-
tions. It would be desirable to have solution for nonconstant initial bound-
ary problem, but as [9] point out, that leads to an integral equation that
seems difficult to solve. Using a generalized Hopf–Cole transformation, [10]
and [11], in a series of papers, studied (1) with more general boundary con-
ditions that include the flux condition at the origin. The asymptotic profile
at infinity of the solution of (1) with flux condition was obtained by [12]. A
table of solutions of the Burgers equation is contained in [13].
The aim of the present article is to study Burgers equation (1) and the vec-

tor Burgers equation (8) with initial and boundary conditions and investigate
the asymptotic behavior as t tends to∞ and as ν tends to 0. In Section 2, we
treat the Burgers equation (1) in the quarter plane with Reimann type ini-
tial boundary data, solve it exactly, and study the asymptotic limits as t tends
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to∞ or as the viscosity coefficient ν tends to 0. In Section 3 we study the vec-
tor Burgers equation, solve exactly the initial value problem for it when the
initial data can be written as gradients of a scalar function and carry out the
study of the limits as t tends to ∞ or ν tends to 0. We also study a boundary
value problem for the vector Burgers equation in the same section.

2. Initial boundary value problem for Burgers equation and
its asymptotics

In this section, we consider the Burgers equation

ut +
1
2
�u2�x = ν

2
uxx (11)

in x > 0, t > 0, with initial condition

u�x� 0� = uI (12)

and the boundary condition

u�0� t� = uB� (13)

where uI and uB are constants. Using standard Hopf–Cole transformation,
we reduce this problem to a linear one and solve it explicitly. Before the
statement of the result we introduce some notations:

Aν
−�x� t� =

∫ ∞

0
exp

(
−�x − y�2

2tν
− uIy

ν

)
dy�

Aν
+�x� t� =

∫ ∞

0
exp

(
−�x + y�2

2tν
− uIy

ν

)
dy�

Bν�x� t� =
∫ ∞

0
exp

(
−�x + y�2

2tν
+ uBy

ν

)
dy� (14)

With these notations we prove the following result.
A solution of the initial boundary value problem (11)–(13) is given by

uν�x�t�=uB

+ �uI−uB��Aν
−�x�t�−Aν

+�x�t��
Aν

−�x�t�+Aν
+�x�t�+2uBt exp�− x2

2tν �+�2uB/ν��uBt−x�Bν�x�t�
� (15a)

when uI + uB = 0 and

uν�x� t� = uB + �uI − uB��Aν
−�x� t� − Aν

+�x� t��
Aν

−�x� t� + �uI−uB�
�uI+uB�A

ν
+�x� t� + 2uB

�uI+uB�B
ν�x� t�

� (15b)

when uI + uB 
= 0.
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To prove this result, we use Hopf–Cole transformation. First, we set

w�x� t� = −
∫ ∞

x

�u�y� t� − uI�dy� (16)

From (11)–(13), we get

wt +
�wx�2
2

+ uIwx = ν

2
wxx�

w�x� 0� = 0� wx�0� t� = uB − uI� (17)

Now setting

v = exp
(
−w

ν

)
� (18)

we get from (17)

vt + uIvx = ν

2
vxx�

νvx�0� t� + �uB − uI�v�0� t� = 0�

v�x� 0� = 1� (19)

Making the final transformation

p = exp
(
−uIx

ν
+ uI

2t

2ν

)
v (20)

we get from (19) the following problem for p:

pt =
ν

2
pxx

p�x� 0� = exp
(
−uIx

ν

)

νpx�0� t� + uBp�0� t� = 0�

This problem has the explicit solution (see [8])

p�x� t� = 1
�2πtν�1/2

∫ ∞

0

{
exp

[
−�x − y�2

2tν

]
+ exp

[
−�x + y�2

2tν

]}

· exp
(
−uIy

ν

)
dy + 2�uB/ν�

�2πtν�1/2

·
∫ ∞

0

∫ ∞

y

exp
[
−uB�y − z�

ν
− �x + z�2

2tν
− uIy

ν

]
dzdy� (21)
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Now from (16), (18), and (20), we have

uν�x� t� = wx + uI = −ν�log v�x + uI

= −ν��logp�x + uI/ν� + uI = −ν�logp�x�
In other words

uν = −ν
px

p
� (22)

To write the formula in a convenient form we note that

∂x

{∫ ∞

y

exp
[
uBz

ν
− �x + z�2

2tν

]
dz

}

=
∫ ∞

y

exp
(uBz

ν

)
∂z

{
exp

[
−�x + z�2

2tν

]}
dz

= − exp
[
uBy

ν
− �x + y�2

2tν

]
− uB

ν

{∫ ∞

y

exp
[
uBz

ν
− �x + z�2

2tν

]
dz

}
� (23)

Here, the first equality is obtained by just writing the exponential of a sum
as a product and using the fact that

∂x exp
[
−�x + z�2

2νt

]
= ∂z exp

[
−�x + z�2

2νt

]
�

and the second equality is obtained by the use of integration by parts.
Similarly,

∂x

{∫ ∞

0
exp

[−uIy

ν
− �x + y�2

2tν

]
dy

}

= − exp
(
− x2

2tν

)
+ uI

ν

{∫ ∞

0
exp

[−uIy

ν
− �x + y�2

2tν

]
dy

}
� (24)

and

∂x

{∫ ∞

0
exp

[−uIy

ν
− �x − y�2

2tν

]
dy

}

= exp
(
− x2

2tν

)
− uI

ν

{∫ ∞

0
exp

[−uIy

ν
− �x − y�2

2tν

]
dy

}
� (25)

