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Abstract. This paper studies the boundary layers that generally arise in approximations of the entropy discontinuous

solutions to the initial-boundary value problem associated with a nonlinear hyperbolic system of conservation laws. We

consider the vanishing viscosity method and several �nite di�erence schemes (Lax-Friedrichs type schemes, Godunov

scheme). Assuming solely uniform L
1 bounds and for entropy weak solutions, we derive several entropy inequalities

satis�ed by the boundary layers. Di�erent approximation methods may generate di�erent boundary layers, and so the

boundary condition can be formulated only if an approximation scheme is selected.

We obtain several formulations for the boundary condition which in principle apply whether the boundary is charac-

teristic or not. The formulationsare based on families of sets of admissibleboundaryvalues, as we call them. Under some

assumptions, the local structure of those sets together with the well-posedness of the corresponding initial-boundary

value problems, is investigated. The results are illustrated with convex and non-convex conservation laws and examples

from continuum mechanics
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2 BOUNDARY LAYERS FOR SYSTEMS

1. Introduction.

This paper considers the initial-boundary value problem for an hyperbolic system of conservation laws

@tu+ @xf(u) = 0; u(x; t) 2 U � RI
N
; x > 0; t > 0; (1.1)

supplemented with

(1) an initial condition at time t = 0

u(x; 0) = uI(x); x > 0; (1.2)

(2) the entropy inequality

@tU (u) + @xF (u) � 0; (1.3)

(3) and a weak form of the following Dirichlet boundary condition at x = 0

u(0; t) = uB(t); t > 0: (1.4)

Indeed the hyperbolic problem (1.1){(1.4) is usually not well-posed when the boundary data is required to be
assumed in the (strong) sense (1.4), even when (1.1) is a linear system (cf. Kreiss [28]). It is the objective of this
paper to provide a general framework which leads to (mathematically correct) formulations for the boundary
condition. Following Dubois-LeFloch [15], our strategy is to reformulate (1.4) in the (weak) form

u(0+; t) 2 E(uB(t)); t > 0; (1.5)

where E(uB(t)) � U is a time-dependent set (the set of admissible boundary values) to be de�ned from the
boundary data, and u(0+; t) is the trace (its existence is discussed in this paper) of the solution u at the
boundary. We are going to consider several methods of approximation for the problem (1.1){(1.4), including the
arti�cial vanishing viscosity method and a class of �nite di�erence schemes, for which the boundary condition
(1.4) can be easily implemented. As the approximation parameter goes to zero, a sharp transition layer generally
develops near the boundary

�
x = 0

	
and the limiting solution does not satisfy the boundary condition (1.4).

Our aim in this paper is to provide some contribution to the following program: performe a rigorous analysis
of the boundary layer for weak solutions, then derive several suitable de�nitions for the set in (1.5), and �nally
investigate the structure of the latter to decide whether the boundary-value problem is well-posed.

In (1.1), U is assumed to be a convex and open subset of RI N , the 
ux-function f : U ! RI
N to be a smooth

mapping, and the initial data uI to belong to L
1(RI +;U). It will be convenient to assume that the boundary

data uB has bounded total variation on any interval [0; T ] for all T > 0. It is assumed that (1.1) admits at least
one strictly convex entropy pair. By de�nition, a pair of functions (U;F ) : U ! RI � RI of class C2 is called a
convex (or strictly convex) entropy pair i� rFT = rUTrf and the Hessian matrix r2

U is non-negative (or
positive de�nite). The existence of at least one strictly convex entropy pair implies that (1.1) is hyperbolic. For
background on hyperbolic systems, we refer to Lax [29, 30, 31], Dafermos [11] and Smoller [44], concerning the
theory of existence of entropy solutions to the pure Cauchy problem, to Glimm [21] and Liu [39] for initial data
with small total variation, and DiPerna [12,13] for systems of two equations with L

1 initial data.
This paper contributes to establishing a framework for the initial-boundary value problem for (1.1). It is

intended to pursue the e�orts initiated in recent years on this problem (Cf. review below). In particular we built
upon the recent contributions in Gilscon-Serre [20] and Xin [48], who studied the boundary layers associated with
the vanishing viscosity approximations assuming the solution to the hyperbolic problem be smooth. A formal
asymptotic expansion is introduced in [20, 48] and the convergence including L2 error estimates is proven for the
boundary layer in the smooth regime.

One of the motivations here is to treat several approximation methods simultaneously and compare the results
obtained with each of them. We consider the vanishing viscosity method, a class of Lax-Friedrichs type schemes,
and the Godunov scheme.



JOSEPH AND LEFLOCH 3

In Section 2, we rigorously derive conditions satis�ed by the boundary layer, which take the form of a family of
boundary entropy inequalities and a boundary layer equation. The regularity of the relevant traces at the boundary
are discussed. The whole analysis is performed by assuming only a uniform L

1 bound on the approximate
solutions; in particular no assumption is required on the regularity of the limiting solution to (1.1). Since
high frequency oscillations in the approximate solutions can not be a priori excluded, the conditions above
are formulated in terms of a boundary Young measure associated with the boundary layer. Note that, in the
derivation of Section 2, the boundary is possibly characteristic, i.e. the eigenvalues of the matrix rf(u) may
vanish for certain values of u.

