BOUNDARY LAYERS IN WEAK SOLUTIONS
TO
HYPERBOLIC CONSERVATION LAWS
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ABsTRACT. This paper studies the boundary layers that generally arise in approximations of the entropy discontinuous
solutions to the initial-boundary value problem associated with a nonlinear hyperbolic system of conservation laws. We
consider the vanishing viscosity method and several finite difference schemes (Lax-Friedrichs type schemes, Godunov
scheme). Assuming solely uniform L® bounds and for entropy weak solutions, we derive several entropy inequalities
satisfied by the boundary layers. Different approximation methods may generate different boundary layers, and so the
boundary condition can be formulated only if an approximation scheme is selected.

We obtain several formulations for the boundary condition which in principle apply whether the boundary is charac-
teristic or not. The formulations are based on families of sets of admissible boundary values, as we call them. Under some
assumptions, the local structure of those sets together with the well-posedness of the corresponding initial-boundary
value problems, is investigated. The results are illustrated with convex and non-convex conservation laws and examples
from continuum mechanics
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2 BOUNDARY LAYERS FOR SYSTEMS

1. Introduction.
This paper considers the initial-boundary value problem for an hyperbolic system of conservation laws

G+ Oy f(u) =0, w(z,t)eU CRY, #>0,t>0, (1.1)

supplemented with

(1) an initial condition at time t = 0
uw(z,0) = ur(x), x>0, (1.2)

(2) the entropy inequality
G U (u) 4+ 0, F(u) <0, (1.3)

(3) and a weak form of the following Dirichlet boundary condition at # = 0
u(0,1) = up(t), t>0. (1.4)

Indeed the hyperbolic problem (1.1)-(1.4) is usually not well-posed when the boundary data is required to be
assumed in the (strong) sense (1.4), even when (1.1) is a linear system (cf. Kreiss [28]). Tt is the objective of this
paper to provide a general framework which leads to (mathematically correct) formulations for the boundary
condition. Following Dubois-LeFloch [15], our strategy is to reformulate (1.4) in the (weak) form

u(0+,) € E(up(t)), >0, (1.5)

where E(up(t)) C U is a time-dependent set (the set of admissible boundary values) to be defined from the
boundary data, and u(0+4,?) is the trace (its existence is discussed in this paper) of the solution u at the
boundary. We are going to consider several methods of approximation for the problem (1.1)-(1.4), including the
artificial vanishing viscosity method and a class of finite difference schemes, for which the boundary condition
(1.4) can be easily implemented. As the approximation parameter goes to zero, a sharp transition layer generally
develops near the boundary {x = 0} and the limiting solution does not satisfy the boundary condition (1.4).
Our aim in this paper is to provide some contribution to the following program: performe a rigorous analysis
of the boundary layer for weak solutions, then derive several suitable definitions for the set in (1.5), and finally
investigate the structure of the latter to decide whether the boundary-value problem is well-posed.

In (1.1), U is assumed to be a convex and open subset of RY | the flux-function f : U — RY to be a smooth
mapping, and the initial data uy to belong to L®°(Ry,U). Tt will be convenient to assume that the boundary
data up has bounded total variation on any interval [0, T] for all 7" > 0. Tt is assumed that (1.1) admits at least
one strictly convex entropy pair. By definition, a pair of functions (U, F') : U — R x R of class C? is called a
convex (or strictly convex) entropy pair iff VFT = VUTVf and the Hessian matrix V2U is non-negative (or
positive definite). The existence of at least one strictly convex entropy pair implies that (1.1) is hyperbolic. For
background on hyperbolic systems, we refer to Lax [29, 30, 31], Dafermos [11] and Smoller [44], concerning the
theory of existence of entropy solutions to the pure Cauchy problem, to Glimm [21] and Liu [39] for initial data
with small total variation, and DiPerna [12,13] for systems of two equations with L® initial data.

This paper contributes to establishing a framework for the initial-boundary value problem for (1.1). Tt is
intended to pursue the efforts initiated in recent years on this problem (Cf. review below). In particular we built
upon the recent contributions in Gilscon-Serre [20] and Xin [48], who studied the boundary layers associated with
the vanishing viscosity approximations assuming the solution to the hyperbolic problem be smooth. A formal
asymptotic expansion is introduced in [20, 48] and the convergence including L? error estimates is proven for the
boundary layer in the smooth regime.

One of the motivations here is to treat several approximation methods simultaneously and compare the results
obtained with each of them. We consider the vanishing viscosity method, a class of Lax-Friedrichs type schemes,
and the Godunov scheme.
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In Section 2, we rigorously derive conditions satisfied by the boundary layer, which take the form of a family of
boundary entropy inequalities and a boundary layer equation. The regularity of the relevant traces at the boundary
are discussed. The whole analysis is performed by assuming only a uniform L bound on the approximate
solutions; in particular no assumption is required on the regularity of the limiting solution to (1.1). Since
high frequency oscillations in the approximate solutions can not be a priori excluded, the conditions above
are formulated in terms of a boundary Young measure associated with the boundary layer. Note that, in the
derivation of Section 2, the boundary is possibly characteristic, i.e. the eigenvalues of the matrix V f(u) may
vanish for certain values of u.

Observe also that, in general, the equations and inequalities we derive depend upon the approximation method
in use. Fundamentally the boundary condition can not be formulated from the mere knowledge of the function
up, but depend upon the underlining “physical” regularization. This feature arises in weak solutions to many
nonlinear hyperbolic problems.

In Section 3, we introduce several sets of admissible boundary values and investigate their local structure.
When the boundary is non-characteristic, we establish that the sets based on the boundary layer equations are
manifold with the “correct” dimension. That is, the corresponding initial-boundary value problem is well-posed,
at least for constant boundary and initial data (a generalization to the Riemann problem). We also prove a
similar (but stronger) result for the set based on the boundary layer equation derived by the Godunov scheme.
Strictly speaking this scheme does not produce any boundary layer; however analyzing that scheme leads to a
formulation of the boundary condition as it was first pointed out in [15, 16]. We recall that setting the boundary
condition via an upwinding difference scheme is a classical idea in the computing literature.

Sections 4 and 5 are devoted to studying several examples of particular interest. It is expected that, in general,
different approximation method for (1.1) leads to a different set in (1.5). However we prove in Section 4, for both
convex and non-convex conservation laws, that this is not the case when N = 1. In other words the boundary
layer for the scalar conservation laws is independent of the approximation method. The same is true of the linear
hyperbolic systems; and we conjecture that this also holds for the nonlinear systems in the class with coinciding
shock and rarefaction curves introduced by Temple [47]. In Section 5, we consider examples from continuum
mechanics, i.e. the system of nonlinear elasticity and the system of gas dynamics. Additional analysis on systems
will be provided in [26].

To complete this presentation, we give a short overview of the literature on the boundary conditions for
(1.1). Most of the activity was restricted to scalar equations, i.e. N = 1. The pioneering work by Leroux [34]
and Bardos-Leroux-Nedelec [4] based on the vanishing viscosity method provides a derivation of “the” correct
formulation of the boundary condition for multidimensional scalar conservation laws. Specically, [4] shows that
(1.4) should be replaced by the weaker statement:

(sgn(u(04,1) — k) — sgn(up(t) — k)) (f(u(0+,1)) — f(k)) >0 for all k € R, (1.6)

where sgn(a) = —1 if @ < 0, sgn(a) = 0 if « = 0, and sgn(a) = 1 if @ > 0. The convergence of finite difference
schemes, again for scalar equations, is established by Leroux in an unpublished work: it is remarkable that the
finite difference scheme approach leads to the same formulation (1.6) of the boundary condition. The condition is
used by LeFloch [32] in order to extend Lax’s explicit formula [30] to the initial-boundary value problem. Joseph
[24, 25] used the vanishing viscosity method and the Hopf-Cole transformation to extend Lax’s formula for the
inviscid Burgers equation. Another derivation is given by Joseph and Veerappa Gowda [27]; see also Gisclon [18]
and LeFloch-Nedelec [33]. We also refer to the paper [46] by Szepessy for a very general result of existence and
uniqueness.
The statement (1.6) is a special case (when applied to Kruzkov entropies) of a more general inequality:

F(u(0,)) = F(up(t)) = VU (up(t)) (F(u(0,1)) = f(us(1))) <0, (L.7)

which has to hold for every convex entropy pair (U, F'). The latter was derived formally using the vanishing
viscosity method in Dubois-LeFloch [15], who pointed out that (1.7) holds even when N > 2 and introduced
the notion of set of admissible boundary values, cf. (1.5). These inequalities were obtained independently by
Bourdel-Delorme-Mazet [8] based on an analysis of the characteristics of the system (1.1), and by Benabdallah [5]
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for a specific system. The first result of existence for the initial-boundary value problem for a system was given
by Benabdallah-Serre [6, 7]: the vanishing viscosity method applied to the p-system of gas dynamics converges
to a solution to (1.1) satisfying the set of inequalities (1.7).

The Glimm scheme with various type of boundary conditions was studied by Liu, for instance [36, 37, 38]. In
the case that the boundary is assumed to be non-characteristic and the number of boundary conditions 1s equal
to the number of positive eigenvalues of the matrix V f, Goodman proves the convergence of the Glimm scheme
in his unpublished thesis [22]; cf. also Dubroca-Gallice citel7 and Sablé-Tougeron [41, 42]

More recently Amadori [1, 2] used the formulation in [15] and proved the convergence of a front tracking
scheme in the characteristic case. In particular, Amadori establishes that a condition of the form (1.5) can be
satisfied pointwise except at countably many times.

2. Boundary Layers in Weak Solutions.

In this section, we consider sequences of approximate solutions to the initial boundary value problem (1.1)-
(1.4), and aim at characterizing their limiting behavior near the boundary. Here we rigorously derive entropy
inequalities satisfied by the boundary layer. We deal with a sequence of L™ functions with uniformly bounded
amplitude. As is well-known, for general systems of conservation laws, proving the strong convergence of a
sequence of approximate solutions is an open problem. It seems therefore natural to formulate those entropy
inequalities in terms of a Young measure (for instance Ball [3] for this concept) associated with the sequence of
approximate solutions. Further analysis can be performed on a case by case basis only.

In the following, certain averages will be shown to belong to the space BV (R ) of functions of locally bounded
total variation, i.e. measurable and bounded functions w : Ry — I whose distributional derivative is a bounded
Borel measure on every interval (0,7) for all 7" > 0. We denote by TV (w) the total variation, and by
lwl|Bv 0,7y = [w||Lee(o,7) + TV{ (w) the norm, of a BV function w on an interval (0,7T'). By convention, a BV
function will be always normalized by selecting its right continuous representative.

2.1 Vanishing Viscosity Method. Let u® be the approximate solutions obtained by solving the following
parabolic regularization of (1.1)-(1.4):

Oy + 0, f(u) = € 02 u, x>0,t>0, (2.1)
u(x,0) = ui(z), x>0, (2.2)
u(0,1) = ugz(t), t > 0. (2.3)

The smooth functions u; € L= (R4 ) and uy € BV (R4) are chosen to be uniformly bounded and a.e. convergent
approximations of the corresponding data uy and up. We assume the existence of a (smooth enough) solution
u® to the problem (2.1)—(2.3). Note that compatibility conditions at (x,¢) = (0,0), such as u$(0) = u%(0), are
implicitly required. We shall also assume that

u® is uniformly bounded in L% (R?I_) (2.4)

We introduce a new function v¢ by setting

v(y,t) = u(ey, 1), (2.5)
so that the system of equations (2.1) transforms into
€0t + 0y f(ve) = 653/1}5. (2.6)

It is expected that the (e — 0) limit of the v’s will give us a good description of the boundary layer at # = 0,
at least under additional assumptions, although a different scaling may more adapted in certain cicumstances.
Indeed the scaling used here will be justified on several examples of interest by the results in Sections 4 and 5.