Now, it follows from (21), (23), (24), and (25) that

px�x� t� =
1

−ν�2πνt� 12
[
uIA

ν
−�x� t� − uIA

ν
+�x� t�

+ 2uBA
ν
+�x� t� + 2uB

uB

ν
Cν�x� t�

]
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and

p�x� t� = 1

�2πνt� 12
[
Aν

−�x� t� + Aν
+�x� t� +

2uB

ν
Cν�x� t�

]
�

where Aν
−, A

ν
+ and Bν are given by (14), and

Cν�x� t� =
∫ ∞

0

∫ ∞

y

exp
(
−uB�y − z�

ν
− �x + y�2

2tν
− uIy

ν

)
dzdy�

Substituting these formulas for p and px in (22), we get

uν�x� t� = uIA
ν
−�x� t� − uIA

ν
+�x� t� + 2uBAν

+�x� t� + uB� 2uB
ν Cν�x� t�

Aν
−�x� t� + Aν

+�x� t� + 2uB
ν Cν�x� t�

=
�uI − uB�

[
Aν

−�x� t� − Aν
+�x� t�

]
+ uB

[
Aν

−�x� t� + Aν
+�x� t� + 2uB

ν Cν�x� t�
]

Aν
−�x� t� + Aν

+�x� t� + 2uB
ν Cν�x� t�

=
�uI − uB�

[
Aν

−�x� t� − Aν
+�x� t�

]

Aν
−�x� t� + Aν

+�x� t� + 2uB
ν Cν�x� t�

+ uB� (26)

Now we express Cν in terms of Aν
+ and Bν. There are two cases to consider.

The first one is when uI + uB = 0 . In this case,

Cν�x� t� =
∫ ∞

0

∫ ∞

y

exp
[
−uB�y − z�

ν
− uIy

ν
− �x + z�2

2tν

]
dzdy

=
∫ ∞

0
1�

∫ ∞

y

exp
[
uBz

ν
− �x + z�2

2tν

]
dzdy

=
∫ ∞

0
y exp

[
uBy

ν
− �x + y�2

2tν

]
dy

= −tν

∫ ∞

0
∂y exp

[
uBy

ν
− �x + y�2

2tν

]
dy

+�uBt − x�
∫ ∞

0
exp

[
uBy

ν
− �x + y�2

2tν

]
dy

= tν exp
(−x2

2tν

)
+ �uBt − x�

∫ ∞

0
exp

[
uBy

ν
− �x + y�2

2tν

]
dy

= tν exp
(
− x2

2tν

)
+ �uBt − x�Bν�x� t�� (27)
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When uI + uB 
= 0,

Cν�x� t� =
∫ ∞

0

∫ ∞

y

exp
[
−uB�y − z�

ν
− uIy

ν
− �x + z�2

2tν

]
dzdy

=
∫ ∞

0
exp

[
−�uI + uB�y

ν

] ∫ ∞

y

exp
[
uBz

ν
− �x + z�2

2tν

]
dzdy

= − ν

�uI + uB�
∫ ∞

0
∂y exp

[
−�uI + uB�y

ν

]

·
∫ ∞

y

exp
[
uBz

ν
− �x + z�2

2tν

]
dzdy

= ν

�uI + uB�
{∫ ∞

0
exp

[
uBy

ν
− �x + y�2

2tν

]
dy

−
∫ ∞

0
exp

[
−uIy

ν
− �x + y�2

2tν

]
dy

}

= ν

�uI + uB�
�Bν�x� t� − Aν

+�x� t��� (28)

Using (27) for the case uI +uB = 0 and (28) for the case uI +uB 
= 0 in (26),
the formula (25) for uν follows.

2.1. Study of the limit as ν → 0

Here, we compute the pointwise limit of uν�x� t� as the viscosity parameter
ν → 0. Let H�x� be the usual Heaviside function and s = �uI + uB�/2,
then for x ≥ 0, t ≥ 0, we have the following formula for the pointwise limit
function u�x� t� = limν→0 u

ν�x� t�.

Case 1. uB > uI and �uI + uB� > 0

u�x� t� = uIH�x − st� + uBH�st − x�

Case 2. uI > 0, uB > 0 and uI > uB

u�x� t� = uBH�uBt − x� + �x/t�H�uIt − x�H�x − uBt� + uIH�x − uIt�

Case 3. uI < 0 and �uI + uB� ≤ 0

u�x� t� = uI

Case 4. uI = 0 and uB < 0 or uI > 0 and uB ≤ 0 and uI + uB 
= 0 or
uI > 0 and uI + uB = 0,

u�x� t� = �x/t�H�uIt − x� + uIH�x − uIt��
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To study the limν→0 u
ν�x� t�, we write (15) for uν in terms of the standard

“erfc” and use its asymptotic form. For this, we denote

erfc�y� =
∫ ∞

y

exp�−y2�dy� (29)

Aν
−�x� t� = exp

(
u2I t

2ν
− uIx

ν

) ∫ ∞

0
exp

[
−�y − x + uIt�2

2tν

]
dy

= �tν��1/2� exp
(

u2I t

2ν
− uIx

ν

) ∫ ∞

−x+uI t

�2tν�1/2

exp�−y2�dy

= �tν��1/2� exp
(

u2I t

2ν
− uIx

ν

)
erfc

(−x + uIt

�2νt�1/2
)
� (30)

