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Explicit generalized solutions to a system of conservation laws
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Abstract. This paper studies a special 3 by 3 system of conservation laws which
cannot be solved in the classical distributional sense. By adding a viscosity term and
writing the system in the form of a matrix Burgers equation an explicit formula is
found for the solution of the pure initial value problem. These regularized solutions
are used to construct solutions for the conservation laws with initial conditions, in the
algebra of generalized functions of Colombeau. Special cases of this system were
studied previously by many authors.
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1. Introduction

In this paper we consider a system of partial differential equations of the form

u2
vt (3) -0

v+ (uv), = 0,
/P
w,+<—i-+uw> =0, (1.1)
X
in —oo < x < 00,t >0, supplemented with an initial condition at ¢ == 0,
u(x,0) = up(x), v(x,0) = vo(x), w(x, 0) = wo(x), (1.2)

where ug(x), uo(x); wo(x) are bounded measurable functions. The system is not strictly
hyperbolic. In fact the eigenvalues of the Jacobian matrix of F(u,v,w) = ((u?/2), uv,
(v*/2) 4 uw) are equal, namely u and classical theory of conservation laws does not
apply. Even for Riemann initial data (1.1) and (1.2) cannot be solved in the class of
classical simple waves. For example when the initial data,

u(x,0) = 1,x < 0,u(x,0) = =1,x > 0,

v(x,0) = v, x < 0,0(x,0) = v, x > 0,

w(x, 0) = wy,x < 0,w(x,0) = wp,x > 0, (1.3)
where vy, vy, Wi, Wr are constants, a simple wave solution for (1.1) with initial data (1.3)
can be found if and only if v; + v, =0 and w; + w, = 0. This follows easily from the

obser.vation that the entropy weak solution of the first equation of (1.1) with the above
data is u(x,t) = 1if x < O and —1.1f x > 0; a shock wave with speed s = 0. If v + v, 18
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not equal to zero, then the v component contains a § measure along x = 0, see Joseph
[9]. Though the product, uv, does not make sense in the classical theory of distributions,
this product can be defined in the sense of Dalmaso—LeFloch—Murat [6], but not, 22, a
square of § measure. To overcome such difficulties, Colombeau [2] introduced a new
notion of generalized functions. In recent works [1,3-5,10,13] and in many other
references there, it is recognized by many authors that the generalized functions of
Colombeau is a convenient setup to seek global solutions, where such difficulties arise.
Further, this approach takes into account the microscopic structure of the shocks in
the solutions. To do this we study (1.1) and (1.2) by the vanishing viscosity method.
~ We obtain an explicit formula for the solution with viscous terms in the equation.
We study the limit of these solutions as € tends to 0 and construct a solution in the algebra
of the generalized functions of Colombeau. Similar results based also on the viscous
approximation to Riemann problem for a different system were recently published by
Hu [8]. , ‘
This paper is organized in the following way. In §2, we recall the definition of the
algebra of the generalized functions of Colombeau and the definition of association. In § 3
we get explicit formula for the solution with the viscous term and in §4 we show that it is
indeed in the algebra of generalized functions and is solution in the sense of association

of Colombeau. The paper concludes with some remarks on a general system with viscous
terms.

2. Colombeau algebras

We take the domain Q = (x, 1), =00 < x < 00,1 > 0. Consider C® (), the class of
infinitely differentiable functions in Q) and take the infinite product £(Q) = [C>(€2)]Y.
Thus any element u of £(€2) is a map from (0,1) to C>(Q) and is denoted by u = (
We take a subclass e ,((02), called the moderate elements of ¢(Q2). An element u = (M) pceet

is called moderate if given a compact subset K of  and J and I nonnegative integers, there
exists N > 0 such that

“6)0<e<1'

10/058 2 ) = O(e™) (2.1)

as € tends to 0. An element = (1) g<ec is called null if for all compact subsets K of )
and for all nonnegative integers j and / and for all M > 0,

Hatjai“e ”L°°(K) = O(EM)a (2.2)

as € goes to 0. The set of null elements is denoted by NV(Q). It is easy to see that & 1 (Q) is
an algebra with partial derivatives, the operations being defined pointwise on repre-

sentatives and A () is an ideal which is closed under differentiation. The quotient space
denoted by »