Observe also that, in general, the equations and inequalities we derive depend upon the approximationmethod
in use. Fundamentally the boundary condition can not be formulated from the mere knowledge of the function
uB , but depend upon the underlining \physical" regularization. This feature arises in weak solutions to many
nonlinear hyperbolic problems.

In Section 3, we introduce several sets of admissible boundary values and investigate their local structure.
When the boundary is non-characteristic, we establish that the sets based on the boundary layer equations are
manifold with the \correct" dimension. That is, the corresponding initial-boundary value problem is well-posed,
at least for constant boundary and initial data (a generalization to the Riemann problem). We also prove a
similar (but stronger) result for the set based on the boundary layer equation derived by the Godunov scheme.
Strictly speaking this scheme does not produce any boundary layer; however analyzing that scheme leads to a
formulation of the boundary condition as it was �rst pointed out in [15, 16]. We recall that setting the boundary
condition via an upwinding di�erence scheme is a classical idea in the computing literature.

Sections 4 and 5 are devoted to studying several examples of particular interest. It is expected that, in general,
di�erent approximation method for (1.1) leads to a di�erent set in (1.5). However we prove in Section 4, for both
convex and non-convex conservation laws, that this is not the case when N = 1. In other words the boundary
layer for the scalar conservation laws is independent of the approximation method. The same is true of the linear
hyperbolic systems; and we conjecture that this also holds for the nonlinear systems in the class with coinciding
shock and rarefaction curves introduced by Temple [47]. In Section 5, we consider examples from continuum
mechanics, i.e. the system of nonlinear elasticity and the system of gas dynamics. Additional analysis on systems
will be provided in [26].

To complete this presentation, we give a short overview of the literature on the boundary conditions for
(1.1). Most of the activity was restricted to scalar equations, i.e. N = 1. The pioneering work by Leroux [34]
and Bardos-Leroux-Nedelec [4] based on the vanishing viscosity method provides a derivation of \the"correct
formulation of the boundary condition for multidimensional scalar conservation laws. Specically, [4] shows that
(1.4) should be replaced by the weaker statement:�

sgn(u(0+; t)� k) � sgn(uB(t)� k)
� �
f(u(0+; t)) � f(k)

� � 0 for all k 2 RI ; (1.6)

where sgn(a) = �1 if a < 0, sgn(a) = 0 if a = 0, and sgn(a) = 1 if a > 0. The convergence of �nite di�erence
schemes, again for scalar equations, is established by Leroux in an unpublished work: it is remarkable that the
�nite di�erence scheme approach leads to the same formulation (1.6) of the boundary condition. The condition is
used by LeFloch [32] in order to extend Lax's explicit formula [30] to the initial-boundary value problem. Joseph
[24, 25] used the vanishing viscosity method and the Hopf-Cole transformation to extend Lax's formula for the
inviscid Burgers equation. Another derivation is given by Joseph and Veerappa Gowda [27]; see also Gisclon [18]
and LeFloch-Nedelec [33]. We also refer to the paper [46] by Szepessy for a very general result of existence and
uniqueness.

The statement (1.6) is a special case (when applied to Kruzkov entropies) of a more general inequality:

F (u(0; t))� F (uB(t)) �rU (uB(t))
�
f(u(0; t))� f(uB(t))

� � 0; (1.7)

which has to hold for every convex entropy pair (U;F ). The latter was derived formally using the vanishing
viscosity method in Dubois-LeFloch [15], who pointed out that (1.7) holds even when N � 2 and introduced
the notion of set of admissible boundary values, cf. (1.5). These inequalities were obtained independently by
Bourdel-Delorme-Mazet [8] based on an analysis of the characteristics of the system (1.1), and by Benabdallah [5]
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for a speci�c system. The �rst result of existence for the initial-boundary value problem for a system was given
by Benabdallah-Serre [6, 7]: the vanishing viscosity method applied to the p-system of gas dynamics converges
to a solution to (1.1) satisfying the set of inequalities (1.7).

The Glimm scheme with various type of boundary conditions was studied by Liu, for instance [36, 37, 38]. In
the case that the boundary is assumed to be non-characteristic and the number of boundary conditions is equal
to the number of positive eigenvalues of the matrix rf , Goodman proves the convergence of the Glimm scheme
in his unpublished thesis [22]; cf. also Dubroca-Gallice cite17 and Sabl�e-Tougeron [41, 42]

More recently Amadori [1, 2] used the formulation in [15] and proved the convergence of a front tracking
scheme in the characteristic case. In particular, Amadori establishes that a condition of the form (1.5) can be
satis�ed pointwise except at countably many times.

2. Boundary Layers in Weak Solutions.

In this section, we consider sequences of approximate solutions to the initial boundary value problem (1.1){
(1.4), and aim at characterizing their limiting behavior near the boundary. Here we rigorously derive entropy
inequalities satis�ed by the boundary layer. We deal with a sequence of L1 functions with uniformly bounded
amplitude. As is well-known, for general systems of conservation laws, proving the strong convergence of a
sequence of approximate solutions is an open problem. It seems therefore natural to formulate those entropy
inequalities in terms of a Young measure (for instance Ball [3] for this concept) associated with the sequence of
approximate solutions. Further analysis can be performed on a case by case basis only.