Similarly,

Aν
+�x� t� = �tν��1/2� exp

(
u2I t

2ν
+ uIx

ν

)
erfc

[
x + uIt
�2νt�1/2

]
� (31)

and

Bν�x� t� = �tν��1/2� exp
(

u2Bt

2ν
− uBx

ν

)
erfc

[
x − uBt
�2νt�1/2

]
� (32)

To study the asymptotic behavior of uν as ν → ∞ we study the behavior of
Aν

−, A
ν
+ and Bν using the asymptotic expansions of the erfc; namely,

erfc�y� =
[
1
2y

− 1
4y3

+ o

(
1
y3

)]
exp�−y2�� y → ∞ (33)

and

erfc�−y� = �π��1/2� −
[
1
2y

− 1
4y3

+ o

(
1
y3

)]
exp�−y2�� y → ∞� (34)

From (30)–(34), we have the following as ν → 0. If −x + uIt > 0

Aν
−�x� t� ≈

�tν�
−x + uIt

exp
(
− x2

2νt

)
(35a)

and for −x + uIt < 0

Aν
−�x�t�≈�2πtν��1/2�exp

(
u2I t

2ν
− uIx

ν

)
− �tν�
−x+uIt

exp
(
− x2

2νt

)
(35b)

For x + uIt > 0

Aν
+�x� t� ≈

�tν�
x + uIt

exp
(
− x2

2νt

)
(35c)
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and for x + uIt < 0

Aν
+�x�t�≈�2πtν��1/2�exp

(
u2I t

2ν
+ uIx

ν

)
− �tν�

x+uIt
exp

(
− x2

2νt

)
(35d)

For x − uBt > 0

Bν�x� t� ≈ �tν�
x − uBt

exp
(
− x2

2νt

)
(35e)

and for x − uBt < 0

Bν�x�t�≈�2πtν��1/2�exp
(

u2Bt

2ν
− uBx

ν

)
− �tν�

x−uBt
exp

(
− x2

2νt

)
(35f)

There are several cases to consider. First, we consider

Case 1. uB > uI , uI + uB > 0.
First we take up the subcase uB > 0, uI < 0, and uI + uB > 0. The line
x = �uI + uB�/2t divides the quarter plane x > 0, t > 0 into two regions.
In the region x < �uI + uB�/2t, x − uBt ≤ �uI − uB�/2t < 0. Using the
asymptotic formulae (35b)–(35e) in (15b) we get, as ν → 0,

uν�x� t� ≈ uB + �uI − uB��π1/2 − O�1� exp�uIx
ν
��

π1/2 + O�1� exp�uIx
ν
� + 2uB

�uI+uB�π
1/2 exp �uB−uI�

2ν �−x + �uI+uB�
2 t�

�

Because uI < 0 and uB − uI > 0, we get, for x < �uI + uB�/2t,
lim
ν→0

uν�x� t� = uB�

By a similar argument, we have, for x > �uI + uB�/2t and x < uBt,

uν�x� t� ≈ uB + �uI − uB��π1/2 − O�1� exp�uIx
ν
��

π1/2 + O�1� exp�uIx
ν
� + 2uB

�uI+uB�π
1/2 exp �uB−uI�

2ν �−x + �uI+uB�
2 t�

�

so that

lim
ν→0

uν�x� t� = uB + �uI − uB� = uI�

If x > �uI + uB�t/2 and x > uBt, as before, from (15b) and (35b)–(35e),
we get

uν�x� t� ≈ uB + �uI − uB��π1/2 − O�1� exp�uIx
ν
��

π1/2 + O�1� exp�uIx
ν
� + O�ν1/2� �

so that

lim
ν→0

uν�x� t� = uB + �uI − uB� = uI�

The other subcases uB > 0, uI > 0, uI < uB, and uB > 0, uI = 0 are similar.
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Case 2. uI > 0� uB > 0� uB < uI .
In the region x − uBt < 0, we have −x + uIt > 0, and so from (15b) and
(35a), (35c), and (35f) we get

uν�x� t� ≈ uB +
�uI − uB�

[
�2tν�1/2

2�−x+uI t� −
�2tν�1/2
2�x+uI t�

]
�2tν�1/2

2�−x+uI t� +
uI−uB

uI+uB
� �2tν�1/2
2�x+uI t� +

2uBπ1/2

uI+uB
exp �x−uBt�2

2tν

�

Therefore, for x < uBt, we have

lim
ν→0

uν�x� t� = uB�

On the other hand, in the region x > uIt, we have x > uBt so that

uν�x� t� ≈ uB

+
�uI − uB�

[
π1/2 − �2tν�1/2

2�x+uI t� exp
(
−�x−uI t�2

2tν

)]

π1/2 − �2tν�1/2
2�x+uI t�

�uI−uB�
�uI+uB� exp

[
− �x−uI t�2

2tν

]
+ �2tν�1/2

�x−uBt�
2uB

uI+uB
exp

(
−�x−uI t�2

2tν

)

and we get

lim
ν→0

uν�x� t� = uI�

In the region uBt < x < uIt, we have

uν�x� t� ≈ uB

+
�uI − uB�

[
�2tν�1/2

2�−x+uI t� exp�−
x2

2tν � − �2tν�1/2
2�x+uI t� exp�−

x2

2tν �
]