By definition (e.g. Ball [3]), a Young measure associated with a sequence u¢ satisfying (2.4) is a weak-star
measurable mapping v from the (z,t) plane to the space Prob(if) of all probability measures (i.e. non-negative
measures with mass one) with the property that for every continuous function g : ¢4 — R

g(u) —=<wv,g>  weakly—xin L®(R3). (2.7)

In view of (2.4), the functions v¢ also are uniformly bounded in LOO(R?I_)). We denote by g a Young measure
associated with the functions v€.
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Theorem 2.1. The following statements hold for all convex entropy pairs (U, F') associated with the system
(1.1), all functions # € BV(R), and all bounded interval (T}, T5).
1) When 6(t) > 0, the distribution

Ts Ty

d
Yy — <yt B> H(t) dt — — <y, U > H(t) dt
T, dy T:

is in fact a function of locally bounded variation and thus is defined pointwise as a right continuous function.
There exists a Young measure iy ¢, such that the following limit exists and is given by g s:

Ts Ty
lim <y, U > 0(t) dt :/ < poy, U > 0(t)dt.
y—0+ T, T
When 6(t) > 0, the function
T
r — Vg, F > 6(t)dt
Ty

has locally bounded variation. There exists a Young measure vy, the “trace” of v, ; at x = 0, such that the
following limit exists and is given by vg ¢:

T> T

lim <Vpy, B> 0(t)dt = / < vy, F > 0(t)dt.
r—0+ T T

When (U, F') = (id, f), all the results above still hold when the function 6 has no specific sign.
2) For all 0 < y; < y» and in the sense of distributions for t € R, , one has

Fug) + VU (up)(< vou, F > —f(up)) > < pyy ¢, > =08y < py, 0, U >

> < oyt > =0y <y, 1, U > (2.8)
> < Vo ¢, F>.
3) Moreover one has
Ho,t = bup(t) ae t € Ry (2.9)
and, when 6 > 0,
T, d T, T
lim / <y, > H(t)dt——/ <y, U > 0(t)dt ) > / <woe, F > 0(t)dt. (2.10)
y—oo \J1, ’ dy Jp, ’ T ’
O

A few remarks about the results in Theorem 2.1 are now in order. The inequalities (2.8) actually hold in the
(stronger) sense:

/ ’ (F(uB(t)) + VU (up() (< vou, f > —f(uB(t)))) 0(t)dt

T

T, T,
2 d 2
> / < pyy i, F > 0(t) dt — d—(/ <y, U > 0(t) dt>|y:y1

T ) T
Ts d Ty

z/ < pyoty B> e(t)dt——(/ <py, U > 0()dt))
T, ’ dy T, ’ |y—y2

T2
Z/ < I/Oyt,F > G(t) dt
Ty



6 BOUNDARY LAYERS FOR SYSTEMS

for all non-negative # € BV (Ry) and all 0 < y; < ya2. Observe that this is a stronger statement than the
convergence in the sense of distributions since # is a function of bounded total variation, not necessarily having
compact support in (77, T2), rather than a smooth function with compact support. All the formulas to be derived
in this section hold in this sense. Note also that (2.10) is an immediate consequence of (2.8) by taking y — oc.

The following inequalities, rigorously derived in Theorem 2.1,

Fug)+ VU(ug)(< vo, f > —f(ug)) ><vo, f>. (2.11)
will be referred to as the boundary entropy inequalities. They do not refer explicitly to the boundary layer itself
but only to its limiting values.

The inequalities (2.8) also contain constraints for the boundary layer. In particular, using the trivial entropies
(U, F) = =x(u, f(u)) in (2.8) leads us to the equation:

<, f> =0y < pid >=< vy, f >, (2.12)
where the right hand side is independent of the variable y and only depends on ¢.

For scalar equations and when the method of compensated compactness due to Murat-Tartar applies (i.e.,
mainly, for systems of two conservation laws), it is known that v is a Dirac mass concentrated at a point u(z,t)
which is an entropy weak solution. In those two situations, it is conceivable that the Young measure u also would
be a Dirac mass.

If one assumes that g is a Dirac mass, say

fyt = by(y,y for almost every (y,1) (2.13)

with v € L, then the formulas in Theorem 2.1 take a much simpler form. Namely if (2.12) holds, then (2.12)
becomes what will be referred to as boundary layer equation:

flv) = Oyv =< vy, f>. (2.14)
This is nothing but the equation that would be obtained formally by pluggling an asymptotic expansion of the
form w.(z,t) = u(z,t) + v(x/e,t) + O(e) in the equations (2.1). More generally, if (2.12) holds, the inequalities
(2.8) become
(v(y1)) = Oy U (0)jy=y,
(v(y2)) = By U(0)y=y,

Fug)+ VU(ug)(< vo, f > —f(ug))

When vg also is a Dirac mass for a.e. , say v+ = 6,,(1), for instance when u has bounded variation in z and
so admits a trace at © = 0 in a classical sense, then the boundary layer equation (2.14) becomes

flv) = Oyv =< vy, f>. (2.15)
and the boundary entropy inequalities (2.11) take the form
F(ug) — F(ug) — VU (ug)(f(uo) — f(ug)) <0, (2.16)

which was derived in Dubois-LeFloch [14, 15] by assuming a uniform BV bound on the u€.
Note finally that the behavior of u,; as y — oo is controled by the set of inequalities (2.10), only. If it is
assumed that v has a limit in a classical sense and d,v(y,t) — 0 as y — oo, then we can set

Vo (t) = lim v(y,t)
Yy—00
and (2.10) becomes

F(ve) > F(ug) for all entropy flux F (2.17)
(the flux F' must be associated with a convex entropy). In fact (2.17) need not imply
Voo (1) = uo(2). (2.17)

However (2.17) does imply

fveo (1)) = fluo())
so, in the non-characteristic case i.e. when Vf is invertible, (2.17) implies (2.17’). In the characteristic case,
(2.17’) may very well be violated. This difficulty is related to the choice of the scaling in the definition of the
functions v¢. Cf. the examples in Sections 4 and 5.
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Proof of Theorem 2.1. We decompose the proof into several steps. For the whole of this proof, we denote by
(U, F') a given convex entropy pair.
Step 1: Preliminaries.

We gather here several properties of v and p that are readily obtained. Let us multiply the equation (2.6) by
the gradient of U and obtain

€U () + 9y (F(v°) — 0,U (V%)) = =VU(v°) - (90", dyv°)

0. (2.18)

Using the definition of the Young measure g, it is a simple matter to pass to the limit in the inequality (2.18).
For any # € BV and uniformly in y € K, we have

Ts Ty

|/ O U (v¥) 0 dt| < |/ U(v°),0dt| + |[U(v5)9]§j|
T T

<O 10llsv IU(v)[[Le — 0,

so we obtaln

T T,

2 d 2

Oy (/ <y, > 0dt — — <y, U > Hdt) <0, (2.19)
7, dy Jr,

which provides the second inequality in (2.8). Therefore time-averages of the function < py 4+ F > =0y <
fy,s, U > are non-increasing, and so have bounded variation on any compact set. The limits as y — 0+ or
y — +oo exist, although at this stage of the proof, we can not exclude that those limits could be +00. We shall
see later that actually < py ¢, " > —0y < py, U >€ L. Moreover the function

T2
/ <y, U > g(t) dt
T,

has a trace at y = 0, which defines < po+, U >. Note also that (2.19) with the choices (U, F') = £(id, f) leads us
to

<y, [ > =0y < py 1, id >= Ci(t), (2.20)
where C\(t) has to be determined. In fact it will be immediate from the results in Step 5 below that

C.(t) =< vy, id > for a.e. t > 0.

Similarly, following DiPerna [13] and using the Young measure v, ; associated with u, one can pass to the
limit in (2.1) and obtain the entropy inequality:

Oy < Ve, U > +0p < gy, ' ><0. (2.21)

From (2.21), we deduce first that, for any smooth function é(¢) > 0,

T
<vps, B> 0(t)dt < / < ey, U > 3,0(1)dt < O(1) ||6]5v. (2.22)
T,

d [T
dz Jp,

For ¢ fixed, the right hand side of (2.22) is a constant, thus its left hand side is a locally bounded Borel measure

and the function
Ts

go(x) = / < vps, F > 0(t)dt
T
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has bounded total variation. Therefore the trace vy ; introduced in Theorem 2.1 exists, at least on entropy fluxes.
This gives a meaning to the last term in the right hand side of (2.8). In fact it is possible to establish the estimate

TV(ge) < O)|16]lBv

for arbitrary fucntions § € BV. (For such 0, (2.22) can be obtained directly from (2.1).) Thus the trace vg4
exists for § € BV as well.

Observe that the traces pg; and vy ; are uniquely determined on entropies and entropy fluxes, respectively.
They can be easily extended as Young measures defined on the whole set of continuous functions, in a non-unique
way however. Namely, to construct jig ¢, take any sequence y; — 0 and consider a Young measure associated
with the sequence of measures {ﬂyk,t}~

This completes the proof of the part 1) in Theorem 2.1.

Step 2: A General Identity.

It remains to analyze the behavior of p at the end point y = 0 which shall provide us with the desired
boundary entropy inequality. We are going to use a general identity which immediatly follows from the Green
formula applied to (2.6).

Let 6(t) and ¢(x) be smooth functions not necessarily having compact support. We multiply the equation
(2.6) by VU(v%) 8¢ and integrate over the domain (y1,y2) x (0,7). Integrating by parts and re-ordering the
terms, we obtain the identity

Ei+ Efp+ Eppp = Epy (2.23)
with
T2 ry2 Y2 Y2
B = —e/ / U(v)0bp dydt + GH(TQ)/ U (Ts)) pdy — 69(T1)/ U (Th)) ¢ dy, (2.24.1)
T Jyi1 Y1 Y1
Ts Y2 Ts
Bz [ [P0t ol [ (FG ) - 8,002, )0dt
T o (2.24.11)
— o) [ (PO ) = 00 Yy )0
Ts Y2 Ts
B = —/ / U(ve)ﬁﬁyygodydt—l—ﬁygo(yz)/ U(v(y2)) 0 dydt
i . (2.24.117)
— Oye(yr) / U(v(y1)) 0 dydt,
Ty
and
Ts Y2
Eiy = —/ / VU (ve) - (63}05, 6yve)9g0 dydt. (2.24.1V)
Ty Y1

In case that # > 0 and ¢ > 0 and since U is assumed to convex, one has
By <0, (2.25)
so we can focus attention on estimating the terms E}, Ef; and Ef;;.

Step 3: Viscous Flux at the Boundary.

We prove here that the viscous flux at the boundary, i.e. the function d,v(0,1), is uniformly bounded in a
certain sense and we determine its weak limit as € — 0. We use the identity (2.23)-(2.24) with the following
choice of parameters:

supp 9 C [TlaTZ]a supp ¢ - [0’ 1)’ Y1 = Oa Yz = 1a (Ua F) = (ldaf)
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For ¢ fixed, we obtain
|ETl < O() [16llsv,
Ts 1 Ts
E;,:_/ / f(ve)ﬁﬁygodydt—go(O)/ (F(u) — B,0°(0,.)) 0 dt
T 0 Ty
T
=0 [|f]|lz~ — 30(0)/T (f(up) = 9,v°(0,.)) O dt,

1 T
B = / / veﬁﬁyygodydt—/ up80,0(0) dt
T
D lellze--

and

Since in this case Fjy, = 0 and choosmg ¢ so that ¢(0) # 0, it follows
T
|/T (f(ug) = 8,v°(0,.))0 dt| < O(1) [0l + O() [|0]|v - (2.26)
More precisely we can pass to the limit in the identity (2.23) and get
T>

©(0) lim (f(uB) — 6yve(0,t))9dt

e—0

T 1 Ty 1 T
—/ / <, [ > 00, pdydt —/ / < p,id > 00y, @ dydt — 8yg0(0)/ upl dt.
7 Jo 7 Jo

T,

On the other hand, it has been observed in Step 1 that (2.20) holds and < p,id > has a trace at y = 0. Thus
one has

T 1 Ty 1
/ / <u,f>93yg0dydt+/ / < p,id > 00yy ¢ dydt
7 Jo
T2
/ / C.(t) 00y dydt — / < po,id > 60, ¢(0) dt

Ty
T2
=- C() p(0) dt — / < po,id > 60, ¢(0) dt
T T
and therefore
T2
©(0) lir% (f(uB) — 6yv€(0,t))9dt
=0 Jp,
T, T, T,
—o0) [ Cutyodt + 8yg0(0)/ < poyid > 0dt — aygp(())/ uph dt.
Ty Ty Ty

Choosing two test-functions ¢, one such that ¢(0) = 0 but 9,¢(0) # 0, and the other such that ¢(0) # 0 but
Jy¢(0) = 0, we deduce from the above formula that

Ts Ty
lim (f(ug) — 9yve(0,))0 dt = C.(t)0dt
€— T T,
Ty Ty (227)
/ <u0,id>9dt:/ upd dt.
T T

The first statement in (2.27) is the desired convergence result. The second statement is a first step toward
proving (2.9).
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Step 4: Boundary Entropy Inequalities (T).