In the following, certain averages will be shown to belong to the space BV (RI +) of functions of locally bounded
total variation, i.e. measurable and bounded functions w : RI + ! RI whose distributional derivative is a bounded
Borel measure on every interval (0; T ) for all T > 0. We denote by TV

T
0 (w) the total variation, and by

kwkBV (0;T ) = kwkL1(0;T ) + TV
T
0 (w) the norm, of a BV function w on an interval (0; T ). By convention, a BV

function will be always normalized by selecting its right continuous representative.

2.1 Vanishing Viscosity Method. Let u� be the approximate solutions obtained by solving the following
parabolic regularization of (1.1)-(1.4):

@tu
� + @xf(u

�) = � @
2
xxu

�
; x > 0; t > 0; (2.1)

u
�(x; 0) = u

�
I(x); x > 0; (2.2)

u
�(0; t) = u

�
B(t); t > 0: (2.3)

The smooth functions u�I 2 L
1(RI +) and u

�
B 2 BV (RI +) are chosen to be uniformly bounded and a.e. convergent

approximations of the corresponding data uI and uB. We assume the existence of a (smooth enough) solution
u
� to the problem (2.1){(2.3). Note that compatibility conditions at (x; t) = (0; 0), such as u�I(0) = u

�
B(0), are

implicitly required. We shall also assume that

u
� is uniformly bounded in L1(RI 2

+): (2.4)

We introduce a new function v
� by setting

v
�(y; t) = u

�(�y; t); (2.5)

so that the system of equations (2.1) transforms into

� @tv
� + @yf(v

�) = @
2
yyv

�
: (2.6)

It is expected that the (� ! 0) limit of the v�'s will give us a good description of the boundary layer at x = 0,
at least under additional assumptions, although a di�erent scaling may more adapted in certain cicumstances.
Indeed the scaling used here will be justi�ed on several examples of interest by the results in Sections 4 and 5.

By de�nition (e.g. Ball [3]), a Young measure associated with a sequence u
� satisfying (2.4) is a weak-star

measurable mapping � from the (x; t) plane to the space Prob(U) of all probability measures (i.e. non-negative
measures with mass one) with the property that for every continuous function g : U ! RI

g(u�)!< �; g > weakly{? in L1(RI 2
+): (2.7)

In view of (2.4), the functions v� also are uniformly bounded in L
1(RI 2

+)). We denote by � a Young measure
associated with the functions v�.
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Theorem 2.1. The following statements hold for all convex entropy pairs (U;F ) associated with the system

(1:1), all functions � 2 BV (RI +), and all bounded interval (T1; T2).
1) When �(t) � 0, the distribution

y !
Z T2

T1

< �y;t; F > �(t) dt� d

dy

Z T2

T1

< �y;t; U > �(t) dt

is in fact a function of locally bounded variation and thus is de�ned pointwise as a right continuous function.

There exists a Young measure �0;t, such that the following limit exists and is given by �0;t:

lim
y!0+

Z T2

T1

< �y;t; U > �(t) dt =

Z T2

T1

< �0;t; U > �(t) dt:

When �(t) � 0, the function

x !
Z T2

T1

< �x;t; F > �(t) dt

has locally bounded variation. There exists a Young measure �0;t, the \trace" of �x;t at x = 0, such that the

following limit exists and is given by �0;t:

lim
x!0+

Z T2

T1

< �x;t; F > �(t) dt =

Z T2

T1

< �0;t; F > �(t) dt:

When (U;F ) = (id; f), all the results above still hold when the function � has no speci�c sign.

2) For all 0 < y1 < y2 and in the sense of distributions for t 2 RI +, one has

F (uB) +rU (uB)
�
< �0;t; f > �f(uB )

� �< �y1;t; F > �@y < �y1;t; U >

�< �y2;t; F > �@y < �y2;t; U >

�< �0;t; F > :

(2.8)

3) Moreover one has

�0;t = �uB(t) a.e. t 2 RI + (2.9)

and, when � � 0,

lim
y!1

�Z T2

T1

< �y;t; F > �(t) dt � d

dy

Z T2

T1

< �y;t; U > �(t) dt

�
�
Z T2

T1

< �0;t; F > �(t) dt: (2.10)

tu
A few remarks about the results in Theorem 2.1 are now in order. The inequalities (2.8) actually hold in the

(stronger) sense: Z T2

T1

�
F (uB(t)) +rU (uB(t))

�
< �0;t; f > �f(uB (t))

��
�(t) dt

�
Z T2

T1

< �y1;t; F > �(t) dt� d

dy

�Z T2

T1

< �y;t; U > �(t) dt
���y=y1

�
Z T2

T1

< �y2;t; F > �(t) dt� d

dy

�Z T2

T1

< �y;t; U > �(t) dt
���y=y2

�
Z T2

T1

< �0;t; F > �(t) dt
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for all non-negative � 2 BV (RI +) and all 0 < y1 < y2. Observe that this is a stronger statement than the
convergence in the sense of distributions since � is a function of bounded total variation, not necessarily having
compact support in (T1; T2), rather than a smooth function with compact support. All the formulas to be derived
in this section hold in this sense. Note also that (2.10) is an immediate consequence of (2.8) by taking y !1.