�2tν�1/2
2�−x+uI t� exp�−

x2

2tν � + �uI−uB�
�uI+uB�

�2tν�1/2
2�x+uI t� exp

(− x2

2tν

) + �2tν�1/2
2�x−uBt�

2uB

uI+uB
exp−(

x2

2tν

)

and we find that

lim
ν→0

uν�x� t� = uB +
�uI − uB�

[ 1
−x+uI t

− 1
x+uI t

]
1

−x+uI t
+ uI−uB

uI+uB
· 1

x+uI t
+ 2uB

uI+uB
· 1

x−uBt

�

On simplification, we have, for uBt < x < uIt,

lim
ν→0

uν�x� t� = x

t
�

This completes case 2.
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Case 3. uI < 0, uI + uB ≤ 0.
First we consider the subcase uI < 0, uB < 0, uI − uB < 0. We get from

(15b) and (35b)–(35e),

uν�x� t� = uB + �uI − uB�
[
π1/2 − O�1� exp� 2uIx

ν
�]

π1/2 + O�1�uI−uB

uI+uB
exp� 2uIx

ν
� + O�1� 2uB

uI+uB
exp

(
−�x−uI t�2

2νt

) �

so that, for x > 0,

lim
ν→0

uν�x� t� = uB + �uI − uB� = uI�

For the other subcases the analysis is similar and so we omit the details.

Case 4. uI = 0 and uB < 0 or uI > 0 and uB ≤ 0 and uI + uB non-zero
or uI > 0 and uI + uB = 0.
For the first subcase, for x > 0, we get

uν�x� t� ≈ uB − uB

[
π1/2 + �2tν�1/2

2x exp�− x2

2tν �
]

π1/2 − �2tν�1/2
2x exp

(− x2

2tν

) + �2tν�1/2
2�x−uBt� exp

(− x2

2tν

) �

so that

lim
ν→0

uν�x� t� = uB − uB = 0�

For the subcase uI > 0, uB < 0, uI + uB not zero, following the previous
analysis, we have in the region x > uIt,

uν�x� t�

= uB +
�uI − uB�

[
π1/2 − �2tν�1/2

2�x+uI t� exp
(
−�x−uI t�2

2tν

)]

π1/2 + uI−uB

uI+uB

�2tν�1/2
2�x+uI t� exp

[
−�x−uI t�2

2tν

]
+ 2uB

uI+uB

�2tν�1/2
2�x+uBt� exp

[
−�x−uI t�2

2tν

] �

So we get for x > uIt,

lim
ν→0

uν�x� t� = uI�

In the region x < uIt, we have

lim
ν→0

uν�x� t� = uB +
�uI − uB�

[
1

−x+uI t
− 1

x+uI t

]
1

−x+uI t
+ uI−uB

uI+uB

1
x+uI t

+ 2uB

uI+uB

1
x−uBt

= x

t
�

The other subcases can be treated similarly. This completes the proof of the
result.
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2.2. Large time behavior

Next, we study the limit of uν�x� t� as t → ∞ where u�x� t� is the solution of
(1)–(3) given by �15�j� j = 1� 2 with a fixed coefficient of viscosity ν > 0. We
prove the following result.

1. If uI < 0, uB < 0 and uI > uB, then

lim
t→∞

u�x� t� = −uI coth
(uIx

ν
+ c

)
� c = 1

2
log

(
uB − uI

uI + uB

)
� (36)

2. If uI < 0, uI < uB and uB + uI < 0, then

lim
t→∞

u�x� t� = −uI tanh
(uIx

ν
+ c

)
� c = 1

2
log

(
uI − uB

uI + uB

)
� (37)

3. If uI = 0 and uB < 0, we have

lim
t→∞

u�x� t� = uB

1− uB
x
ν

� (38)

4. For all other cases,

lim
t→∞

u�x� t� = uB� (39)

To prove the result first, we get the asymptotic behavior of Aν
−, A

ν
+, and

Bν as t tends to infinity. Using the asymptotic expansions (33) and (34) in
(30)–(32) we have, as t → ∞,

Aν
−�x� t� ≈

�tν�
−x + uIt

exp
(
− x2

2νt

)
� uI > 0 (40a)

Aν
−�x� t� ≈ �2πtν��1/2� exp

(
u2I t

2ν
− uIx

ν

)

− �tν�
−x + uIt

exp
(
− x2

2νt

)
� uI < 0 (40b)

Aν
+�x� t� ≈

�tν�
x + uIt

exp
(
− x2

2νt

)
� uI > 0 (40c)

Aν
+�x� t� ≈ �2πtν��1/2� exp

(
u2I t

2ν
+ uIx

ν

)

− �tν�
x + uIt

exp
(
− x2

2νt

)
� uI < 0 (40d)

Bν�x� t� ≈ �tν�
x − uBt

exp
(
− x2

2νt

)
� uB < 0 (40e)
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and

Bν�x� t� ≈ �2πtν��1/2� exp
(

u2Bt

2ν
− uBx

ν

)

− �tν�
x − uBt

exp
(
− x2

2νt

)
� uB > 0� (40f)

Aν
−�x� t� ≈

π1/2

2
− x

�2tν�1/2 � uI = 0� (40g)

Aν
−�x� t� ≈

π1/2

2
+ x

�2tν�1/2 � uI = 0� (40h)

Bν�x� t� ≈ π1/2

2
+ x

�2tν�1/2 � uB = 0� (40i)