Using (2.27), we are now able to obtain the boundary entropy inequalities. We use the identity (2.23)-(2.24)

with
0>0, supp 0 C[11,13], ¢>0, supp ¢ C[0,00), y1 =0, y2>0,

and (U, F') arbitrary. We obtain
|E7l < O(e) [19]|Bv
T

By = _/ /y )08, dyd — (0)/ (F(y) — 0,0 (v )ymo) 0 dt

T

_/ /y V08, dydt — (0) /TT (F(u;)_VU(ujB)ayvﬁ(o,.))edt

Y2 T
— — / <, F> Hﬁygodydt—go(O)/
T 0 T

where we have used (2.27) and the fact that u% € BV converges strongly to up € BV, and
Y2 T
Eir= —/ / )6 Oyy ¢ dydt — / U(ug) 8 0y¢(0)dt

T

Since Efy, < 0 we pass to the limit in (2.23) and get

(0) /T2 (F( ) — VU(uB)(f(uB)—C*(t))) dt,
> — / /y (< py e, > Oyo+ < piy s, U > 9yyp) 0dydt

+ 30(3/2) / << Hyo e, I > _ay < py i, U >y:y2) 0 dydt
Ty

Ts Ty

+ 3yg0(y2)/ <o U > 0 3yg0(0)/ Uup) 6 dt.
T T
On one hand, using the test-function ¢(y) = 1, we deduce that
Ts Ty
/ (F(UB) — VU(up)(f(ug) — C*(t)))ﬁdt > / (<, F>+0, <p,U>yzy, )0dt
T T

which proves the first inequality in (2.8).
On the other hand, using the function ¢(y) = y, we obtain

Y2 T>
0>~ / / < iy, > Odydt + yo / (< pyoyts F> =0y < iy, U >y=y,) 0 dydt
T

T2
+/ < Pyy i, U > gdt—/ U(UB)Hdt,
T T

which as y» — 0 yields

Ts Ty
/ U(up)fdt > lim <y, U > 0dt.
T, y—0+ Jp,

(F(um) = VU n) (um) — () ) o1t

(2.28)

(2.29)



JOSEPH AND LEFLOCH 11

In particular, plugging (U, F') = (id, f) in (2.29), we recover the second statement in (2.27), which used together
with (2.29) for any fixed, strictly convex entropy U gives:

T
/ <ﬂoyt,U—U(UB)—VU(UB)(id—uB)>9dt

Ty
T
lim < iy, U = Uupg) — VU (up)(id — up) > 6 di
y—0+ T,
Ts Ty
S / U(UB)Hdt —/ U(UB)Hdt
T T

= 0.

But the function v — U(u) — U(up) — VU(up)(uv — up) is positive everywhere except at up where it achieves
its global minimum value. It follows that p; is a Dirac mass concentrated at ug. That proves (2.9).

Step 5: Boundary Entropy Inequalities (IT).
We now establish the third inequalities in (2.8). We use once more the identity (2.23)-(2.24) with now

HZOa Suppgc [TlaTz]’ @Zoa SUppgDC [ylaoo)a Y1 >0a Ya = 00,
with a function ¢ depending on ¢, that is
o (y, 1) = @ley,t)
with ¢ fixed. In that situation one can check that

Ty 00
E; = —/ / U(u®) 0,0 ¢ dedt
Ty Jeys

Ty 00
— —/ / < Ve, U > 0,0 ¢dadt,
T, Jo

K)

Ty 00 N
Efr :—/T / F(u®) 0 0pp dadt

- 85(63/1)/ (F(v) = 0y U(v)|y=y, )8 dt

T
T 00 Ty
— - / < Ve, F> 00,0 drdt — $(0) / (< pyr 0, F > =0y < p, U >)y=y,) 042,
T, 0 T,
and

Ty (%) Ty
Efrp=—c¢ / / U(u®) 0 Oppip dadt — 0p(eyr) / U(v)y=y, 0 dt
Ty €Y1 Ty

— 0.

Since Efy, <0 and

Ts o0 Ts
—/ / <I/x7t,F> Hﬁxgﬁdxdt = / < vy, F > 6 dt + O(l)HQEHLl,
T 0 T
we obtain an inequality of the form
Ts Ty
#(0) / (< fyr 0, B> =0y < pu, U >|y:y1) 6dt > &(0) / <wvg, > 0dt + O()||¢Ls, (2.30)
T T
which proves the third inequality in (2.8) by chosing @ > 0 such that [|@||z1 — 0 but ¢(0) > 0.
This complete the proof of Theorem 2.1. a
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Remark 2.2. Additional uniform estimates and regularity can be obtained from the identity in Step 2 of the
proof of Theorem 2.1. Let (U, F') be a non-negative entropy pair that is uniformly convex on . Use the identity
(2.23)-(2.24) with

951, T1:0, TQIT, gDEl, y1:0, Yo = OQ.

We assume addiitonally here that, for a fixed state uo, and for all ¢,
u(x,t) = too, uy(x,t)—0 as ¥ — 0o.

The initial data uy should also decay rapidly at infinity. We obtain the following identity
T %] T
€ / Uw(T))dy — ¢ / U(v(y,0)) dy—l—/ Fus)dt
0 0 0

T T %]
—/ (F(ufg)—VU(ufg)ﬁyve(O,.)dt—l—/ / V2U (v°) - (9y0°, 9yv°) dydt = 0.
0 0 0

Since the following two terms are uniformly bounded

o [T v = | [ vt de| <o)

|/T VU (uf)dyv(0,.) dt| < O(1),

(Cf.(2.26) with # = 1), we deduce the uniform bounds

€ /OT Uw(T)) dy + /OT /000 V2U () - (9y0°, 8,v°) dydt < O(1). (2.31)

For every Lipschitz continuous function g, it follows from (2.31) that the sequence 8,g(v°) is bounded in L?,
so converges weakly to a limit which is nothing but 9, < u, g >:

Oyg(v) — Oy < p,g > weak- % in LZ(R?I_). (2.32)

ad

2.2. Finite Difference Schemes. We now extend the above analysis to several classes of finite difference
schemes that are known to be consistent with the entropy inequality (1.3). Theorem 2.3 below deals with the
entropy flux-splittings introduced by Chen-LeFloch [9], which also includes as a special case the Lax Friedrichs
type schemes. We treat the Godunov scheme in Theorem 2.4.

We are given two mesh parameters 7 and h with A = 7/h kept constant and small enough in order to garantee
the stability of the scheme. We define the approximate solutions u”(z,t) by the scheme

u(z,t 1) = ul (2t 4+ 1) — /\g(uh(x,t), u(x + h,t)) + /\g(uh(x — h,t), uh(x,t)) (2.33)
and the initial and boundary conditions:

uh(x,t) = uy(x) for all ¢t < 7,

h (2.34)
u(z,t) = up(t) for all « < h.

h

By convention, the functions u” are right continuous. For the Lax-Friedrichs type schemes, the numerical flux g

is given by

(v, 0) = 5(70) + ()~ L) (23)
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where @ € (0,1) is called the numerical coefficient of the scheme. (Symmetric positive definite matrices @ could
also be dealt with.) For the flux-splitting schemes, ¢ takes the form

gspiis (v, w) = [ (w) + [T (v), (2.36)
where f = f~ 4 f* is a given entropy flux-splitting for the system (1.1). By definition [9], the matrix V f*
have real eignevalues and a basis of eigenvectors and there exists a pair of functions Fy such that (U, F*) is an
entropy pair for the system associated with flux-functions f*. Observe that (2.35) is a special case of (2.36) as
was pointed out by Chen-LeFloch.
As in the analysis of Section 2.1, we assume a uniform L*° bound:

||Uh||L°°(R1) < O(1). (2.37)
We rescale u” and define the function v" : R?I_ — U by
o (y,1) = u(yh, 1) y>0,t>0.

Let v and g be two Young measures associated with «” and v” | respectively.
The entropy flux-splitting schemes satisfy discrete entropy inequalities of the form

Uu (2,64 7)) = Uu(x,t+ 7)) 4+ A (G(uh(x,t), u(x 4+ h,t)) — G(u"(x — h, 1), uh(x,t))) <0, (2.38)

where (7 is called the numerical entropy flux. With obvious notation, we have

GrLax(v, w) = %(F(v) + F(w)) — %(U(w) —U(v)) (2.35bis)
and
Gepiit (v, 0) = F~ (w) + F+(v). (2.36bis)

Note that (2.38) hold for (2.36)-(2.36bis) provided u takes its value in a sufficiently small neighborhood of a given
state in ¢ . This 1s in constrast with the vanishing viscosity method where no such assumption was necessary.

Theorem 2.1 admits the following extension to the flux-splitting schemes. We omit the proof which follows
the lines of the one of Theorem 2.1.

Theorem 2.3. Assume that U is a small neighborhood of a constant state in R . The measure fy,¢ 15 defined
for all y > 0 and almost every t, and is constant for y € [k, k+ 1) for any integer k. For all convex entropy pairs
(U, F), all y > 0, and in the sense of distributions in t € R, one has

F+(“B>+<ﬂ1,t,F_>> <y FY >+ <y, F™ >

> <yt FT >+ < pygor, F7 > (2.39)
> <oy, >,
po,t = Sup(t) for a.e. t>0, (2.40)
and
yETw<uyt,F >4 < pypr,6, F T >>< v, > (2.41)
O

Consider next the Godunov scheme corresponding to the flux g given by

gGodunov(Ua w) = f(R(Ua w))a (242)
where we denote by R(v,w) the value at 2/t = 04 of the solution to the Riemann problem with v and w as left
and right initial data, respectively. The entropy flux is

GGodunov(U w) =F R( )) (242b1s)
Here it is more convenient to consider the values R(u”(z,t),u"(x + h,t)) and define a function w”
w'(y,t) = R(u"(yh,t),u" (yh + h,1)) (2.43)

for all y > 0. We denote by 7 a Young measure associated with w” and by v a Young measure for u”. It is not
difficult to extend Theorem 2.3 as follows:
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Theorem 2.4. The measure w,; is defined for all y > 1/2 and almost every t, and is constant in y for
y €[k—1/2,k+ 1/2) for any integer k > 1. For all convex entropy pairs (U, F'), all y > 1/2, and in the sense of

distributions int € R, one has
< Tl/Z,taF >Z < ﬂ-y,t,F >

> < 7Ty+17t,F> (244)
> <o, I' >,
and, at y = 1/2 and y = oo, 7 satisfies
< Myyop, £ >= %n% R(ug,v"(1,1)), (2.45)
and
lim <7y F'>><wvgy, F > (2.46)
Yy—00
a

We conclude this section by giving the main conditions satisfied by the discrete boundary layer, which will be
studied in the rest of this paper.

Assuming in the results of Theorem 2.3 that p is a Dirac mass, say pu = §é,, the discrete boundary layer
equation associated with the scheme (2.33) takes the form:

g(v(y —1),v(y)) — g(v(y),v(y +1)) =0 for all y > 1,

2.47
W)= s, yelo,D) (247

while the discrete boundary entropy inequality is
G(up,v1) > F(ug), (2.48)

where v1 plays the role of a parameter. Formally, Theorem 2.4 leads to the same equations (2.47)-(2.48) with
flux and entropy-fluxes given by (2.42).

3. Sets of Admissible Boundary Values.

Based on the results in Section 2, we introduce in this section several sets which can be used to formulate the
boundary condition. For every method of approximation considered in Section 2, we introduce two different sets
of admissible boundary values:

(1) One is based on the entropy inequalities, £ °PY(ug) and yields a boundary condition of the form
(1.5). This boundary condition is rigorously satisfied by the limiting function generated by a sequence
of approximate solution. as was proven in Section 2. For arbitrary systems having few or even just one
entropy, the set £°PY (4 5) may be too large to lead to a well-posed problem;

(2) Another set, ' (up), is based on the boundary layer equation, which was obtained formally after the
analysis in Section 2. This set is more adapted to deal with general systems and lead to a well-posed
problem when the boundary is non characteristic.

In this section, we study the local structure of those sets; under certain assumptions, we can prove that the
sets 1% (yp) are manifolds with dimension equal to the number of negative wave speeds of the system (1.1).
This ensures that the initial-boundary value problem is well posed if, for instance, the data are constant states
(boundary Riemann problem) as can be seen by applying the theory in [35]. We recall that (1.1) is assumed to
be strictly hyperbolic throughout this section and we denote by A;(u) the N real and distinct eigenvalues of the
matrix V f(u) and by ¢;(u) and r;(u) corresponding basis of left and right eigenvectors.

3.1 Vanishing Viscosity Method. For the sake of generality, we consider

Ou + 8y f(uf) = € 9y (B(u)dpu), z>0,t>0. (3.1)
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Theorem 2.1 could be partially extended to this case. We assume that the viscosity matrix B(u) depends
smoothly upon its argument u and is positive. We consider entropies U that are B-convez in the sense that
V2U (u)B(u) > 0 for all u under consideration. The boundary layer equation here takes the form

0, 1(v) = 8, (B(2)d,v) (3.2)

and the boundary entropy inequalities have the same form (2.16) but now U must be B-convex.
Following Dubois-LeFloch [15], we introduce a set based on the boundary entropy inequalities. From now on,
the time-dependence may be omitted.

Definition 3.1. Given ug € U, the set of admissible boundary values based on the entropy inequalities associ-
ated with the vanishing viscosity method (3.1) is

gentropy (up) = {Uo € U; for all B-convex (U, F), F(up) + VU(UB)<f(U0) - f(UB)) > F(UO)}~ (3.3)

viscosity
a

It is obvious that this set may be quite large when the system (1.1) only admits few entropies. For most
systems (N > 3), this set is too large to be used to formulate the boundary condition. In any case, it is difficult
to get information on its local structure at upg. For general systems, the following observation is immediate.