The following inequalities, rigorously derived in Theorem 2.1,

F (uB) +rU (uB)
�
< �0; f > �f(uB )

� �< �0; f > : (2.11)

will be referred to as the boundary entropy inequalities. They do not refer explicitly to the boundary layer itself
but only to its limiting values.

The inequalities (2.8) also contain constraints for the boundary layer. In particular, using the trivial entropies
(U;F ) = �(u; f(u)) in (2.8) leads us to the equation:

< �; f > �@y < �; id >=< �0;t; f >; (2.12)

where the right hand side is independent of the variable y and only depends on t.
For scalar equations and when the method of compensated compactness due to Murat-Tartar applies (i.e.,

mainly, for systems of two conservation laws), it is known that � is a Dirac mass concentrated at a point u(x; t)
which is an entropy weak solution. In those two situations, it is conceivable that the Young measure � also would
be a Dirac mass.

If one assumes that � is a Dirac mass, say

�y;t = �v(y;t) for almost every (y; t) (2.13)

with v 2 L
1, then the formulas in Theorem 2.1 take a much simpler form. Namely if (2.12) holds, then (2.12)

becomes what will be referred to as boundary layer equation:

f(v) � @yv =< �0; f > : (2.14)

This is nothing but the equation that would be obtained formally by pluggling an asymptotic expansion of the
form u�(x; t) = u(x; t) + v(x=�; t) + O(�) in the equations (2.1). More generally, if (2.12) holds, the inequalities
(2.8) become

F (uB) +rU (uB)
�
< �0; f > �f(uB )

� � F (v(y1))� @yU (v)jy=y1

� F (v(y2))� @yU (v)jy=y2

�< �0; f > :

When �0 also is a Dirac mass for a.e. t, say �0;t = �u0(t), for instance when u has bounded variation in x and

so admits a trace at x = 0 in a classical sense, then the boundary layer equation (2.14) becomes

f(v) � @yv =< �0; f > : (2.15)

and the boundary entropy inequalities (2.11) take the form

F (u0) � F (uB)�rU (uB)
�
f(u0) � f(uB )

� � 0; (2.16)

which was derived in Dubois-LeFloch [14, 15] by assuming a uniform BV bound on the u�.
Note �nally that the behavior of �y;t as y ! 1 is controled by the set of inequalities (2.10), only. If it is

assumed that v has a limit in a classical sense and @yv(y; t) ! 0 as y !1, then we can set

v1(t) � lim
y!1

v(y; t)

and (2.10) becomes
F (v1) � F (u0) for all entropy 
ux F (2.17)

(the 
ux F must be associated with a convex entropy). In fact (2.17) need not imply

v1(t) = u0(t): (2.17')

However (2.17) does imply
f(v1(t)) = f(u0(t))

so, in the non-characteristic case i.e. when rf is invertible, (2.17) implies (2.17'). In the characteristic case,
(2.17') may very well be violated. This di�culty is related to the choice of the scaling in the de�nition of the
functions v�. Cf. the examples in Sections 4 and 5.
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Proof of Theorem 2.1. We decompose the proof into several steps. For the whole of this proof, we denote by
(U;F ) a given convex entropy pair.

Step 1: Preliminaries.

We gather here several properties of � and � that are readily obtained. Let us multiply the equation (2.6) by
the gradient of U and obtain

� @tU (v
�) + @y

�
F (v�)� @yU (v

�)
�
= �r2

U (v�) � �@yv�; @yv��
� 0:

(2.18)

Using the de�nition of the Young measure �, it is a simple matter to pass to the limit in the inequality (2.18).
For any � 2 BV and uniformly in y 2 RI +, we have

��Z T2

T1

@tU (v
�) � dt

�� � ��Z T2

T1

U (v�) @t� dt
�� + ���U (v�) ��T2

T1

��
�O(�) k�kBV kU (v�)kL1 ! 0;

so we obtain

@y

�Z T2

T1

< �y;t; F > � dt� d

dy

Z T2

T1

< �y;t; U > � dt

�
� 0; (2.19)

which provides the second inequality in (2.8). Therefore time-averages of the function < �y;t; F > �@y <

�y;t; U > are non-increasing, and so have bounded variation on any compact set. The limits as y ! 0+ or
y ! +1 exist, although at this stage of the proof, we can not exclude that those limits could be �1. We shall
see later that actually < �y;t; F > �@y < �y;t; U >2 L

1. Moreover the function

Z T2

T1

< �y;t; U > �(t) dt

has a trace at y = 0, which de�nes < �0;t; U >. Note also that (2.19) with the choices (U;F ) = �(id; f) leads us
to

< �y;t; f > �@y < �y;t; id >= C�(t); (2.20)

where C�(t) has to be determined. In fact it will be immediate from the results in Step 5 below that

C�(t) =< �0;t; id > for a.e. t > 0:

Similarly, following DiPerna [13] and using the Young measure �x;t associated with u
�, one can pass to the

limit in (2.1) and obtain the entropy inequality:

@t < �x;t; U > +@x < �x;t; F >� 0: (2.21)

From (2.21), we deduce �rst that, for any smooth function �(t) � 0,

d

dx

Z T2

T1

< �x;t; F > �(t) dt �
Z T2

T1

< �x;t; U > @t�(t) dt � O(1) k�kBV : (2.22)

For � �xed, the right hand side of (2.22) is a constant, thus its left hand side is a locally bounded Borel measure
and the function

g�(x) �
Z T2

T1

< �x;t; F > �(t) dt
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has bounded total variation. Therefore the trace �0;t introduced in Theorem 2.1 exists, at least on entropy 
uxes.
This gives a meaning to the last term in the right hand side of (2.8). In fact it is possible to establish the estimate

TV (g�) � O(1) k�kBV
for arbitrary fucntions � 2 BV . (For such �, (2.22) can be obtained directly from (2.1).) Thus the trace �0;t
exists for � 2 BV as well.