First, we consider the case uI < 0, uB < 0. Using (40b), (40d), and (40e) in
(15b), we get

u�x� t� ≈ uB

+
�uI − uB�

[
π1/2 exp

(
u2I t

2ν − uIx
ν

)
− π1/2 exp

(
u2I t

2ν + uIx
ν

)]

π1/2 exp
(

u2I t

2ν − uIx
ν

)
+ π1/2 uI−uB

uI+uB
exp

(
u2I t

2ν + uIx
ν

)
+ 2uB

uI+uB

�2νt�1/2
x−uBt exp

(
− x2

2νt

) �

So, in this case, we get

lim
t→∞

u�x� t� = uB + �uI − uB��exp�−uIx
ν
� − exp�uIx

ν
��

exp�−uIx
ν
� + uI−uB

uI+uB
exp�uIx

ν
� �

On simplification we get

lim
t→∞

u�x� t� = uI

exp�−uIx
ν
� − uI−uB

uI+uB
exp�uIx

ν
�

exp�−uIx
ν
� + uI−uB

uI+uB
exp�uIx

ν
� � (41)

Now, if uI > uB, by rewriting (41) we get (36), the first part of the result. If
uI < uB, we get (37) of the part two.
Now consider uI < 0 and uB = 0. Using (40b), (40d), and (40i) in (15b),

we get

lim
t→∞

u�x� t� = uI

exp�−uIx
ν
� − exp�uIx

ν
�

exp�−uIx
ν
� + exp�uIx

ν
� = −uI tanh

(uIx

ν

)
�

Now, consider the case uI < 0, uB > 0 and uI + uB 
= 0. As before, we have
from (15b) and (40b), (40d), and (40f) the limit

lim
t→∞

u�x� t� = uB

+ �uI − uB��exp�−uIx
ν
� − exp�uIx

ν
��

exp�−uIx
ν
� + uI−uB

uI+uB
exp�uIx

ν
� + 2uB

uI+uB
exp�−uBx

ν
� exp� �u2B−u2I �t

2ν �
� (42)
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Therefore,

lim
t→∞

u�x� t� = uI

exp�−uIx
ν
� − uI−uB

uI+uB
exp�uIx

ν
�

exp�−uIx
ν

+ uI−uB

uI+uB
exp�uIx

ν
�

provided uB + uI < 0, because in this case, �u2B − u2I� < 0. On simplification,
we get (37). When uI + uB > 0, we have u2B − u2I > 0, and so (42) gives

lim
t→∞

uν�x� t� = uB�

Now, take up the case uI < 0, uB > 0 and uI+uB = 0. From (15a) and (40b),
(40d), and (40f) (after dividing numerator and dinominator of the resulting
expression by π1/2�2πtν�1/2 exp�u2I t

ν
� we get

uν�x�t�≈uB

+ �uI−uB��exp�−uIx
ν
�−exp�uIx

ν
��

exp�−uIx
ν
�+exp�uIx

ν
�+ 2uBt

π1/2�2πtν�1/2 exp�− x2

2νt − u2I t

2ν �+ 2uB�uBt−x�
ν

exp�−uBx
ν
�
�

so that

lim
t→∞

uν�x� t� = uB�

When uI = 0 and uB < 0, using (40f), (40g), and (40h) in (15b), we get

uν�x� t� ≈ uB −
uB

[
2��2πtν�1/2 x

�2νt�1/2
]

2�2πtν�1/2 x
�2νt�1/2 +

2π1/2�tν�
x−uBt

� (43)

From (43), we get for uI = 0 and uB < 0,

lim
t→∞

uν�x� t� = uB

[
1− x

x − ν
uB

]
= uB

1− uBx
ν

�

Now, we consider the case uI > 0. First let uB < 0 and uI +uB 
= 0. We have
from (15b) and (40a), (40c), and (40e) after cancelling out common terms,

lim
t→∞

uν�x� t� = uB +
�uI − uB�

[
ν

uI−x/t
− ν

uI+x/t

]

�uI − uB�
[

ν
uI−x/t

+ uI−uB

uI+uB

ν
uI+x/t

+ 2uB

uI+uB

tν
x−uBt

] = uB�

The case uI + uB = 0 is similar; here we use (15a) instead of (15b).
Now, consider the case uI > 0, uB > 0. As before, using the asymptotics
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(40a), (40c), and (40f) in (15b) and dividing both numerator and dinominator
by π1/2�tν� exp�−x2/2νt� in the resulting expression, we get
lim
t→∞

uν�x� t�

= uB +
�uI − uB�

[
1

uI t−x
− 1

uI t+x

]

�uI − uB�
[

1
uI t−x

+ uI−uB

uI+uB

1
uI t+x

+ 2uB

uI+uB
�2π�1/2 exp� �x−uBt�2

2νt �
] = uB�

The case uI > 0 and uB = 0 is similar. This completes the proof of the result.
Consider the stationary problem for 0 < x < ∞

νqxx = �q2�x� q�0� = uB� q�∞� = uI�

It can be easily checked that this problem has solution if uI < 0 and uB < uI

or uI < 0 and uI + uB < 0 or uI = 0 and uB < 0. Solving the problem
explicitly, we get the functions on the right-hand side of (36)–(38). Here,
we have shown that they are time asymptotes of boundary value problems
(11)–(13).