Proposition 3.2. Fix a state ug € U and suppose that for some p one has
/\p(UB) <0< Ap+1(UB) (34)
and the basis r;(u) is a family of eigenvectors for B(u). Then the set obtained by formally plugging the expansion

flug) = flup)+ V(up)(uo —up)+ V>f(ug) - (uo — up,uo — up),

3.5
F(ug) F(uB)—i—VF(uB)(uo—uB)+V2F(uB)~(uo—uB,uo—uB) (35)

Q

in the definition of Sjgigoslfgy(ujg) is an affine manifold of dimension p containing up and spanned by the vectors

Tj(UB),jzl,Q,"',p- a

Proof of Proposition 3.2. The inequality under consideration in (3.3) then becomes
VU (ug) Vf(uB)(uo —up, Uy — uB) < 0.

Since U is an entropy and the system is strictly hyperbolic, the matrix V2U (ug) - (r;(ug), rj(uB)) is a diagonal
matrix. On the other hand, V2U(ug) B(ug) is positive and r;(u) is a family of eigenvectors for B(u), therefore
the matrix V2U(ug) - (rj(ug), rj(uB)) has positive diagonal elements. The desired result follows immediately.
O

We now introduce a second set of admissible boundary values.
Definition 3.3. Given any ug € U, the set of admissible houndary values Si?gfgsity(uB), based on the boundary

layer equation associated with the vanishing viscosity method is the set of all vo, € U such that the problem

B(v)0yv = f(v) — f(veo),

v(0) = ug, (3.6)
lim v(y) = voo.
Yy—00
admits a (smooth) solution v(y) € U for y > 0. O
To study the local structure of Si?syfgsity(ujg), we apply the following theorem concerning the existence of

invariant manifolds. Cf. Hartman [23] for a proof.
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Theorem 3.4. Consider the differential equation

Z—iz EE+ H(E &), €(y) RV, yeR, (37)

where H : RY x RN — R™ is of class C'! and for each &

H(0,&) = CZ—H(O,&J) =0, (3.8)
3
and E is a constant square matrix with d eigenvalues having negative real part, e eigenvalues having positive
real part, and N — d — e eigenvalues having zero real part. For every (small enough) &y € RY | let &y = E(y;€0)
be the solution of (3.7) with the initial condition £(0;&y) = &y. Denote by T, the mapping &y — &(y;&o).
There exists a one-to-one mapping of class C*, S : £ — S(¢) = (w!, w!! w!t!), having non-vanishing Jacobian
and defined on a neighborhood of ¢ = 0 € RY onto a neighborhood of (w!, wl! w!h) = (0,0,0) € RIx RN —4=¢

R?, such that the mapping ST,S™! takes the simple form

-1, I_ pPly I Iy .. I I _IIT
STyS . wy_e w0+W (yawOawO , Wy )a
7 _ Py 11 ire,.. .1 I IIT
wy =e€ ywO +W (ya Wy, Wy, Wy )a (39)
Irr _  pHly qIr irre,. 1 . 1T  IIT
w, ' =e Ywy™ + W (y; wy, wy', wy' ),

where P1, P! and P are constant real-valued matrices with all eigenvalues having moduli less than one so

that the matrix exponentials ePI, ePH, and """ are well-defined, the absolute value of any eigenvalue of P’

is less than 1, and that for P s greater than 1, and that for P s exactly 1. Moreover the mapping W/,

WL and W are of class C! and their first order partial derivatives with respect to (wi, wil wit!) vanish at

(0,0,0). Moreover one has

Wi=0 and W/l=0 if wli=0 and wl =0, (3.10)

and
Wi =0 and WM =0 if wif=0 and wif=0. (3.11)
a

The condition (3.10) means that the e-dimensional plane {wé =0,wi = 0} is a locally invariant manifold.
If S(&y) belongs to this plane, then |£(y;&p)| — o0 as y — oo. The manifold {g/wé =0,w = 0} is called the
unstable manifold of initial data for the equation (3.7).

The condition (3.11) means that the d-dimensional plane {wél =0,wi! = 0} is a locally invariant manifold.If
S(&p) belongs to this plane, then &(y;&y) — 0 as y — oo. The manifold {5/ng = 0,wi!! = 0} is called the
stable manifold.

Using Theorem 3.4 we prove the following result.

Theorem 3.5. Let up € U be given and assume that, for all u in a small neighborhood of up,

the basis r;(u) is a family of eigenvectors for B(u),

(3.12)

the eigenvalues of B(u), say b;(u), are positive,

and

Ap () < 0 < Ay (u) (3.13)

holds for some p. Then the set S\ll?syfgsity(ujg) contains the point up and, locally nearby up, contains a manifold

with dimension p at least. When 0 < A,11(up), Slayer

viscosity
tangent space at the point up is spanned by the eigenvectors r;(ug), j=1,2,--- p. a

(up) is a manifold with dimension exactly p and its

A similar result has been proved by Gisclon in [19] by another method.
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Proof of Theorem 3.5. The system in (3.6) can be written in the form

3—5 = B(ve) "1V (000 )5+ G(F, v20),
9(0) = up — Voo, o
¥(00) = 0,

where 9(y) = v(y) — voo and the mapping G(9, ve,) satisfies G(0,v0) = 0, %(O,Uoo) = 0. In view of the
assumption (3.12), the two matrices V f(ve) and B(ve )"V f(voo) have the same eigenvectors, and so exactly
the same number of positive, zero, and negative eigenvalues. Let

Aj(voo) = b (v0) ™ Ay (ves)
be the eigenvalues of B(veo ) !V f(veo). Applying Theorem 3.4 with

E(y;€0) = (Y uB — Voo ),

we see that there exists a one-to-one C'' mapping S, defined on a neighborhood of 0 € RY onto a neighborhood
of (w!, w! w!) = (0,0,0) € R* x RN=P=! x R' such that the manifold

&= {o/w(@)=0, w'(v)=0},

which is of dimension p, is stable. For any point up — v, taken in this manifold as an initial data for the
differential equation in (3.14), the solution ¢(y) converges to 0 as y — oo, which is the third condition required
in (3.14).

If voo belongs to this manifold, then (3.14) has a solution and hence v, solves the boundary layer problem.
Furthermore the local structure of the ser nearby up can be described as follows.

Suppose that 0 < Apy1(up). The following estimate follows from (3.14):

B(y) = 3 M (ve0) - (up = Vo)1 (Vo) + 0(5(9)), (3.15)

j=1
For the right handside of (3.15) to go to zero, we must have
95 (Vo) = 4 (Ve0) - (up — Vo) = 0, j=p+1,---N. (3.16)
Keeping up fixed, consider the map ¢ : U — RY~P with components g; given by (3.16). We have
dg

dveo

(up) = —(lpt1(up), -+ In(up)), (3.17)

whose rank is N — p. By the implicit function theorem, (3.16) defines a manifold passing through up and of
dimension p. By construction its tangent space at upg coincides with the one for the stable manifold £. Therefore,
in view of (3.17), the tangent space at up for £ is spanned by the r;(ug), j =1,2,---  p. a

A general inclusion can be proven regarding the sets introduced in the previous sections. It has been first
pointed out by Serre [43] (cf. also [19]) that:

Proposition 3.6. The two family of sets introduced in Definitions 3.1 and 3.3 satisfy the inclusion

glayer (UB) C gentropy (UB) (318)

viscosity viscosity

for allug € U. ad
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Proof of Proposition 3.6. Let vy, be a point in S\l,?syfgsity(ujg) and denote by y — v(y) the associated boundary

layer function which satisfies v(0) = up and v(o0) = veo. Consider the following function of the variable y > 0:

0w) = Plro) = F(u(w) + TV ) (F(0m) = S0(0). (3.19)
It is easy to see that
) = P (£00) = S ) S00) ~ 010 )
>0

So the function € is non-decreasing, and since limy,_.o. Q(y) = 0, we deduce that Q(y) < 0 for all y, in particular
for y = 0, that is
F(on) = F(un) + VU {ug) (F(v) — f(up)) < 0.

Thus v, belongs to gentropy (up). O

viscosity

3.2 Finite Difference Schemes. We now turn to formulations of the boundary condition that are based on
finite difference approximations. We use the notation in Section 2.2. We consider a scheme characterized by its
mesh parameters 7 and h with A = 7/h small enough, and by its numerical flux g(.,.) and its family of numerical
entropy fluxes G(.,.). Tt is tacitly assumed that the values « remain in a small neighborhood of a given state
and attention is restricted to those entropies U such that the discrete entropy inequalities (2.38) are satisfied. In
fact attention is mostly restricted to the Lax-Friedrichs type schemes and the Godunov scheme.

Definition 3.7. Given ug € U, the set of admissible boundary values based on the entropy inequalities associ-
ated with difference scheme is

SentrOpy(uB) = {uo € U; There exists vy s.t. for all convex (U, F'), G(up,v1)) > F(uo)}. (3.20)

scheme

ad

As for SentrOpy(uB), this set may be too large to garantee that the boundary value problem is well posed. We

scheme
. . entropy entropy entropy
also use the obvious notation &, " (ug), Ssphttmg (up), and E5 40 (up).

For general systems and the diagonalizable splttings, i.e. those such that the vectors r; form a basis of
eigenvectors for the matrices V%, we have:

Proposition 3.8. Consider a Lax-Friedrichs type scheme or, more generally an diagonalizable, entropy flux-
splitting scheme. Fix a state up € U and suppose that (3.4) holds for some p. Then the set obtained by formally

linearizing the inequalities in the definition of £, °P (up) is an affine manifold of dimension p containing up

and spanned by the vectors rj(ug), j =1,2,---,p. a

Proof of Proposition 3.8. We formally plug the second order expansion
FE(ug) = FE(up) + VF*(up)(uo — up) + V2FE(up)(uo — up, uo — up) (3.21)
and obtain the second order version of the inequalities in (3.20):

VF(up)(ug— up) + VZF(UB)<UQ —upg,ug — uB) < VF ™ (up)(vy —up) + VZF_(UB)<1}1 —upg, vy — uB).
Using the trivial entropies (i.e. choose for F' the components of f), we get an (second order) expression for vy:
VI (up)(vi — ug) + V?f (up)(v1 — up,vi — ug) = Vf(up)(uo —up) + V>f(up)(uo — up, ug — ug),

which can be used to rewrite the above inequality:

VZU(UB)Vf(uB)(uo —ug,ug — uB) < VZU(UB)Vf_(UB)<Ul —up, v — uB).
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At the first order, vy 1s given by
Vi~ (up)(vi —up) = Vf(up)(uo — up)
so we arrive at the inequality
—Vf+(uB)TVf_(uB)_Tsz(uB)Vf(uB)(uo —ug,ug — uB) < 0.

The desired result follows immediatly since 7; is a basis of eigenvectors for the matrices Vf*, Vf~, and V[,
and the function U is convex. O

The second family of sets is now defined.

ohome(uB), based on the boundary
layer equation associated with the difference scheme is the set of all v, € U such that the problem

9(v(y),v(y +1)) = f(veo),

Definition 3.9. Given any ug € U, the set of admissible boundary values glayer

v(y) =up fory€[0,1), (3.22)
lim v(y) = voo,
Yy—00

admits a (piecewise constant) solution v(y) € U for y > 0. O

To study the local structure of Ssli}}i;le(ujg), we apply the following theorem concerning the existence of discrete

invariant manifolds. (Cf. Hartman [23] for a proof.)

Theorem 3.10. Let T : RY — RY & — &, be a mapping of the form

& =T + E(&), (3.23)

where E(&g) is of class C1 for small & and satisfy E(0) = 0 and 5—5(0) = 0, and the matrix ' is constant,
non-singular, and has d > 0, N —d — e, e > 0 eigenvalues of absolute value less than 1, equal to 1, and greater
than 1, respectively.

There exists a map S of a neighborhood of &y = 0 onto a neighborhood of the origin in the space of
(wh, wi Wil € R? x RN=97¢ x R® such that S is of class C' with non-vanishing Jacobian and STS™1
takes the simple form

STS™: wl = Alwl + W (wl, wlf wlh,
wlt = AT W (ol ol il (3.24)
wll = AT T I (1 o 1T Iy,

where P, P! and P! are d x d, (N —d —¢) x (N —d —¢), and e x e square matrices with eigenvalues of
absolute value less than 1, equal to 1, greater than 1, respectively, and the mapping W', W' and W' are of
class C and their first order partial derivatives with respect to (wl, wi! wil!) vanish at (0,0,0). Moreover one

has

Wi=0 and W/l=0 if wli=0 and wl =0, (3.25)

and
Wi =0 and WM =0 if wif=0 and wif=0. (3.26)
a

The condition (3.25) means that the plane vy = 0, wy = 0 of dimension d is locally invariant manifold and if
R(&p) belongs to this manifold then T"¢y — 0 as n — oo.