Observe that the traces �0;t and �0;t are uniquely determined on entropies and entropy 
uxes, respectively.
They can be easily extended as Young measures de�ned on the whole set of continuous functions, in a non-unique
way however. Namely, to construct �0;t, take any sequence yk ! 0 and consider a Young measure associated

with the sequence of measures
�
�yk;t

	
.

This completes the proof of the part 1) in Theorem 2.1.

Step 2: A General Identity.
It remains to analyze the behavior of � at the end point y = 0 which shall provide us with the desired

boundary entropy inequality. We are going to use a general identity which immediatly follows from the Green
formula applied to (2.6).

Let �(t) and '(x) be smooth functions not necessarily having compact support. We multiply the equation
(2.6) by rU (v�) � ' and integrate over the domain (y1; y2) � (0; T ). Integrating by parts and re-ordering the
terms, we obtain the identity

E
�
I + E

�
II + E

�
III = E

�
IV (2.23)

with

E
�
I � ��

Z T2

T1

Z y2

y1

U (v�)@t�' dydt + � �(T2)

Z y2

y1

U (v�(T2))'dy � � �(T1)

Z y2

y1

U (v�(T1))'dy; (2.24.I)

E
�
II � �

Z T2

T1

Z y2

y1

F (v�)�@y'dydt+ '(y2)

Z T2

T1

�
F (v�(y2))� @yU (v

�)jy=y2
�
� dt

� '(y1)

Z T2

T1

�
F (v�(y1))� @yU (v

�)jy=y1
�
� dt;

(2.24.II)

E
�
III � �

Z T2

T1

Z y2

y1

U (v�) � @yy'dydt+ @y'(y2)

Z T2

T1

U (v�(y2)) � dydt

� @y'(y1)

Z T2

T1

U (v�(y1)) � dydt;

(2.24.III)

and

E
�
IV � �

Z T2

T1

Z y2

y1

rU (v�) � �@yv�; @yv���' dydt: (2.24.IV)

In case that � � 0 and ' � 0 and since U is assumed to convex, one has

E
�
IV � 0; (2.25)

so we can focus attention on estimating the terms E�
I, E

�
II and E

�
III.

Step 3: Viscous Flux at the Boundary.
We prove here that the viscous 
ux at the boundary, i.e. the function @yv

�(0; t), is uniformly bounded in a
certain sense and we determine its weak limit as � ! 0. We use the identity (2.23)-(2.24) with the following
choice of parameters:

supp � � [T1; T2]; supp ' � [0; 1); y1 = 0; y2 = 1; (U;F ) = (id; f):
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For ' �xed, we obtain
jE�

Ij � O(�) k�kBV ;

E
�
II = �

Z T2

T1

Z 1

0

f(v�) � @y'dydt � '(0)

Z T2

T1

�
f(u�B) � @yv

�(0; :)
�
� dt

= O(1) k�kL1 � '(0)

Z T2

T1

�
f(u�B )� @yv

�(0; :)
�
� dt;

and

E
�
III = �

Z T2

T1

Z 1

0

v
�
�@yy'dydt�

Z T2

T1

u
�
B�@y'(0) dt

= O(1) k�kL1 :
Since in this case E�

IV = 0 and choosing ' so that '(0) 6= 0, it follows

��Z T2

T1

�
f(u�B)� @yv

�(0; :)
�
� dt

�� � O(1) k�kL1 +O(�) k�kBV : (2.26)

More precisely we can pass to the limit in the identity (2.23) and get

'(0) lim
�!0

Z T2

T1

�
f(uB )� @yv

�(0; t)
�
� dt

= �
Z T2

T1

Z 1

0

< �; f > �@y'dydt�
Z T2

T1

Z 1

0

< �; id > �@yy'dydt� @y'(0)

Z T2

T1

uB� dt:

On the other hand, it has been observed in Step 1 that (2.20) holds and < �; id > has a trace at y = 0. Thus
one has Z T2

T1

Z 1

0

< �; f > �@y'dydt+

Z T2

T1

Z 1

0

< �; id > �@yy'dydt

=

Z T2

T1

Z 1

0

C�(t) �@y'dydt �
Z T2

T1

< �0; id > �@y'(0) dt

= �
Z T2

T1

C�(t) �'(0) dt �
Z T2

T1

< �0; id > �@y'(0) dt

and therefore

'(0) lim
�!0

Z T2

T1

�
f(uB)� @yv

�(0; t)
�
� dt

='(0)

Z T2

T1

C�(t) � dt + @y'(0)

Z T2

T1

< �0; id > � dt � @y'(0)

Z T2

T1

uB� dt:

Choosing two test-functions ', one such that '(0) = 0 but @y'(0) 6= 0, and the other such that '(0) 6= 0 but
@y'(0) = 0, we deduce from the above formula that

lim
�!0

Z T2

T1

�
f(uB)� @yv

�(0; t)
�
� dt =

Z T2

T1

C�(t) � dt

Z T2

T1

< �0; id > � dt =

Z T2

T1

uB� dt:

(2.27)

The �rst statement in (2.27) is the desired convergence result. The second statement is a �rst step toward
proving (2.9).
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Step 4: Boundary Entropy Inequalities (I).