3. Higher dimensional extensions

Consider vector equivalent of Burgers equation studied by [7]; namely,

Ut + U�∇U = ν

2
�U� (44)

[7] observed that if we seek a solution U of (44), which is gradient of some
scalar function φ,

U = ∇xφ� (45)

then equation (44) becomes

∇x

[
φt +

�∇φ�2
2

− ν

2
�φ

]
= 0�

This leads to

φt +
�∇φ�2
2

− ν

2
�φ = f �t�� (46)

where f �t� is an arbitrary function of t. Because we are interested in the
space derivative ∇xφ, and this is independent of f �t�, we let f �t� = 0. If we
are given initial data for U that are gradients of some scalar function φ0 of
the form,

U�x� 0� = ∇xφ0�x� (47)
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it is enough to find a solution φ of

φt +
�∇φ�2
2

− ν

2
�φ = 0 (48)

with initial condition

φ�x� 0� = φ0�x�� (49)

We may then use (45) to get the solution U of (44) and (47). To solve (48)
and (49) we use the Hopf–Cole transformation

θ�x� t� = exp
(
−φ

ν

)
� (50)

Using (50) in (48) and (49), we get the linear problem

θt =
ν

2
�θ� (51)

θ�x� 0� = exp
(
−φ0�x�

ν

)
� (52)

Solving (51) and (52), we have

θν�x� t� = 1
�2πνt� n

2

∫
Rn

exp
(
−�x − y�2

2νt
− φ0�y�

ν

)
dy� (53)

From (45), (50), and (52), we see that the solution to (44) and (47) is given
by

Uν = −ν
∇θν

θν
� (54)

From (53) and (54), it follows that

Uν�x� t� =
∫
Rn�x−y

t
� exp

(
−�x−y�2

2νt − φ0�y�
ν

)
dy

∫
Rn exp

(
−�x−y�2

2νt − φ0�y�
ν

)
dy

� (55)

First, we study the asymptotic behavior of this solution as t → ∞.
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3.1. Asymptotic behavior as t → ∞, a general result

Here, we assume initial data of the form (47)

Uν�x� 0� = ∇xφ0�x��

where φ0 satisfies the estimate

φ0�x� =
n∑
1

φi
0�xi� + o�1�� �x� → ∞� (56)

where φi
0�x�� i = 1� 2� � � � � n are differentiable functions from R1 to R1.

Assume further that both the limits

lim
xi→−∞

φi
0�xi� = φ−

i � lim
xi→∞

φi
0�xi� = φ+

i (57)

exist. With the notations

ξ = x

�νt� 12
� ki =

�φ+
i − φ−

i �
ν

(58)

and

gi�ξi� = exp
(
−ki

2

) ∫ ξi

−∞
exp

(
−z2i
2

)
dzi

+ exp
(

ki

2

) ∫ ∞

ξi

exp
(
−z2i
2

)
dzi� (59)

for i = 1� 2� � � � � n, we prove the following result.
Let Uν�x� t� be the solution of (44) and (47) given by the formula (53)

and (54) with φ0 satisfying the conditions (56) and (57), then we have the
following limit as t → ∞ uniformly in ξ in bounded subsets of Rn:

lim
t→∞

(
t

ν

) 1
2

U

(
�νt� 12 ξ� t

)
= −

(
g′
1�ξ1�

g1�ξ1�
�
g′
2�ξ2�

g2�ξ2�
� � � � �

g′
n�ξn�

gn�ξn�
)
� (60)

To prove this result, we follow [3]. Consider θν given by (53), where φ0 sat-
isfies the conditions (56) and (57). After a change of variable, the expression
for θν becomes

θν�x� t� = 1
�2π� n

2

∫
Rn

exp
(
−�z�2
2

− 1
ν
φ0

(
x − �tν� 12 z

))
dz

= 1
�2π� n

2

∫
Rn

exp
{
−�z�2
2

− 1
ν
φ0

[
�tν� 12 �ξ − z�

]}
dz�



Boundary Value Problems for Burgers Equations 499

Now, using (56) we get

θν�x� t� ≈ 1
�2π� n

2

∫
Rn

exp
{
−�z�2
2

− 1
ν

n∑
1

φi
0

[
�tν� 12 �ξi − zi�

]}
dzi

=
n∏
i

1

�2π� 12
∫ ∞

−∞
exp

(
−z2i
2

− 1
ν
φi
0

[
�tν� 12 �ξi − zi�

])
dzi (61)

as t → ∞ uniformly on bounded sets of ξ in Rn. Now take the i-th term in
this product. Following the argument of Hopf [3], we get

∫ ∞

−∞
exp

{
−z2i
2

− 1
ν
φi
0

[
�tν� 12 �ξi − zi�

]}
dzi ≈ exp

(
−φ+

i

ν

)

×
∫ ξi

−∞
exp

(
−z2i
2

)
dzi + exp

(
−φ−

i

ν

) ∫ ∞

ξi

exp
(
−z2i
2

)
dzi� (62)

Thus we have from (61) and (62),

�2π� n
2 lim

t→∞
θν�ξ�νt� 12 � t� =

n∏
i

exp
(
−1

ν
φ+

i

) ∫ ξi

−∞
exp

(
−z2i
2

)
dzi

+ exp
(
−1

ν
φ−

i

) ∫ ∞

ξi

exp
(
−z2i
2

)
dzi� (63)