(@) = i\;((s%)

is an algebra with partial derivatives, the operations being defined on representatives. The
algebra G(Q) is called the algebra of generalized functions of Colombeau. Two elements
u and v in G(Q) are said to be associated, if for some (and hence all) representatives
(U)gcee; and (v)ocect» OF u and v, u, — o, goes to 0 as € tends to 0, in the sense of

distribution and is denoted by u & v. Here we remark that this notion is different from the

INEA——
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notion of equality in G(€2), which means that u — v € N'(§2), or in other words,
”3]61(“ — )| ey = 0(5 )

for all M, for all j,I nonnegatwe integers and for all compact subsets K of {2

3. Explicit formula with viscous term

In this section we consider the system

u+ u2 __Gu
t 2 x"‘z XX

€
v + (wv), = 3 Vs

v € ‘
we | o uw xziw"x’ SRS

in —00 < x<00,t>0 with initial conditions
u(x,0) = ug(x), v(x, 0) = u(x), w(x,0) = wi (X)), (3.2
at t = 0. Let us denote

-—————————~(xﬂy) R

F¢ t) = Uj
. (x1y7 ) 0(}’)““ 2t 9

where
X
Us(x) = / up(¥)dy, L34
0
then we have the following theorem.

Theorem 3.1. Let u§(x), v§(x) and wi(x) be bounded measurable functions on R' for
each € positive; then

u(x, 1) = QU (x, 1), v (x, 1) = OV« (x £),w(x, 1) = QW a1, {351
where U¢, V¢ and W* are given by
1 Hoc Fe(x,v, 1)
U(x,t) = —€log|=———=7775% o | - e Ay
(x,1) € og{@m 1/2)/ exp < : )al;}‘ {3y

f+°°V€ exp( »—L‘—V"-)dv

Ve, 1) = = Xp( ___y_,l> PR (3.7
We(x, ) = f+oo (Wo()’) —ul‘) exp (“ uf;*’-—"l) dy
[ exp((— Elexil)ay
1[5 Vé(y)eXP( M)dv i
{38

€

2| [exp (- w) dy

is a solution for (3.1)-(3.2).
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Proof. To prove the theorem first we note that this system (3.1) can be written as a matrix
Burgers equation

e

A? €
wr(3) 750 9
where A is the lower triangular matrix of the form
u 0 0 ‘ |
A={v u 0 (3.10)
w v u :
with initial condition
ug(x) 0 0 _
A(x,0) = | v§(x) ui(x) 0 |. - | (3.11)
‘ wolx) () ug(x)

Now we use Hopf-Cole transformation, see [7], generalized to matrix equations (3.9)
where we use the fact AA, = AAAA, = AA,

b

C= exp(~ g), (3.12)
with
U 0 0
B=(v v o], (3.13)
W VU :

where U, V, W are given by

Ulr,1)= /O ", )y, Vi, )= /O oy, )y, Wi, 1) = /0 w,ndy. (3.14)

Using (3.12)—(3.14) in (3.9)-(3.10), we see that C satisfies the equation
) 4
Ct = ECxx,

C(x,0) = Cy(x),

where Cy(x) is the matrix

ag(x). 0 0
Co(x) = (bo(x) a(x) 0 )
co(x) bo(x) ap(x)
with
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On solving this explicitly we find that its solution takes the form of the following lower
triangular matrix

a 0 0\
ccE=1t b a 0},
‘ ¢ bt af

where af, b¢, c¢ are given by

€ 1 oo Fe(an7t) )
= .. oo| S 13
~1 1 +eo Fé(x,y,1) '
Rl DU Ve YDl .
T [ vioen| - o (3.16)
s Wao)] o
£ — MVACAANSEREL L T dy. .
¢ (27rte>(1/2) [.oo { 2€? € exp € Y (3-17)

Now to get back U*, Ve and W€ we use (3.12), namely
B = —elog(C9).

An easy calculation gives
ve 0 O
pe=| ve U 0 |,
we Ve U¢

b ¢ (b)Y o
€= — O V= —e— . Wi=¢€|——+—3| 3.18
U elog(a®),V eae,W e( a6+2(ae)2) (3.18)

where

Now substituting the expressions (3.15)—(3.17) for af,bt and c® in (3.18) we get the
formulas (3.6)—(3.8) for U°, ve, We. Now it follows from (3.14) that

ut = U, v = Ve WS =W,
The proof of the theorem is complete.