The condition (3.26) means that the plane ug = 0,wy = 0 is a locally invariant manifold and if R(&g) belongs
to this manifold, | T"&p |— oo as n — oo.

Using this theorem we shall prove:
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Theorem 3.11. Consider a Lax-Friedrichs type scheme. Let up € U be given and assume that (3.13) holds

glayer

1o (up) contains the point up and, locally nearby up, contains a manifold with

dimension p. When 0 < Apy1(ug), Slayer

Lax

the point up is spanned by the eigenvectors r;(ug), j =1,2,---,p. a

for some p. Then the set
(up) Is a manifold with dimension exactly p and its tangent space at

Proof of Theorem 3.11. We search for all v, that solve the problem:

v(0) =0, (3.27)
v(00) = Voo
with \
H(v(y),v(y + 1), vee) S v(y + 1) — v(y) — @(f(v(y)) + f(o(y +1)) = 2f(ve0 ). (3.28)
Using the notation H = H (v, w, vs), We compute
aa—i](v, W, Vo) = Id + %Vf(v),
PYe N (3.29)
— (v, W, v00) = Id — —=V f(w).
3w( 1, Vo) 2Q

For A/(2Q) small enough, the matrix dH /0w is invertible and its inverse is uniformly bounded w.r.t the variables
v, w, and ve,. By the global implicit function theorem (see J.T. Schwartz [45]) the system (3.27) can be solved
for v(y + 1). So there exists a smooth mapping K (v(y), veo ) such that

v(y+1) = K(v(y), veo) (3.30)
and K (0o, veo) = 0. Moreover one has
o (), ) = (1= 5y + 1) (1 + 55 V(0 w). (331

The system (3.30) can be linearized around veo:

Ao - Ao
o+ 1) == (1= 555 00) 7 (104 55 500 et)
Ao - Ao
4R (o0) v+ (1= 5550 0)) 7 (14 55 5 ).
Set v*(y + 1) = v(y + 1) — veo. The system can be written as
Ao - Ao
v+ ) == (1= g5 w) T 1+ g5 ) )
Ao - Ao
4G )+ vy v) (1 = 55 5 )™ (1 4 5 2 ) )

In other words

vy +1) = Afve )o"(y) + K7 (07(y), veo), (3.32)

where
A(veo) = (Id — %Vf(voo))_l(fd + %g—ﬁ(vw)) (3.33a)
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and
]

0K
K* and ——— vanish at v* =0. 3.33b
o () (3.33b)

We observe that
1+ /\/\z(voo)

1= 2 (voo) (334

The eigenvalues of the matrix A(ve,) are

where we recall that A;(ve) are the eigenvalues of V f(ve).
Namely (3.34) follows from the fact that the following two statements

(1) ais an eigenvalue of A(ve,),
(2) There exists r # 0 such that A(ve)r = ar,

are equivalent.
Using the expression (3.21) of A(vs) and simplifying the resulting equation, we get

(a—1)

Vi(veo)r = M1+ a) r.

So a is an eigenvalue of A(vs,) if and only if >\(1+ ) is an eigenvalue of 8 fJu(ves) with right eigenvector r; so

a—1

e i) (3.35)

for some ¢ with left eigenvector ¢;(veo) and right eigenvector r;(ves ). Solving (3.35) for a we get ith eigenvalue

of A(veo)

. 1+ /\/\z(voo)
4 = 1 hi(om) (3.36)
let 7' be a matrix which diagonalize V f(vs). Then the same matrix diagonalize A(veo):
TAT ! = diag(ay, az, - -ay).
Set w*(y+ 1) =Tv*(y + 1), we get
ay
as 0
w'(y+1)= . w*(y) + L (T w0 (y), veo)
0 ap
where G* and % are zero at w*(y) = 0.
Note that
ar < ap < -o-dp <1 <apyr <0 < ap. (3.37)

and
ap+1 = 1< /\p+1(voo) =0.

Since all the hypothesis of Theorem 3.10 are satisfied, there exists a p-dimensional invariant manifold defined
near 0 such that, if the data v} belongs to this manifold, then w*(y + 1) — 0 as y — oco. In fact in terms of the
original variable v(y 4+ 1), we have the expansion

ai < Lj(u),vp — Voo > 1 (Voo) + 0(| v(y + 1) = veo 2. (3.38)

Mz

v(y+1)— v =
j=1
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In order for this to go to zero, as y — 0 we must have
<l (Veo), UB — Voo >= 0, j=p+1,---N. (3.39)

This for fixed ug defines a map from R — RY~P and whose Jacobian at up = ve is the matrix whose N — p
rows are ;(ve;). Since £;(ve) are linearly independent by implicit function theorem we deduce that (3.39)
defines a p dimensional manifold passing through up and if vy is in this manifold then there exist a solution to
(3.29) whose local structure is given by (3.39). O

The following general inclusion can be proven:

Proposition 3.12. The two family of sets introduced in Definitions 3.7 and 3.8 satisfy, for allug € U,

Eatheme (UB) C Expine (up). (3.40)

ad

Proof of Proposition 3.12. We consider as before a difference scheme that satisfies discrete entropy inequal-

ities. For every ve, in the set Sslifii;le(u]g, there exists a corresponding boundary layer profile v(y), solution
of

9(v(y),v(y + 1)) = f(veo).

The function v(y) is actually a stationnary solution to the scheme since

v(y) = v(y) + Ag(v(y), v(y + 1)) = g(v(y — 1), v(y))) = 0.

Therefore for every convex entropy pair (U, F'), it satifies the entropy inequality

U(v(y) = U(v(y) + MG (e(y), v(y + 1) = Glu(y — 1), v(y))) <0,
which is nothing but
G(o(y), v(y + 1)) = Glo(y — 1), v(y) < 0
Since limy oo ¥(y) = Voo, We get

Go(y), v(y +1)) 2 F(ve)
and so with y = 0, since v(y) = up for y € [0, 1),

G(up,v1)) > F(ug)

with v; = v(1). That establishes that v, belongs to the set SentrOpy(uB). O

scheme

Finally we treat the Godunov scheme. The sets Sggginov(ujg) and Sg:fgiﬁ};v(ujg) are defined by Definitions 3.7
and 3.8. We now prove:

Theorem 3.13. Consider the Godunov scheme and let up € U be given. We have
glayer (UB) — gentropy (UB) (341)

Godunov Godunov

This set can also be described as the set
gRiemann(uB) = {R(UB, w)/w c L{}’

where R(up,w) denotes the value at x/t = 0+ of the solution of the Riemann problem with data up and w
on the left and right, respectively. Moreover when (3.4) holds for some p, the set above contains the point up
and, locally nearby upg, is a manifold with dimension p and with tangent space at the point ug spanned by the
eigenvectors rj(ug), j =1,2,---,p. a

Observe that the Godunov scheme does not produce any boundary layer, in the sense that the layer contains
no interior point.
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Proof of Theorem 3.13. We recall that the set &Y (up) is defined by the equation

Godunov

flus) = f(R(v(y),v(y + 1)),
v(y) =up forall y€[0,1), (3.42)

. v(y) = veo,

while the set £57OPY (up) is defined by the inequalities

Godunov
F(R(up,v1)) > F(up) for all convex pair (U, F) (3.43)
and for some v; € . So it is not hard to see from the definition that

Ri 1
ENAN up) C EGS qunov (UB)-
On the other hand the inclusion

1 t
Egoaunoy (UB) C EGoduney (UB)

also holds in view of Proposition 3.12.
It remains to show that

SR ) € ER )

Consider a pair (ug, v1) that solves (3.43). Then w need show that there exists w such that
R(up,w) = ug. (3.44)

Using the trivial entropies, we get

f(R(ug,v1)) = f(uo)

which, combined with the inequality (3.43), shows that the pair of states (R(up, v1), ug) is an entropy satisfying,
stationnary shock wave. On the other hand the Riemann problem with left and right initial data up and
R(up,v1), respectively, contains only waves with non-positive speeds. Therefore the Riemann solution, with up
as a left state and wug as a right state, only contains waves with non-positive speeds. This function takes the
value ug in the whole half-interval /¢ > 0 and thus R(up, ug) = ug, which proves (3.44) with w = uo. O

4. Selected Examples 1.

In this section, we investigate first the convex scalar conservation laws and establish that all the sets introduced
in Section 4 are essentially the same. Some remarks are then given for the linear hyperbolic systems. Next we
return to the scalar equation and treat a non-convex flux function, showing again that the sets are the same with
the exception of the set based on the boundary layer equations.

4.1. Scalar Conservation laws: Convex Fluxes. We consider a scalar conservation law with strictly convex
flux, i.e. f”(u) > 0 and analyze the boundary layer equation. Let u. be the unique point such that f'(u,) = 0.
To the state up, when up # u., we associate the solution u¥, # up of the equation f(u%}) = f(ug).

We show here that some of the sets introduced in Section 3 coincide in this case. We also recover the
formulation of the boundary condition discovered by Bardos-Leroux-Nedelec [4] and Leroux [34].

Theorem 4.1. Consider a scalar conservation laws with convex flux.
1) For any up € U = R, the sets of admissible boundary values gentropy (up), glayer (up), and gentropy (up),

viscosity Godunov Godunov
coincide with . ,
gRiemann(uB) _ (—OO, UB] U {UB} if Up > Us, (41)
(=00, ] if up < uy.

and

g\ll?syfgsity (UB) = gRieman(UB) - {U*B}
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2) Given up € U = [~M, M] for a fixed value of M > 0, we set ||f'[|co = subPye[—sn sar [/ (w)] and consider a
Lax-Friedrichs type scheme with coeflicient A and Q satisfying ||f||ccA/Q < 1, then

glayer(uB) N [—M, M] — gRiemann(uB) N [_M’ M] — {U*B}

- " (4.2)
Elax " (up) N [=M,M] = 3 (up) N [-M, M]
O
Proof of Theorem 4.1.
Step 1: The set Si?syfgsity(ujg).
The problem to be solved is
B(v)dyv = f(v) = f(ves) (4.3)

with the boundary conditions up and ve, at y = 0 and y = oo respectively. We need show that (4.3) has a
solution if and only if v., belongs to the set described in (4.1).

Case 1 : up > u,. In this case f'(up) > 0 and up is an “entering” data.

If veo > up (4.1) has no solution because, at y = 0, dyv < 0 and hence v is decreasing at y = 0 and hence all
later points.

If up > veo > u}y then f(up) — f(voo) > 0, and hence v is increasing at y = 0 and at every point for the same
reason and hence there does not exist solution.

If veo < v, then f(up) — f(ve) < 0 and v is decreasing at 0 and for all points for a similar reason. Since
u(y) cannot cross ve,, because ve, is a critical point v(y) converges to ve as y — oo.

If veo = uly, then f(up) = f(veo)
dyv(0) = 0.

Now the equation (4.3) with initial conditions v(0) = ug, dyv(0) = 0 has a unique solution namely v(y) = up.
Hence v(y) does not go to u}; as y — co. Hence no solution.

Case 2 : up < uy.

If veo < u, reasoning the same way as before we get existence of solution.

If voo > uy, since we want u(y) — veo as y — o0, there exists y; such that w, < v(y1) < ve and at
y1, f(v(y1)) — f(veo ) < 0 and hence v(y1) is decreasing at 1 and hence v(y) cannot go to veo.
Step 2: The set Slayer(uB).

Lax

Recall that the boundary layer equation here is

%(f(v(y +1)) = fve)) + @(f(v(y)) — f(veo)) = v(y + 1) — v(y) (4.4)
We show:
Either v(y 4+ 1) = veo = up for all y or v(y + 1) > v(y) for all y or v(y + 1) < v(y) for all y. (4.5)

To show (4.5), we subtract the equation (4.4) with y replaced by y — 1 to the original equation (4.4). Using
the mean value theorem we get

%f’(&)(v(@/ +1) —o(y) + %f’(&)(v(@/) —o(y—1) = (o(y +1) —v(y)) — (v(y) — vy = 1)).

Rearranging the terms, we arrive to

L= 5o+ 1) = o) = (14 55 /€D = oy = D).
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The claim (4.5) follows since (1 — %f’(fl)) and (14 %f’(fz)) are positive.
By the implicit function theorem, given up, there exists a solution v(1),v(2),---,v(y + 1) to (4.4) on the
interval [0, y+1]. We have to find v, for which v(y+1) — v., and show that this set is &(up)emann N [— M, M].

Case 1 : up > Uy.

If veo > up there is no solution. Namely, if there is a solution we must have ., < up < v(y) < v(y+1) < veo.
This implies on one hand v(y + 1) — v(y) > 0 and on the other hand from (4.4), v(y + 1) — v(y) < 0, since both
terms on the left are < 0.

If uly < veo < up, there is no solution. Namely if there is a solution we must have v(1) < up and

A A
@(f(v(l)) — f(veo)) + @(f(UB) — f(ve)) = v(1) — up (4.6)

Since uly < Voo < up, f(up) — f(voo) > 0 and hence from (4.6), we get

A

3g/(w) = flup)) < —up.