Similarly, we get

�2π� n
2 lim

t→∞
�νt� 12 θν

xl
�ξ�νt� 12 � t�

=
∏
i 
=l

exp
(
−1

ν
φ+

i

) ∫ ξi

−∞
exp

(
−z2i
2

)
dzi + exp

(
−1

ν
φ−

i

)

×
∫ ∞

ξi

exp
(
−z2i
2

)
dzi

[
exp

(
−φ+

l

ν

)
− exp

(
−φ−

l

ν

)]
exp

(
−ξ2l
2

)
� (64)

Because �t/ν� 12Uν = −�νt� 12∇xθ
ν/θν and θν is bounded away from 0, we have,

from (63) and (64),

lim
t→∞

�t/ν� 12Uν
[
�νt� 12 ξ� t

]
= − lim

t→∞
�νt� 12

(
θν

x1

θν
�
θν

x2

θν
� � � � �

θν
xn

θν

)

= −
(

g′
1�ξ1�

g1�ξ1�
� � � � �

g′
n�ξn�

gn�ξn�
)
�

This completes the proof.
Here, we observe that for Burgers equation; that is, when n = 1, the

parameter k1 can be computed in terms of the mass of the initial data,

νk1 = φ+
1 − φ−

1 =
∫ ∞

x0

u0�y�dy −
∫ −∞

x0

u0�y�dy =
∫ ∞

−∞
u0�y�dy
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and then formula (60) with n = 1 is exactly Hopf’s [3] result. Also, we note
that the limit function obtained in the result written in the �x� t� variable;
namely,

U �x� t� =
(
−ν

{
log

[
v1�x1� t�

]}
x1
�

−ν
{
log

[
v2�x2� t�

]}
x2
� � � � �−ν

{
log

[
vn�xn� t�

]}
xn

)

where for i = 1� 2� � � � � n,

vi�xi� t� = exp
(
−ki

2

) ∫ xi/�νt�
1
2

−∞
exp

(
−z2i
2

)
dzi

+ exp
(

ki

2

) ∫ ∞

xi/�νt�
1
2

exp
(
−z2i
2

)
dzi

is an exact solution of (44).

3.2. N-wave solution of vector Burgers equation

We start with the solution

θ�x� t� = 1
c0

+ t−
n
2 exp

(
−�x�2
2tν

)

of the heat equation (51) where c0 is a constant. Its space gradient is

∇xθ�x� t� = −1
ν

x

t
t−

n
2 exp

(
−�x�2
2tν

)
�

Consider the function U∞ = −ν∇θ/θ. By earlier discussion, this is an exact
solution of the vector Burgers equation (44). On simplification, we get

U∞�x� t� =
x

t1/2

t1/2
[
1+ t

n
2

c0
exp

(
�x�2
2tν

)] � (65)

For n = 1, this exact solution of the Burgers equation was discovered by [5].
Sachdev et al. [6] showed that it can be obtained as time asymptotic of a pure
initial value problem. This solution is called the N-wave solution. Here, we
generalize it for the vector equation (44).
We choose special initial data for (44) whose mass is zero and that is anti-

symmetric with respect to the origin. To solve the problem explicitly, we need
these data to be written as gradients. To construct such initial data, we con-
sider the ball in Rn of radius l0 with center 0; namely, B�0� l0� = �x � �x� ≤ l0�.
We take the initial condition as

U�x� 0� = xχ��x�≤l0��x� (66)
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where χ��x�≤l0��x� is the characteristic function of the set �x � �x� ≤ l0�. Note
that this initial data can be written as the gradient

∇
[ �x�2
2

χ��x�≤l0��x� +
l0
2

2
�1− χ��x�≤l0��x��

]
�

So the earlier analysis holds, and we get the following formula for the solution
of (44) and (66):

U�x� t� = −ν
∇Q

Q
(67)

where Q is given by

Q�x� t� = 1
�2πνt�n/2

∫
��y�≤l0�

exp
(
− 1
2ν

[
�y�2 + �x − y�2

t

])
dy

+ 1
�2πνt�n/2 exp

(
− l20
2ν

) ∫
��y�>l0�

exp
(
−�x − y�2

2νt

)
dy� (68)

We shall prove the following result.
Let U�x� t� be the solution of (44) and (66) as given by (67) and (68), then

we have

lim
t→∞

U�x� t� = U∞�x� t�

uniformly in the variable ξ = x/�2tν� 12 belonging to a bounded subset of Rn,
where U∞ is given by (65) with

c0 =
exp

(
l20
2ν

)
�2πν� n

2

[∫
��y�≤l0�

exp
(
−�z�2
2ν

)
dz − exp

(
− l20
2ν

)
�B�0� l0��

]
� (69)

Here, �B�0� l0�� denotes the volume, if space dimension n ≥ 3, area if n = 2,
and length if n = 1, of B�0� l0�.
To prove this result, first we note that Q�x� t� can be written as

Q�x� t� = I1 + exp
(
− l20
2ν

)
I2 (70)

where

I1 =
1

�2πνt� n
2

∫
��y�≤l0�

exp
(
− 1
2ν

[
�y�2 + �x − y�2

t

])
dy�

I2 =
1

�2πνt� n
2

∫
��y�>l0�

exp
(
−�x − y�2

2νt

)
dy�
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It can be easily checked by making use of error function and its asymptotics
that, as t → ∞,

I1 ≈
exp

(
−�x�2

2νt

)
�2πνt� n

2

∫
��z�≤l0�

exp
(
− z2

2ν

)
dz� I2 ≈

[
1− exp

(−�x�2
2νt

)
�2πνt� n

2
�B�0� l0��

]
� (71)