In order to study the limit of the functions U¢, V¢, W€ given by (3.6)—(3.8) as € goes 10 0
we use the following result in the spirit of Hopf [7] and Lax [11].

PROPOSITION 3.2
~ Let up(x) be bounded measurable and p(x) Lipshitz continuous and both independent of €.
Let F(x,y,7) = Up(y) + ((x— y)?/2t), where Us(x) = [o uo(y)dy, then

(1) Foreacht>0and —00 <X < 00, there exists at most a finite number of minimizers
yo(x,1) for _
min ~ F(x,¥,1)- | (3.19)

—00L y<+00

For each (x,1) define maximum and minimum of these minimizers yo(x, 1)

yar (xa t) = max[yo(x, t)]’
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y&(x» Z) = min[yo(x, l‘)],

then for each t > 0, except for a countable set of x, y§ (x,1) = Yo (=, 1).
(2) For each t > 0, the limi ' v

£

. S P) exp(=F(x, y, ey
2 S8 exp(—Flry,jeay ~POol1),

exists except for a countable set'of x. Also at every point (x,1), p(yo (x+,1)) and
p(yo(x—, 1)) exist. ‘

PROPOSITION 3.3
Let ug(x) = (uq « &%) (x), v5(x) = (g * $°)(x), wi(x) = (wq ¢°)(x) where ug, vy and wy 3
are bounded measyrable Junctions with compact support and ¢¢ is the usual Friedrichs

mollifier with U, Ve and We are g5 given by (3.6)~(3.8), then Jor each t > 0, the limits
lim,_g eu, lim._y V¢ ang lim,_,o eW¢ exists except for a countable x and is given by

lmeu* =0, limye= Voo(x, 1)),  limew* — 0,
‘ e—0 e—0 e—0
where yo(x,t) is a minimizer in (3.19).

Proof. First we notice that since
X X X . '

1 Jy 00 = [ ubiontim [ ig)a | |

=0 Jo 0 e—0 0 . ]

X X X
= / v (y)dy, lim / u(y)dy = / wo(y)dy,

uniformly on R! a5 ¢ 80¢€s 1o zero, the conclusions follow from the expressions (3.6)-(3.8)
and proposition (3.2). '

4. Generalized solutions for (1.1) and 1.2)

In this section we solve the problem

u? | ‘
u; 4 (E‘)xw 0, ‘ )

U+ (uv), ~ 0,

w,+(§+vw) ~ 0, _ (4.1)

X

with initia] conditions

ey

u(x,0) = uo, v(x,0) = 0, w(x,0) = wo, ‘ (4.2)

where 4y = 50 0cecrs v = (%5(x))ocec; and "0 = (WG (x))oe.e; are in G(R'), the
algebra of generalized functions. Here we assume that 5 (x), v (x) and w5(x) are obtained
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by mollifying compactly supported bounded measurable functions o (x), vo(x) and wo(x)
respectively with Friedrichs mollifiers so that we have the following estimates

|8l gy = Ol
1850 | gy = O™, |
10w5 ey = O7)- | - (43)

Now we state our main existence result.

Theorem 4.1. Let u = (4)gcect, ¥ = (F)ocecs 4N W = (W) gec1r Where us,vf and w*

are given by (3.5)—(3.8) with ug (x), v§(x), and w(x) are as described above, then u, vand-
w are in the algebra of generalized functions of Colombeau, G(Q) and solve the problem

4.1)-(4.2).