Using (2.27), we are now able to obtain the boundary entropy inequalities. We use the identity (2.23)-(2.24)
with

� � 0; supp � � [T1; T2]; ' � 0; supp ' � [0;1); y1 = 0; y2 > 0;

and (U;F ) arbitrary. We obtain

jE�
Ij � O(�) k�kBV ;

E
�
II = �

Z T2

T1

Z y2

0

F (v�) � @y'dydt� '(0)

Z T2

T1

�
F (u�B) � @yU (v

�)y=0
�
� dt

= �
Z T2

T1

Z y2

0

F (v�) � @y'dydt� '(0)

Z T2

T1

�
F (u�B)�rU (u�B) @yv�(0; :)

�
� dt

!�
Z T2

T1

Z y2

0

< �;F > � @y'dydt� '(0)

Z T2

T1

�
F (uB) �rU (uB)

�
f(uB )� C�(:)

��
� dt;

where we have used (2.27) and the fact that u�B 2 BV converges strongly to uB 2 BV , and

E
�
III = �

Z T2

T1

Z y2

0

U (v�) � @yy'dydt�
Z T2

T1

U (u�B) � @y'(0) dt:

Since E�
IV � 0 we pass to the limit in (2.23) and get

'(0)

Z T2

T1

�
F (uB) �rU (uB)

�
f(uB )� C�(t)

��
� dt;

��
Z T2

T1

Z y2

0

�
< �y;t; F > @y'+ < �y;t; U > @yy'

�
� dydt

+ '(y2)

Z T2

T1

�
< �y2;t; F > �@y < �y;t; U >y=y2

�
� dydt

+ @y'(y2)

Z T2

T1

< �y2;t; U > � dt� @y'(0)

Z T2

T1

U (uB) � dt:

On one hand, using the test-function '(y) � 1, we deduce that

Z T2

T1

�
F (uB)�rU (uB)

�
f(uB)� C�(t)

��
� dt �

Z T2

T1

�
< �;F > +@y < �;U >y=y2

�
� dt (2.28)

which proves the �rst inequality in (2.8).

On the other hand, using the function '(y) = y, we obtain

0 ��
Z T2

T1

Z y2

0

< �y;t; F > � dydt+ y2

Z T2

T1

�
< �y2;t; F > �@y < �y;t; U >y=y2

�
� dydt

+

Z T2

T1

< �y2;t; U > � dt�
Z T2

T1

U (uB) � dt;

which as y2 ! 0 yields Z T2

T1

U (uB)� dt � lim
y!0+

Z T2

T1

< �y;t; U > � dt: (2.29)
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In particular, plugging (U;F ) = (id; f) in (2.29), we recover the second statement in (2.27), which used together
with (2.29) for any �xed, strictly convex entropy U gives:Z T2

T1

< �0;t; U � U (uB)�rU (uB)(id� uB) > � dt

lim
y!0+

Z T2

T1

< �y;t; U � U (uB) �rU (uB)(id� uB) > � dt

�
Z T2

T1

U (uB)� dt �
Z T2

T1

U (uB)� dt

= 0:

But the function u ! U (u) � U (uB) � rU (uB)(u � uB) is positive everywhere except at uB where it achieves
its global minimum value. It follows that �0;t is a Dirac mass concentrated at uB. That proves (2.9).

Step 5: Boundary Entropy Inequalities (II).
We now establish the third inequalities in (2.8). We use once more the identity (2.23)-(2.24) with now

� � 0; supp � � [T1; T2]; ' � 0; supp ' � [y1;1); y1 > 0; y2 =1;

with a function ' depending on �, that is
'
�(y; t) � ~'(�y; t)

with ~' �xed. In that situation one can check that

E
�
I = �

Z T2

T1

Z 1

�y1

U (u�) @t� ~'dxdt

! �
Z T2

T1

Z 1

0

< �x;t; U > @t� ~'dxdt;

E
�
II = �

Z T2

T1

Z 1

�y1

F (u�) � ~@x'dxdt

� ~'(�y1)

Z T2

T1

�
F (v�) � @yU (v

�)jy=y1
�
� dt

! �
Z T2

T1

Z 1

0

< �x;t; F > � @x'dxdt� ~'(0)

Z T2

T1

�
< �y1;t; F > �@y < �;U >jy=y1

�
� dt;

and

E
�
III = � �

Z T2

T1

Z 1

�y1

U (u�) � @xx'dxdt � @x ~'(�y1)

Z T2

T1

U (v�)jy=y1 � dt

! 0:

Since E�
IV � 0 and

�
Z T2

T1

Z 1

0

< �x;t; F > � @x ~'dxdt =

Z T2

T1

< �0; F > � dt + O(1) k ~'kL1 ;

we obtain an inequality of the form

~'(0)