By the mean value theorem (—1+ %f’(fl))(ul —up) < 0, which implies v(1) —up > 0 contradicting v(1) < up.
If voo < uly, then there exists a solution to (4.3). Indeed from (4.4) we have

up >v()>v(2)> - vy+ 1) >v(y+2) -

We have to show that v(y + 1) > ve, for all y. Otherwise, there exists yo such that v(yg — 1) > ve > v(yo). But
then f(v(yo)) > f(v(yo — 1)) and from (4.4) we have

A

5g (w0 = 1) = f(v(yo)) < vyo —vlyo — 1).

This implies (1+ %f’(f))(v(yo) —v(yo — 1)) > 0, which is not possible since v(yy) < v(yo —1). Hence v(y) > voo-
Since v(y + 1) is a monotone sequence, there exists uq, su that

v(y+ 1) — ueo as y — 0o.

Letting y — oo in (4.4) we get
flus) — flves) = 0.
Since ueo and v, are less that u,, we deduce that e, = vos.
If voo = up then

A

E(f(vl) — f(veo)) = v1 — up.
Since f(veo) = f(up), we get

A

2Q
That is (1 — %f’(f))(vl —up) = 0. Since (1 — %f’(f)) > 0, we get v1 = up and hence v(y) = up for all y.
Thus v(y) cannot converge t0 veo.

(f(v1) = f(up)) = v1 —up.

Case 2 : up < u,.
By an arguments similar to that we have done above we can show that the set of vy, for which (4.4) has a
solution is (—oo, u.] N [—M, M].
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Step 3: The set £MoPY (up).

viscosity

This is the set of all ug € R such that

Fup) +vU(up)(f(uo) = f(up)) 2 F(uo) (4.7)

for all convex entropy pairs (U, F'). Tt is well known that for scalar conservation laws it is enough to consider

Kruzhov entropics: U(u) =] u — k |, F(u) = sgn(u — k)(f(u) — f(k)) for k € R. In this case (4.7) reduces to

(sen(us — k) — sgn(uo — k) (f(wo) = F(k)) = 0 (4.8)

for all £ € R. This inequality holds trivially if £ is not in [min(ug, up), max(ug, up)]. We determine the set of
all ug such that (4.8) holds for all & € [min(ug, ug), max(ug, up)]. We need to consider several cases.

Case 1 : upg > u,.
If ug > up, then for (4.8) to hold we must have —2(f(ug) — f(k)) > 0 for k € [up, ug], which is not possible
as f(ug) — f(k) > 0 for k € (up, up).

If u} < up < up, then we must have f(ug) — f(k) > 0 for k € (up, ug). This is not possible for k > uf.

If ug < upy < up, then we must have f(ug) — f(k) > 0 for all k € [ug, ug], which is true. Thus we get

Erinconiy (uB) = (=00, up) if up > u..

Case 2 : up < uy.
If ug < up < uy, then for (4.8) to hold we must have f(ug) — f(k) > 0 for all k € [ug, up], which is true.
If up < ug < uy, we must have —(f(ug) — f(k)) > 0 for all k € [up, ug], which is true.

If wg > ., then we must have —(f(ug) — f(k)) > 0 for all k € [up, ug]. This is not true because u, € [up, ug]
and f(ug) — f(u.) > 0.

Thus we get

Ermoniy (up) = (=00, u.], if up < u..

Step 4. &MY (up) N [-M, M].

Lax

This is the set of all ug € [-M, M] such that there exists vy for which

F(u) 4 F(v1) + o2 (Uu) — () > F(uo) (4.10)

for all convex entropy pairs. Since the Kruzkov entropies
Uk) = u—k |, F(u) = sgnu—k)(f(u) = [(k)),
generates the set of all convex functions, (4.10) reduces to

A

sgn(up — k)[@(f(UB) — J(k) + (up — )]+
sgn(vy — k)[%(f(vl) — f(k) = (v1 — )]+ (4.11)

A (Fuo) - (k) 2 0.

sgn(ug — k)[Q
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for all £ € R. If there exists v then by taking large negative and positive k we get v1 must satisfy

%(f(UB)‘i'f(Ul))‘i‘UB — v = %f(UO) (412)
From (4.12) we get
A
| v1 — Ef(vl) |<4M (4.13)

provided we choose A and ) such that %maXEE[_MyM] | /(&) |< 1. From (4.13) we get | 1— %f’(f) [|v1 |<4M,
for some £ between 0 and v;. Now if we choose A and @) such that %maXKKSM | /(&) |< 1, then (1 —1/2) |
vy |<4M. In otherwords if we choose A and @) such that

A
o, | 7€) 1< 1 (4.14)

then there exists a solution vy of (4.12) and v; has the estimate
| v1 |< 8M. (4.15)

Let I(up,up,v1) be the closed interval [min(up, ug, v1), max(up, tg, v1)]. Then for all k outside I(up, up, v1)
the inequality (4.11) is trivially satisfied. Thus ug is in gentropy (up) N[—M, M] iff vy satisfy (4.11) for all £ in

Lax
I(up,ug,v1). Rewriting (4.12) and applying mean value theorem we get

(1= 55 (€)1 = ) = (1+ 557 (€2 (us — wa)

for some &1 in between vy and ug and &2 in between up and ug. This says by (4.14) and (4.15)
UB > Uy <= V] > Vo, UR < Uy <= V1 < Uy, UB = Uy <= V] = Ug. (4.15)
So far we have not used convexity of f(u). Now consider f(u) is convex.
Case 1 : upg > u,.
If up < ug, then by (4.15) v1 < ug. On the other hand from (4.12) %(f(vl) — f(up)) + up —v1) > 0. By
Af

the mean value theorem, this implies (1 — ﬁ(g))(uB —v1) > 0 for some & in between v; and ug. This means

that up > v1. Now for (4.11) to hold for & = up, we must have

A A
—og) — fus)) + (v —us) = 5

Since f(up) — f(up) > 0, we must have vy — up — %(f(vl) — f(up)) > 0. Applying mean value theorem we

(f(uo) = f(up)) = 0.

get v1 — vp > 0. This contradicts up — v1 > 0. Thus ug is not admissible. If u} < up < up, as before we get
ug < up < v1. By taking & = up, we can show that ug is not admissible. If up < u%, then we get up < v < up.
Now let k € [ug, v1] in (4.11) we must have

A A A
S () = £ + (g = 1)+ 2(0n) = ) = (0= 1)+ 5
Using (4.12) this is equivalent to (f(uo) — f(k)) > 0, which is true since up < u}; and vi < up and k € [ug, v1].
Now if k € (v1up], we need to check

(f(uo) — f(k)) > 0.

%(fwB) S F)) + (up — ) — 2 (Fon) — FR)) + (01— B) +

20 (f(uo) — f(k)) > 0.

A
Q



28 BOUNDARY LAYERS FOR SYSTEMS

Using (4.12) this is equivalent to

A

@(f(ug) — f(k)) + (ug — k) > 0, for all k € (vy,ugp].

Byy mean value theorem it follows that this is true. Thus we have the admissible set

EOPY () N [—M, M) = [-M, u}] if ug > u..

Lax

Case 2 : up < uy.

If u. < ug < uf, then as before up < v1 < ug. For ug to be admissible from (4.11) for all k£ € (v1, ug] we
must have f(k) — f(ug) > 0 which is not possible since ug > ..

By a similar argument we can show that if up > uj, %o is not admissible.

If up < up < uy, then we get up < v1 < vg < uy. If k € [up,v1] (4.11) is equivalent to %(f(k) — flup)) +
(k—wup) > 0, which is true. If k € (v1, ug] (4.11) is equivalent to f(k) — f(ug) > 0 which again is true. Thus ug

1s admissible.

If ug < wupg, 1t can be shown by the same reasoning as above ug is admissible. Thus we have

gentropy (up) N[-M, M] = (=M, u.] if up < u,.

Lax

4.2 Linear Hyperbolic Systems.
It is not hard to prove that for a linear and strictly hyperbolic system, the sets defined in Section 3 are all
equivalent. We only consider here the case of the discrete boundary layer based on the Lax-Friedrichs scheme.
We also focus attention in this section to establish that the restriction (3.12) on the viscosity matrix is essential
to our purpose here, as was observed in another context by Majda-Pego [40] in their study of traveling wave
solutions to (2.1). The following example shows a situation where the viscosity matrix is a positive diagonal
matrix, and does not satisfy (3.12), while the formulation may lead to a “wrong” boundary condition.

&/&/e C()nSIder ‘he llnear Sys‘em

According to our earlier analysis, the boundary layer equation is

oo =" V(0 2w,

Oyyv(y) = (; :;) Ay u(y).

Integrating this equation once and using v(+00) = veo, We get

1.e.

0yv(y) = (; :;) (v — Vo). (4.17)
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5 =5
3 -3
are p1 = —2 and ps = 0. The solution of (4.17) with the initial condition v(0) = vp — veo is

J |
Now the eigenvalues of ( ) are Ay = 0 and A2 = 2. On the other hand, the eigenvalues of <3 )

V(YY) — Voo =< 01,0 — Voo > P18 Y4 < Uy, VB — Voy > Ta,

() =G =() ()

In order for v(y) — veo as y — oo, we must have < Uy, v — Voo >=0 or

where

<Ay Voo >=< b, vp > .

This requires that we prescribe < €5, u > at the boundary. But the correct boundary condition for the hyperbolic

system
5 =5
3tu+<3 _3)6“1:0

is to prescribe < {5, u > where {5 = (\/LE’ —%)
Let us now consider the numerical boundary layer for a general linear and strictly hyperbolic system. Set
f(u) = Au, where A is a constant matrix. The boundary layer equation becomes

%A vly+ 1)+ %A v(y) — %(v(y +1)—v(y)) = A Ave, (4.18)

v(0) = vg, v(00) = Vo

For a given up, we search for the set of states v, for which this problem has a solution. Set v*°(y) = v(y+1)—veo.
The first equation in (4.18) becomes

(A =Dv*(y) = —(AA + Do (y — 1). (4.19)

Let ¢; and r; be the left- and right- eigenvectors for A associated with the eigenvalues X;. Set CY(y) =<
L;,v(y+ 1) >. From (4.19) we get

(1=AM)C() = (1+AX)C (y - 1)

or

Ciy) = Gjiij)(ﬂ(y—l)

with '
C(]J =< f]',UB — Vg > .

Integrating this, we get

J — . _
C'y) =< {j,vp — v > (1—/\/\]'

or
- SN

v(y+1)—veo = v (y):Z<1—/\A]') < lj, up — Voo )T

j

ji=1
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For v(y+1) — veo, Wwe need < £, vp—voe >= 0,7 =p+1,---nbecause Ay <Xy <---X, <0< Apq < -+ Ay
This gives correct boundary condition when the eigenvalues are not zero; i.e. to prescribe
<AL, u> for j=p+1,---  N.

4.3 Scalar Conservation Laws: Non-Convex Fluxes.
We return to scalar conservation laws but now with non-convex fluxes. For definiteness we treat the case of
the cubic flux given by

1
F(w) = 5(w* = 3u), (4.20)
which has one minima and one maxima; indeed

J =1 f(1)=0, f(1)=3, S~ =1, f(=1) =0, f'(-1) = 3.
For a given up € R and the function f given by (4.20), we shall need the solution of the equation
flu) = f(up),u # up. (4.21)
If up < =2 or up > 2, there is no solution for (4.21). If up € (—=2,—1) U(1,2), then (4.21) has exactly two
solutions. In this case we denote by u% and u% the largest and smallest solutions of (4.21), respectively. If
up = —2,—1,1, or 2, then (4.21) has exactly one solution; namely 1,2, —2, and —1, respectively.
For the formulation of the results in this subsection, i1t will be convenient to introduce the following set, which

is either the empty set or contains a single element:
0, ifup € (—oo, =2)U[—1,1]U(2,00)

{1} 1fuB = -2
E(ug) = { {up}, if —2<up<-1 (4.22)
{ug}, ifl<up<2.

{—1} ifuB:2.

When E(up) is non-empty, we denote by u} its element.

Theorem 4.2. Consider the scalar conservation law with the non-convex flux (4.20).

1) For any up € U = R, the set of admissible boundary values Sjgigoslfgy(ujg),Sgg’ginov(ujg), and Sérggigﬁv(ujg)
coincide with

{ug}, ifup < =2
{-2,1}, ifug = =2
[u, 1JU{up}, if—2<up< -1
ghiemann oy ) (1, 1] if —1<ug<1 (4.23)
[-1,uglU{up}, ifl<up<?2
{up}, ifug > 2
{2,-1}, ifup =2

and .
Eret iy (up) = EMM (up) — E(up).