Proof. First we show that u = (u), v=(v) and w = (w¢) are in G(Q). For this we have
to verify the estimate (2.1), for (U)geecrr (¥ )o<ect and (W)g<ecr- It is clear from the
formulas (3.5)—(3.8) for u¢, v¢ and w* that, they are C*°(£2). Further a typical term in the
expressions of these functions is of the form ¢ *He(x,r) for k =0, 1,2 with
HE(x,1)
He(x,1) = ——=
(x’ ) H§ (x7 t)
and H¢(x,7) and Hs(x,?) taking the form

-+00 Fe¢ x,y,t
it = [ moen( 520 o
-0
400 € z.
i = [ oo(-FE2 e,

and H satisfying estimates of the form (4.3). Now by Leibinitz’s rule 0H* is a finite
linear combination of elements of the form
oikH: O M H; Ui Hy
7 ) T e 3

L e <dr=1 < Jv <Jos k=0,1,...,Jo-

Now making a change of variable y = x — \/2tez in the integrals of Hj and Hj and using
(4.3) we get,
OlH]

Hs

=0, |5

L=(2)

= O(e™).
L=(Q)

These estimates together with our earlier observation on the form of u¢, v¢ and we leads to
the estimates

18]ul| o ) = O(e), 10"l =) = O U*D), 19w | oy = O U,
(4.4)
Now from the PDE (3.1) and (4.4) we get

‘\\@uellm@) = 0(6’?)3 180 | oy = OL€™): 100 | =) = o). (45)
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Now applying the differentia] operator 8,j 8} on both sides of (3.1), first [ = 1, J=01,2,...

andthen /=2, j = 0, 1,2,...etc: proceeding successively we get the following estimate.
For each j and / nonnegative integers,

”atjaiueulpo(g) ='O(E"(j+l))’
”Qjajve”m(m = (9(6—(j+1+1))’
16/ 0w 1 @ = O(e—(j+l+2) )

These estimates show that i, vand w are in G(2). Now to show that u, v, and w satisfy eq.
(L.1) in the sense of association we multiply (3.1) by a test function ¢ and integrate by

parts to get
©  poo . (ue)2 . € [ [ .
—/ f u,¢t+"2"—¢x dxdt:; U pdxde,
0 —00 “Jo ~00

/Ooo/_:(vféﬂr (ufuﬂ@)dxdr:%/f/m Ve mdxdr,

-0

/000 /_: (we@ + (@;—)z-ﬁ-uevf) ¢x)d?€dl‘ = g/ooo [: W bpedi d.

It follows from the asumption (4.3) on the initial data and the formulas (3.5)~(3.8) for u
and V¢ and eW* that these are uniformly bounded. Further by Proposition (3.3) and an
application of dominated convergence theorem it follows that the right hand side of each
of the above equations goes to 0 as € goes to 0. This completes the proof of the theorem.

5. Conéluding remarks

In general we could use Hopf-Cole transformation to find explicit solutions for any
system of equations of the form

(Az)x _€ ' - 5.1
At + T - 2Axxu . ( : )
with initial condition at = 0,_ ‘
A(x,0) = Ay(x), | (52).

where A is a lower triangular matrix of the form

Uy 0 0 0 0
Uy U 0 0 0
A= Us U uy 0 0

S o oo o

0 (5.3)
Uy
Up Upp - . Uy u
Component wise (5.1) and (5.3) gives a System of n equation for the unknowns

Ui, Uy, . .., u, namely

<uj>,+g(ﬁ“f2;"ﬂ)x=§<uj>m | o (54)
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forj=1, 2,0. ..,n. Thecase,n =1, in (5.4) is the standard Burgers equation and Hopf [7], -

used the Hopf-Cole transformation to construct solutions for € > 0 and obtained global
solution for the inviscid Burgers equation with bounded measurable initial data by passing
to the limit € tends to 0. The limit function remains to be bounded and hence the solutions
are understood in the standard theory of distributions. If one considers more general initial

data such as bounded Borel measures, standard distribution theory does not work and so
Biagoni and Oberguggenberger [1] constructed global solutions, in the algebra of
generalized functions of Colombeau, for the case of more general initial data. In the case,
1 = 2 even for Riemann data the limit function contains S-measures and this case was
treated by Joseph [9], see also LeFloch [12], for a more general 2 by 2 system where the
theory of DalMaso-LeFloch-Murat [6], applies. The explicit solutions of the initial value
problem for the system (5.4) is complicated for general n, however the general feature of
the solution for n = 3,4,... remains the same. In fact, as € tends to zero, the order of
‘singularities’ in the solution of (5.4), increases as n increases and we cannot use the
method of [6], to define some of the products which appear in the equation and get global
solutions for the inviscid case. In the present paper We have shown that we can use
Colombeau’s theory to get a global existence result for the inviscid case for n = 3.
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