Z T2

T1

�
< �y1;t; F > �@y < �;U >jy=y1

�
� dt � ~'(0)

Z T2

T1

< �0; F > � dt + O(1) k ~'kL1; (2.30)

which proves the third inequality in (2.8) by chosing ~' � 0 such that k ~'kL1 ! 0 but ~'(0) > 0.
This complete the proof of Theorem 2.1. tu
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Remark 2.2. Additional uniform estimates and regularity can be obtained from the identity in Step 2 of the
proof of Theorem 2.1. Let (U;F ) be a non-negative entropy pair that is uniformly convex on U . Use the identity
(2.23)-(2.24) with

� � 1; T1 = 0; T2 = T; ' � 1; y1 = 0; y2 =1:

We assume addiitonally here that, for a �xed state u1 and for all t,

u
�(x; t)! u1; u

�
x(x; t)! 0 as x!1:

The initial data uI should also decay rapidly at in�nity. We obtain the following identity

�

Z T

0

U (v�(T )) dy � �

Z 1

0

U (v�(y; 0)) dy +

Z T

0

F (u1) dt

�
Z T

0

�
F (u�B)�rU (u�B)@yv�(0; :) dt+

Z T

0

Z 1

0

r2
U (v�) � �@yv�; @yv�� dydt = 0:

Since the following two terms are uniformly bounded

��� Z 1

0

U (v�(y; 0)) dy
�� = ��� Z 1

0

U (u�B) dx
�� � O(1);

��Z T

0

rU (u�B)@yv�(0; :) dt
�� � O(1);

(Cf.(2.26) with � � 1), we deduce the uniform bounds

�

Z T

0

U (v�(T )) dy +

Z T

0

Z 1

0

r2
U (v�) � �@yv�; @yv�� dydt � O(1): (2.31)

For every Lipschitz continuous function g, it follows from (2.31) that the sequence @yg(v
�) is bounded in L

2,
so converges weakly to a limit which is nothing but @y < �; g >:

@yg(v
�) ! @y < �; g > weak- ? in L

2(RI 2
+): (2.32)

tu

2.2. Finite Di�erence Schemes. We now extend the above analysis to several classes of �nite di�erence
schemes that are known to be consistent with the entropy inequality (1.3). Theorem 2.3 below deals with the
entropy 
ux-splittings introduced by Chen-LeFloch [9], which also includes as a special case the Lax Friedrichs
type schemes. We treat the Godunov scheme in Theorem 2.4.

We are given two mesh parameters � and h with � � �=h kept constant and small enough in order to garantee
the stability of the scheme. We de�ne the approximate solutions uh(x; t) by the scheme

u
h(x; t+ � ) = u

h(x; t+ � )� �g
�
u
h(x; t); uh(x+ h; t)

�
+ �g

�
u
h(x� h; t); uh(x; t)

�
(2.33)

and the initial and boundary conditions:

u
h(x; t) = uI(x) for all t < �;

u
h(x; t) = uB(t) for all x < h:

(2.34)

By convention, the functions uh are right continuous. For the Lax-Friedrichs type schemes, the numerical 
ux g
is given by

gLax(v; w) =
1

2
(f(v) + f(w)) � Q

�
(w � v); (2.35)
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where Q 2 (0; 1) is called the numerical coe�cient of the scheme. (Symmetric positive de�nite matrices Q could
also be dealt with.) For the 
ux-splitting schemes, g takes the form

gsplit(v; w) = f
�(w) + f

+(v); (2.36)

where f = f
� + f

+ is a given entropy 
ux-splitting for the system (1.1). By de�nition [9], the matrix rf�
have real eignevalues and a basis of eigenvectors and there exists a pair of functions F� such that (U;F�) is an
entropy pair for the system associated with 
ux-functions f�. Observe that (2.35) is a special case of (2.36) as
was pointed out by Chen-LeFloch.

As in the analysis of Section 2.1, we assume a uniform L
1 bound:

kuhkL1(RI 2
+)
� O(1): (2.37)

We rescale uh and de�ne the function v
h : RI 2

+ ! U by

v
h(y; t) = u

h(yh; t) y � 0; t � 0:

Let � and � be two Young measures associated with u
h and vh , respectively.

The entropy 
ux-splitting schemes satisfy discrete entropy inequalities of the form

U (uh(x; t+ � ))� U (uh(x; t+ � )) + �

�
G(uh(x; t); uh(x+ h; t))� G(uh(x� h; t); uh(x; t))

�
� 0; (2.38)

where G is called the numerical entropy 
ux. With obvious notation, we have

GLax(v; w) =
1

2
(F (v) + F (w))� Q

�
(U (w) � U (v)) (2.35bis)

and
Gsplit(v; w) = F

�(w) + F
+(v): (2.36bis)

Note that (2.38) hold for (2.36)-(2.36bis) provided u takes its value in a su�ciently small neighborhood of a given
state in U . This is in constrast with the vanishing viscosity method where no such assumption was necessary.

Theorem 2.1 admits the following extension to the 
ux-splitting schemes. We omit the proof which follows
the lines of the one of Theorem 2.1.