2) Given any state up € U = [—-M, M| for a fixed value M > 2, we set || f' ||ooc= SUDy, e[—8M ,8M] | f'(w) | and
consider a Lax-Friedrichs type scheme with coefficient A and @ satisfying || f' ||co % < 1. Then

EL (up) N [=M, M] = EMema (4 5y A [ M, M] — E(up),

Lax

gentropy(uB) N [—M, M] — gRiemann(uB) N [_M’ M]

Lax

(4.24)

ad
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Proof of Theorem 4.2.

Step 1. & (up).

viscosity

This is the set of all v, such that the problem

yv = fv) = f(veo),

v(0) = up, v(00) = Voo,

&
—

<
=

S

(4.25)

has a solution. First of all we note that, for any ug, the state vo, = up is admissible. On the other hand, any
solution of (4.25), if it exists, should be strictly monotone or constant throughout the interval.

Case 1 : up < —2.

If voo < up, then dyv > 0 at y = 0 and v(y) increasing at y = 0 and hence at all later points. Thus (4.25)
cannot have a solution.

If voo > ug, then f(vo) > f(up) and hence dyv < 0 at y = 0 and, thus, for all y > 0. Therefore (4.25) does
not have solution.

Thus we get

Eftbosity (u) = {up}  ifup < -2,
Case 2: —2<up < -—1.

If voo < up or up < Voo < ul, arguments similar to Case 1 shows that (4.25) has not solution. If ve, = uf,
then from the definition of v} and the ODE in (4.25) we get d,v(0) = 0. But this, together with v(0) = up,
uniquely determine the solution of B(v)dyv = f(v) — f(veo ), namely v = ug. Thus (4.25) has no solution since
v(y) cannot go to ve,. (For up = —2, we used notation uy = 1.) If u}; < vee < 1, then f(up) — fve) =
fluy) — f(vee) > 0. Hence dyv > 0 at y = 0 and for all y such that v(y) < 1. Since vy, is a critical point v(y)
cannot cross ve, which is less than one and v(y) — voo.

If =2 < up < —1 and vo, = 1, by the same argument as above there is solution for (4.25).

If up = =2 and vy > 1, or =2 < up < —1 and ve, > ul, there is no solution for (4.25) for dyv(0) > 0. If
-2 <up < =1 and 1 < voy < uh, then 9,v(0) > 0 and v(y) increases at zero and for all up < v(y) < ul,.
Also v(y) has to take all values between up and ve if v(y) — voo. But since dyv is decreasing if v(y) lies in
(v4,,v00), v(y) cannot tend to ve, as y — oo. Thus we get

| { -2} if ug = —2
gv?syfgsity (UB) = s .
(up, U {up} ifup € (-2,-1).

Case 3: —1<up<1.
Repeating the same argument above it can be easily seen that

glayer _ [_1’ 1]

viscosity T
Case 4 : 1 <up<2.
By the same proof as the one in Case 2, we have
1 {2} if up — 2
ayer
gvisycosity (UB) =

[—1,uf) ifl<u <2

Case 5 : up > 2.
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By the same proof as the one in Case 1, we have

layer
gv1scos1ty UB - {UB}

Step 2. & (up), where ugp € U = [-M, M] for some M > 0.

Lax
In this case the boundary layer equation is

50+ 1) = S ) + 55 (0w) = F0)) = oy + 1) = o(y). (4.26)

v(0) = up, lim v(y) = veo. (4.27)

Yy—00
As in the earlier case, once v(0) = up is given, the equation (4.25) has a unique solution v(0),v(1),v(2), - -,
which is either strictly monotone or constant throughout. We determine the set of vy, in [—M, M] for which
v(y) — Voo as y — oo. This is the set & (ug) N [—M, M] by definition. Note that up is always in this set. In

lax
the following we take M large enough so that all points under consideration are in [—M, M].

Case 1 : up < —2.
If voo < up, then 2Q(f( 1)—f(up)) < v1—up, since f(up)— f(veo) > 0. This implies(l——f’(g))(vl—uB) >
0 for some ¢ in the interval (min (vp, v1) max (up,v1). Hence v1 > up. Thus the sequence v(y) cannot decrease
1o Voo as y — 00.
If voo > up, by a similar reasoning, the problem (4.26)-(4.27) does not have a solution. We get
EV (up) N [-M, M) = {up}.

lax

Case 2 : up = —2.

As in Case 1, it can be easily seen that (4.26)-(4.27) does not have a solution if veo # —2 or 1. When v, = 1,
then vi —ug = %f(vl)—f(uB), where we used f(up) = f(—2) = f(1). This implies (1 — ﬁf’(f))(vl —up) = 0
because of our choice of A and @ and v; = up. Thus v(y) = up for all y. Thus v(y) does not go to 1 as y — co.

Case 3: —2<up < —1.
If voo < U3 OF Voo > uf, following the same reasoning as Case 1 gives that (4.26)-(4.27) has no solution.
If voo = u%y, we can argue as in the second part of Case 2 to show that a solution does not exist.

Ifu}y < voo <1, then vi—up > 2Q(f( 1)—f(up)) since f(up) > f(voo). Thisimplies (1——)f’(€)(vl—uB) >
0 and thus v1 > up and v(y) is a strictly increasing function. We show that v(y) < ve. From (4.26) we have

2oy + 1)) = Floa)) +

50 50 (@) = f(ve)) = (v(y + 1) = veo) = (v(y) — voo)-

2Q)

Applying the mean value theorem and rearranging the terms, we get

(1- —Qf(&))(v(erl)—v o) = (1+—Qf(€z))( v(y) = veo).

Since 1 — —f’(fl) >0,1+ fo’(gz) > 0, we find that v(y) — ve is positive or negative. In our case v1 — veo,
is negative and hence v(y) < voo. Hence v(y) — ¥ < vs. From (4.26) we get

f(0) = f(veo).

This equation has only one solution ¥ = v in the interval (up, ve]. So (4.26)-(4.27) has a solution.



JOSEPH AND LEFLOCH 33

Ifl <o < u%, there is no solution. For if there is a solution then up < v(1) < v(2) < - v(y) — veo and
except for a finite number of integers y, the state v(y) lies in (1,vss). But then f(v(y)) — f(ves) < 0 for all y
except for a finite number of integer values of y. Using this fact in (4.26), we get v(y + 1) < v(y) except for a
finite number of integers y which is not possible.

As in the second part of Case 2, it can be seen that, if vo, = u%, there is no solution. Finally we have

S (up) = (ugy, YU {up}  ifup € (=2, —1).

Case 4 : up = —1.

If veo < up = —1, then f(ves) < f(up). Using this in (4.26), we get vy — up > %(f(vl) — f(up)). This
implies (1 — %f’(f))(vl —up) > 0 and hence v; > up. Hence there is no solution.

If —1 < veo < 1, then f(up) — f(veo) > 0 and, as before, v1 > up. It is easily shown as in Part 3 of Case 3
that there exists a solution to (4.26)-(4.27). If 1 < ve, < 2 there is no solution. Proof of this fact is same as in
Case 1.

If 2 < voo, then using the same reasoning as for Case 1, we see that there is no solution.

If veo = 2, there is no solution because we can easily show that (1— %f’(f))(vl —vp) = 0 and hence v; = up.
Combining the two, we get

E (ug) = [~1,1], if up = 1.

Lax

Case 5 : —1 <up <1.
By the same arguments as above we get

ET (up) = [-1,1], if up € (~1,1]

Lax
Proofs the following cases are repetition of earlier cases and are omitted.
Case 6 : 2> up > 1. Then Siagfr (up) = (u%, 1Ju {uB}.
Case 7: ug = 2. Then Siagfr (up) = {2}
Case 8 : up > 2. Then Siagfr (up) = {uB}.
Step 3. The set Sjgigoslfgy(ujg)

As observed in the convex case, this is the set of all ug € R such that

(ssn(us — k) — sgn(io — k) (F(uo) — £(k)) > 0 (1.28)
holds for all k£ € [min(ug, ug), max(upg, up)].
Case 1 : up < —2.

If ug < up, then, for uy to be admissible, we must have from (4.28) f(ug) — f(k) > 0 for all ¥ € [ug, ug],
which is not possible.

If up < ug < —1, for ug to be admissible we should have f(k) — f(ug) > 0 for all £ € [up, ug], which again is
not possible.

If ug > —1, then plugging k = —2 in (4.28) gives f(—2) — f(ug) > 0, which is not possible. Thus

gentropy (UB) — {UB} ifug < —2.

viscosity
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Case 2 : up = —-2.

If ug # 1 or —2, then by the same argument as above g is not admissible. If ug = 1 then (4.28) to hold for
all k € [=2,1] we must have f(k) — f(up) > 0, which is true. Thus

gentropy _2) — { _ 2’ 1}

viscoslty

Case 3: —2<up < —1.

If ug < up, then from (4.28) we get ug is admissible if f(ug) — f(k) > 0 for all k € [ug, up], which not true.
If up < ug < u% for admissibility we should have for &k € [up, ug], f(k) — f(ug) > 0 which is not possible.

If uly < wp < 11t follows as above that (4.28) is satisfied and if ug > 1 (4.28) is not satisfied for k¥ = 1. Thus
Exinconty (up) = [ug, 1] U {up}.

Case 4 : up = —1.

If ug < —1, (4.28) is violated for k € (up, —1) and if 1 < ug < o0, (4.28) is violated for example for k = 1. If
—1 < up <1 then (4.28) is satisfied for all k£ € [up, up]. Thus
genrovy  — 11 1].

viscoslty

In a similar way we can show that

Case : —1 < up < 1. Then E (up) = [-1,1]

viscoslty

Case : —1 < ug < 2. Then EroPY (up) = {uB}U[—l,u%]

viscoslty

Case : up = 2. Then ES1OPY (2) = { -2, —1}

viscoslty

Case : up > 2. Then EERroRy (up) = {uB}.

viscoslty
Step 4. The set &P (ug) N [—M, M).

Let up € [-M, M]. Here we take M > 2 to include all the interesting cases. The set &P (up) N [—M, M]
is the set of all ug € [ M, M] for which there exists vy such that

(F(or)— F ()~ (o k)] —sn(uo—k) [ 2

)= )] s, —) [ 5

20 20 Fluo)—

sgn(up—k)[=— k)] >0
(4.29
We have seen in Step 4 of Theorem 4.1 (for any smooth flux f) that if such a vy exists for a given ug € [—M,
then it must satisfy

)
M]

A A
QQ(f(uB)+f(Ul))+UB — v = af(uo)~ (4.30)

There, we also have seen that if A and @) are chosen such that QmaX|§|<8M | /(€) |< 1, then (4.30) has a unique
solution vy satisfying | v1 |< 8 M and

Up > Uy <= V1 > Ug, up < Up <= v1 < Ug, UB = Uy <= V1 = Ug. (431)

Further if £ is outside the interval I(up,ug,v1) limited by the states up, ug,v1, then (4.29) is automatically
satisfied. Thus the admissible values uy in [—M, M| are those for which up,ug and the solution vy of (4.30)
satisfy (4.29) for all k in I(up, uo,v1) = [min(up, ug, v1), max(up, ug, v1)].
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Case 1 : up < —2.

If ug < up, then, from (4.30) and (4.31), we get up < up < vy. Take k = up in (4.29) and use (4.30); we
get, (up —v1) + %(f(vl) — f(up)) > 0, which by the mean value theorem and our choice of A and @ implies
ug — vy > 0, contradicting up < vy.

If ug > up, then as before vy must satisfy v1 < up < ug. So, for k = up, (4.29) is not satisfied and

gentropy (up) = {uB} fug < —2.

Lax
Case 2 : up = —2.

By the same argument as in Case 1, it can be seen that no point in the set [—M, M]{—Q, 1} isin SEI;E(FOPY (—2).
If ug = 1, then we get from (4.30) that vy = up. Now for ug = 1 to be admissible from (4.29) we must have
f(k) = f(=2) > 0 for all k € [-2, 1], which is true.

Thus 00 (=2) = { — 2,1}

Lax

Case 3: —2<up < —1.
If ug < up, then ug < up < vy and for k = up, (4.29) is not satisfied.
If up < up < u%, then vy < up < ug and for k = up, (4.29) is not satisfied.
If up < ug < u%, then v; < up < ug and for k = up, (4.29) is not satisfied.

If ufy < up < 1, then from (4.30) and (4.31) we have up < v1 < ug and it can be easily seen that (4.29) is
satisfied for all k € [ug, ug].
If ug > 1, it can be easily shown that ug is not admissible. Thus we have
ENOPY (up) = [u, |U{up}, if —2<up < —1.

Case 4 : —1 <up <1.

If ug < —1, then by (4.31) up < v1. If f(ug) — f(up) < 0, then from (4.30) up < vy and thus ug < up < vy.
It can be seen easily that for k = up (4.29) is not satisfied.

If f(ug) = f(up) then v; = up and for k = —1, (4.29) is not satisfied.

If f(ug) — f(up) > 0 then as before ug < vy < up. Now take k € (up, min(vy, —1), for ug to be admissible
from (4.29) and (4.30) we must have have f(ug) > f(k). This is not true for & in (ug, min (vy — 1)). Thus wuyg is
not admissible if ug < —1.