Substituting these asymptotics in (70), we get

Q�x� t� ≈ exp
(
− l20
2ν

)
+ exp

(−�x�2
2νt

)
�2πνt� n

2

×
[∫

��z�≤l0�
exp

(
−�z�2
2ν

)
dz − exp

(
− l20
2ν

)
�B�0� l0��

]
� (72)

Similarly,

∇xQ�x� t� ≈ −1
ν

x

t
1
2

1

t
1
2

exp
(−�x�2

2νt

)
�2πνt� 12

×
[∫

��z�≤l0�
exp

(
−�z�2
2ν

)
dz − exp

(
− l20
2ν

)
�B�0� l0��

]
� (73)

Using (72) and (73) in (67), we get

U�x� t� ≈ x

t
1
2

· 1
t
1
2

×

exp
(−�x�2

2νt

)
�2πνt� n

2

[ ∫
��z�≤l0�

exp
(−�z�2

2ν
)
dz − exp(− l20

2ν
)�B�0� l0��

]

exp
(
− l20
2ν

)
+ exp

(−�x�2
2νt

)
�2πνt� n

2

[ ∫
��z�≤l0�

exp
(−�z�2

2ν
)
dz − exp(− l20

2ν
)�B�0� l0��

] �

On rearranging the terms, we get

U�x� t� ≈ x/t
1
2

t
1
2

[
1+ t

n
2

c0
exp� �x�22tν �

]

where c0 is given by (69). This completes the proof.

3.3. Study of the limit ν → 0

First, we remark that the following analysis gives an explicit formula for φν,
the solution of

φt

1
2
�∇φ�2 = ν

2
�φ

φ�x� 0� = φ0�x�� (74)
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namely,

φν�x� t� = −ν log
[

1

�2πνt� 12
∫

Rn

exp
(
−�x − y�2

2νt
− φ0�y�

ν

)
dy

]
� (75)

Following the analysis of Hopf [3] and Lax [14], see also Joseph [8], we
get an explicit formula for the solution of the initial value problem for the
Hamilton–Jacobi equation

φt +
1
2
�∇φ�2 = 0 (76)

φ�x� 0� = φ0�x�� (77)

namely,

φ�x� t� = lim
ν→0

φν�x� t� = min
y

[
φ0�y� +

1
2t

�x − y�2
]
� (78)

Note that this is the explicit formula derived for the viscosity solution of
(77) derived by other methods, see [15]. Furthermore, it was shown by [15]
that φ�x� t� is Lipschitz continuous when φ0�x� is and for almost every �x� t�
there is a unique minimizer for (78), which we call y0�x� t�. Now, to study
the limit limν→0 U

ν�x� t� we note that (54) can be written as

Uν�x� t� =
∫

Rn

(
x − y

t

)
dµν

�x�t��y� (79)

where, for each �x� t� and ν, dµν
�x�t��y� is a probability measure given explic-

itly by

dµν
�x�t��y� =

exp
(
−�x−y�2

2νt − φ0�y�
ν

)
dy

∫
Rn exp

(
−�x−y�2

2νt − φ0�y�
ν

)
dy

� (80)

Following the argument of Hopf [3] and Lax [14], it can easily be seen that
this measure tends to the δ-measure concentrated at y0�x� t�, the minimizer
of (78), which is unique for almost every �x� t�. So, for almost all �x� t�, we
get from (79) and (80)

lim
ν→0

Uν�x� t� = �x − y0�x� t��
t

(81)

where y0�x� t� is as before a minimizer of (78).
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3.4. A boundary value problem

The method described before can be used to solve some boundary value
problems as well. Let - be a bounded connected open set with a smooth
boundary. Consider the cylindrical domain D = - × �0�∞�. Consider the
problem

Ut + U · ∇U = ν

2
�U

U�x� 0� = ∇φ0�x�� x ∈ -

n�x� t� · U�x� t��∂-×�0�∞� = α� (82)

Here, φ0 is a smooth function from - to R1, α is real constant, and n�x� t� is
the unit outward normal of the boundary points of D. We note that n�x� t� ·
U�x� t� is the normal component of U�x� t� at the boundary point �x� t� and
when α = 0, (82) says that U�x� t� is tangential to the boundary point �x� t�.
Here again, we seek a solution of the form U�x� t� = ∇φ�x� t� and, as before,
we get

U�x� t� = −ν
∇θ

θ
(83)

where θ satisfy the linear problem

θt =
ν

2
�θ

θ�x� 0� = exp
(
−φ0�x�

ν

)

ν∂nθ + αθ�∂- × �0�∞� = 0� (84)

The explicit solution of (84) is

θ�x� t� =
∞∑
0

cn exp�−λnt� · φn�x�� (85)

where

cn =
∫

-

exp
(
−φ0�x�

ν

)
φn�x�dx�

and λn and φn are eigenvalues and normalized eigenfunctions of the eigen-
value problem in -:

−ν

2
�φ = λφ�

ν∂nφ + αφ�∂- = 0�



Boundary Value Problems for Burgers Equations 505

Using (85) in (83), we get

U�x� t� = −ν

∑∞
1 cn exp�−λnt�∇φn�x�∑∞
1 cn exp�−λnt�φn�x�

� (86)

Letting t → ∞ in (86) we get

lim
t→∞

U�x� t� = −ν
∇φ1

φ1
�
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