If —1 < up < up, we have up < vy < ug. If k € [up, v1] (4.29) is equivalent to f(ug) — f(k)) > 0, which is
true. Similarly (4.29) holds for k € (vy, up]. Thus ug is admissible.

If ug > 1, it can be easily checked that ug is not admissible. Thus we have

gentropy (UB) — [_1’ 1] ifug € [—1, 1]

Lax

In the following cases the proofs are repetition of earlier cases and are omitted.

Case : —1 < ug < 2. Then &leetentrory (up) = {uB}U[—l,u%].

Lax

Case : up = 2. Then & eotentrory (up) = {2, —1}.

Lax

Case : upg > 2. Then Sﬁiﬁtemmpy (up) = {uB}. O
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5. Selected Examples II.
5.1 Nonlinear Elastodynamics. The system considered now arises in the modeling of elastic materials [10]:

0w — Opu =0,

S — dpo(v) = 0. (5-1)

It describes the evolution of a nonlinear material with deformation gradient v and velocity u. The stress function
o is assumed to be smooth enough and satisfy the following conditions:

o'(v) >0, vo''(v) > 0. (5.2)

Let us discuss the vanishing viscosity approximation for the viscosity matrix B(u) = I. The boundary layer
problem to be studied here 1s

—Oyu = 851},
—dyo(v) = 8511, (5.3)
v(0) = vg, v(00) = Veo, .
u(0) = up, u(00) = Ueo

We need determine the set of (veo, tico) for which (5.3) has a solution. Integrating once the ODE’S and using
the boundary condition at infinity, we get

Oyv = Uoo — U, Uy = 0(vos ) — 0(v). (5.4)

Cross multiplying the equations and integrating, we get

(U — uoo)”

== [ et - atens

oo

SO
1/2

(1 — g )? = % (/ 2(0(s) — o(veo)) ds) . (5.5)

oo

Note that fvv (0(s) — 0(veo))ds > 0 because of the condition ¢’(v) > 0. From (5.5) it follows that

v(Y) = Voo & uY) = Ueo.

Since we are interested in a solution connecting (vp,up) at y = 0 to (veo, Ues) at y = 00, we get from (5.4) that

either
vp < v(Y) < Voo and up > u(y) > ue

or (5.6)
vg > v(y) > v and up < u(y) < Ueo.

This determines the sign in (5.5):

1/2

U — (/ 2(o(s) — o(7)) ds) i > Vo

1/2

Uoo + (/w 2(o(s) — o(v)) ds) i < .
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Since we need (vp,up) to be on this curve, we obtain that the set of (veo, us) so that (5.3) has a solution lies

on the curve
1/2

up + (/: 2(o(s) — o(7)) ds) if vey < VB

Upy = s (5.7)

up — (/: 2 (o(s) — U(v))ds) if vy > vp,

where (vp, upg) is fixed.

Let us now turn to the Lax Friedrichs scheme. For the system (5.1), the discrete boundary layer equation is

Av(y+ 1) +v(y) +v(y) — oy = 1) = 2Auc) ) —0 (5.8)

H(v(y),v(y + 1), teo, Veo) = (/\(a(v(y)) +o(v(y— 1)+ vy +1)—v(y) —2A0(veo)

(U, u)(O) = (UB’ UO)’ (U, u)(oo) = (UOO’ UOO)'

Here the eigenvalues of the system (5.1) are

A2(”00, uoo) = _Al(voo,uoo) = 0'/(1}00)1/2
and, with the notations of Section 3,

1— /\0'/(1}00)1/2

14 Ao’ (v)H/?
STy ) =

a1 (oo, Uso) BRI TES
Thus 0 < a1 (Veo, Ueo) < 1, @2(veo, o) > 1. By the analysis of Section 3, it follows that the set of (v, too) near
(vp,up) for which (5.8) has a solution lie on a curve passing through (vp,up).

5.2. Eulerian Isentropic Gas Dynamics. We now consider the isentropic approximation to the compressible
Euler system. The system is composed of the two conservation laws for the mass and the momentum of a gas
[10]:

Oep + 0 (pu) =0,

de(pu) + 9z (pu® + p(p)) = 0.

The main unknowns are the specific density p and the velocity u. The pressure is a function of the density and,
for simplicity, we shall restrict to a polytropic perfect gas:

(5.9)

p(p)=p", v € (1,00). (5.10)
We consider the boundary layer equation generated by the vanishing viscosity method with B(u) = I:

u) = dp
u? + plp)) = B2u (5.11)

Jy
Jy
p0) = pp, u(0) = up, p(o0) = puuy  u(50) = uee.

(p
(p

Integrating the ODE’S and using the boundary condition at infinity, we get

8yp = PU — Poo Ueo
Oyu = pu2 +p(p) — Poouio — p(poo) (5.12)
p(o):pB’ U(O)IUB, p(OO)IpOO’U(OO):uOO
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The eigenvalues of the matrix obtained by linearizing the R.H.S. of (5.12) around (peo, t4eo) are

A1(Poos Uoo) = Uoo — (oo )y A2(Poos Uso) = Uoo + ¢(pos) (5.13)

where ¢*(pe) = p'(p). We have to distinguish between five different cases. We define the following regions in
(p, u)-plane:
Qr={(pu):u—clp) <0,u+c(p) <0}

Qrr = {(p,u) 1 u—c(p) < 0,u+c(p) =0}
Qrrr = {(p,u) s u—c(p) < 0,u+c(p) >0} (5.14)
Qrv = {(p,u) :u—c(p) = 0,u+c(p) >0}
Qv = {(p,uw) s u—c(p) >0,u+c(p) >0}
Thus in 7 both eigenvalues are negative, whereas in Q77 one has Ay < 0, A2 = 0. In 77, one has A} < 0, A3 < 0,

wheras in 7y, one has A; = 0,2 > 0 and in Qy, Ay > 0 and A3 > 0. Following the analysis that we did for the
proof of Theorem 3.2, it is not hard to get the following local result.

Case 1 : (pp,up) € Q1. In this case the set of (peo, tso) close to (pp,up) for which (5.12) has a solution is an
open neighborhood of (pp,up).

Case 2 : (pp,up) € Q7. In this case the set of (peo, teo) close to (pp,up) for which (5.12) has a solution is a
union of a two-dimensional region U in €7 and a curve in Qpy through (pp,up) intersecting U.

Case 3 : (pp,up) € Qrrr. In this case the set of states (poo, teo) close to (pp,up) for which (5.12) has a
solution is a curve through (pp, up)

Case 4 : (pp,up) € Qrv. In this case the set of states (peo, teo) near (pp,up) for which (5.12) has a solution
lies in a curve in Qpyr through (pp,up). This does not extend to Qy .

Case 5 : (pp,up) € Qy. There cannot be any point (peo, oo ) in Qv for which (5.12) has a solution.
Nest we consider the Lax-Friedrichs scheme. The discrete boundary layer problem to be solved is

AMp()v(y + 1) + ply — Dv(y)) — 2Apectics — (p(y) — ply — 1)) =0

Mp(w)oly + 1) + ply — o)) — 2ypeti?. — (p(y)o(y + 1) — ply — 1)o(y)) = 0 (5.15)

(pp,up) given and (p, u)(00) = (peo, teo)-
Given (pp, up) we determine (peo, too ) close to (pp, up) for which (5.15) has a solution. Following the analysis
of the proof of Theorem (3.4), we get the eigenvalues of the linearized matrix at (peo, teo) are

14+ A (poo, teo)
1= A (poo, teo)

14 A2 (poos Ueo)
1= A2 (poo, Ueo)

01201(poo,uoo): aa2:a2(p00auoo):

where A; and Ag are given by (5.13). If (peo, teo) € Qr,a1 < 1,a2 < 1, if (poo, Ueo) € Qur, a1 < 1,a2 = 1, if
(PoosUeo) € Qrrr,a1 < 1yas > 1) if (poo, teo) € Qrv,a1 = 1,a2 > Land if (g, ue) € Qy, a1 > 1,a2 > 1. Tt follows
from the proof of Theorem (3.4), that if (pp,up) € Qr, then the set of states (peo, ieo) near (pp, up) for which
(5.15) has a solution connecting (pp, up) t0 (peo, teo) is a neighborhood of (pp,up). If (pp,up) € L7y this set
is a union of an open set U in Qr and a curve in Qpry through (pp,up) which interset U. If (pp,up) € Qri1
this set of (peo, tieo) near (pp, up) consists of a curve through (pp,up) and if (pp,up) € Qrv this set consists
of a curve in Qpry through (pp,up). If (pp,up) € Qv 10 point (peo, tes) € Oy can be connected by a solution
of (5.15) from (pp, up).
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5.3. Lagrangian Isentropic Gas Dynamics. Finally, we consider the system of gas dynamics in Lagrangian
coordinates

aﬂ}t — 8xu = 0,

5.16

where u is the velocity and v > 0 is the specific density. The eigenvalues of the system (5.16) are

1 1
Al =—— <0, Ay = = > 0; (5.17)
v v
hence the boundary & = 0 is not characteristic.
The purpose of this section is to provide an explicit formula for the boundary layer set associated with the
Lax-Friedrichs scheme. The boundary layer equation takes the form

Au(y+ 1)+ u(@)) = 23t + v(y + 1) = v(y) = 0

1 1 A B (5.18)
A (U(@/-Fl) + v(y)) _QE_u(y'i'l)—i_u(y) =0
with
(v(0),u(0)) = (vB,uB),  (v,u)(00) = (Veo, Uco)- (5.19)

We restrict attention to vg > 8 > 0 for fixed §, and we determine the set of (veo, tico) for which (5.18) has a
solution. We set

w(y) = U(Ay) (5.20)
so that (5.18) becomes
w(y1+ ot w(ly) ~uly D) tuly) = %

w(y+1) —w(y) + u(y+1) + uy) = 2uco.

Adding the two equalities, we get

1 1

w(y+ 1)+ OESY, + e —w(y) + 2u(y) = E+2uoo
Setting
N() = 2u(0) + 2 = i 2+ ()
we obtain a quadratic equation for w(y + 1):
wy+1)— Ny)w(y+1)+1=0. (5.21)

Therefore .
aty+ 1= 5 (Y = (7 -7

from which we get an expression for u(y + 1) as well:

u(y+1) = SN £ 5 (N2 41> (5.22)
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Observe that N(00) = weo + 1/weo, Where wo, = voo /A and N(00)? — 4 = (we — 1/wes)?. The product of the
two roots of (5.21) is equal to one. Stability requires w;n fty > 1 so we choose the larger root in (5.22). We have
finally from (5.22) and (5.18).

oy +1) = SN + SV -9

U(y) N(y) 1(N(y)2 _ 4)1/2.

A 2 2

(5.23)

wy+1) = 2uc —uly) +
The Jacobian of the R.H.S. of (5.23) at (veo, veo) is easily seen to be

wi +1 =2 wi
w —1 wi —1

A UOO,UOO = )
( ) -2 w2 +1
Alw?, —1) w2 —1
whose eigenvalues are
Weo — 1 Weo + 1
a) = —, ag = .
Weo + 1 Weo — 1
In terms of v, we have
1- A 14+ 2
a; = @, as = _ UL .

If the data for the Lax-Friedrichs scheme are chosen such that the v component is bounded away from zero, then
so 1s the approximate solution. Hence we can restrict attnetion to v, > ¢’ for some ¢’ > 0. For A small enough,
we have

0<ap <1l and as>1,

and Theorem 3.10 applies. We deduce that the set of all states (veo, tieo) near (vp,up) for which (5.18)-(5.19)
has a solution is a curve passing through (vp, up).

6. Concluding Remarks.

Given a family of sets such as those introduced in this paper, we can formulate the boundary condition for
the hyperbolic problem. When the solutions v under consideration are functions of bounded variation, the traces
exist in a strong sense and one can require that

u(0+,) € E(up(t)), >0, (6.1)

holds for all, except countably many, {. This type of regularity has been recently proven by Amadori by the
front tracking scheme and for the family of sets Egodunoy (= Sggginov = Sg:fgig}(gv).

When considering L™ solutions constructed by the vanishing viscosity method, the boundary condition

supp vo,0 C Egigecntiy (6.2)
has been rigorously derived in Theorem 2.1. When the method of compensated compactness applies [12], an
existence theorem for the boundary-value problem (1.1)—(1.3), (6.2) follows immediatly from Theorem 2.1. Such
a result is satisfactory provided the condition (6.2) yields, for simple enough initial and boundary data at least, a
well-posed problem. This is the case for the scalar equations and the linear systems, but more difficult to answer
for systems.

The formulation based on boundary layers may not be appropriate as it is when the boundary is characteristic.
On the hand, the formulation based on entropy inequality seems to capture all of the features in the solution
near the boundary, but it is more difficult to work with it analytically. Further study of the connection between
the two sets for systems is in progress [26].
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