Theorem 2.3. Assume that U is a small neighborhood of a constant state in RI
N . The measure �y;t is de�ned

for all y � 0 and almost every t, and is constant for y 2 [k; k+ 1) for any integer k. For all convex entropy pairs

(U;F ), all y � 0, and in the sense of distributions in t 2 RI +, one has

F
+(uB)+ < �1;t; F

�
>� < �y;t; F

+
> + < �y+1;t; F

�
>

� < �y+1;t; F
+
> + < �y+2;t; F

�
>

� < �0;t; F >;

(2.39)

�0;t = �uB(t) for a.e. t > 0; (2.40)

and

lim
y!+1

< �y;t; F
+
> + < �y+1;t; F

�
>�< �0;t; F > : (2.41)

tu
Consider next the Godunov scheme corresponding to the 
ux g given by

gGodunov(v; w) = f(R(v; w)); (2.42)

where we denote by R(v; w) the value at x=t = 0+ of the solution to the Riemann problem with v and w as left
and right initial data, respectively. The entropy 
ux is

GGodunov(v; w) = F (R(v; w)); (2.42bis)

Here it is more convenient to consider the values R(uh(x; t); uh(x+ h; t)) and de�ne a function w
h

w
h(y; t) = R(uh(yh; t); uh(yh + h; t)) (2.43)

for all y � 0. We denote by � a Young measure associated with w
h and by � a Young measure for uh. It is not

di�cult to extend Theorem 2.3 as follows:
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Theorem 2.4. The measure �y;t is de�ned for all y � 1=2 and almost every t, and is constant in y for

y 2 [k� 1=2; k+ 1=2) for any integer k � 1. For all convex entropy pairs (U;F ), all y � 1=2, and in the sense of

distributions in t 2 RI +, one has
< �1=2;t; F >� < �y;t; F >

� < �y+1;t; F >

� < �0;t; F >;

(2.44)

and, at y = 1=2 and y =1, � satis�es

< �1=2;t; F >= lim
h!0

R(uB; v
h(1; t)); (2.45)

and

lim
y!1

< �y;t; F >�< �0;t; F > : (2.46)

tu
We conclude this section by giving the main conditions satis�ed by the discrete boundary layer, which will be

studied in the rest of this paper.
Assuming in the results of Theorem 2.3 that � is a Dirac mass, say � = �v, the discrete boundary layer

equation associated with the scheme (2.33) takes the form:

g(v(y � 1); v(y)) � g(v(y); v(y + 1)) = 0 for all y � 1;

v(y) = uB; y 2 [0; 1);
(2.47)

while the discrete boundary entropy inequality is

G(uB; v1) � F (u0); (2.48)

where v1 plays the role of a parameter. Formally, Theorem 2.4 leads to the same equations (2.47)-(2.48) with

ux and entropy-
uxes given by (2.42).

3. Sets of Admissible Boundary Values.

Based on the results in Section 2, we introduce in this section several sets which can be used to formulate the
boundary condition. For every method of approximation considered in Section 2, we introduce two di�erent sets
of admissible boundary values:

(1) One is based on the entropy inequalities, Eentropy(uB) and yields a boundary condition of the form
(1.5). This boundary condition is rigorously satis�ed by the limiting function generated by a sequence

of approximate solution. as was proven in Section 2. For arbitrary systems having few or even just one
entropy, the set Eentropy(uB) may be too large to lead to a well-posed problem;

(2) Another set, E layer(uB), is based on the boundary layer equation, which was obtained formally after the
analysis in Section 2. This set is more adapted to deal with general systems and lead to a well-posed
problem when the boundary is non characteristic.

In this section, we study the local structure of those sets; under certain assumptions, we can prove that the
sets E layer(uB) are manifolds with dimension equal to the number of negative wave speeds of the system (1.1).
This ensures that the initial-boundary value problem is well posed if, for instance, the data are constant states
(boundary Riemann problem) as can be seen by applying the theory in [35]. We recall that (1.1) is assumed to
be strictly hyperbolic throughout this section and we denote by �j(u) the N real and distinct eigenvalues of the
matrix rf(u) and by `j(u) and rj(u) corresponding basis of left and right eigenvectors.

3.1 Vanishing Viscosity Method. For the sake of generality, we consider

@tu
� + @xf(u

�) = � @x

�
B(u�)@xu

�
�
; x > 0; t > 0: (3.1)
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Theorem 2.1 could be partially extended to this case. We assume that the viscosity matrix B(u) depends
smoothly upon its argument u and is positive. We consider entropies U that are B-convex in the sense that
r2

U (u)B(u) > 0 for all u under consideration. The boundary layer equation here takes the form

@yf(v) = @y

�
B(v)@yv

�
(3.2)

and the boundary entropy inequalities have the same form (2.16) but now U must be B-convex.
Following Dubois-LeFloch [15], we introduce a set based on the boundary entropy inequalities. From now on,

the time-dependence may be omitted.

De�nition 3.1. Given uB 2 U , the set of admissible boundary values based on the entropy inequalities associ-

ated with the vanishing viscosity method (3:1) is

Eentropyviscosity(uB) =
�
u0 2 U ; for all B-convex (U;F ); F (uB) +rU (uB)

�
f(u0) � f(uB)

� � F (u0)
	
: (3.3)

tu
It is obvious that this set may be quite large when the system (1.1) only admits few entropies. For most

systems (N � 3), this set is too large to be used to formulate the boundary condition. In any case, it is di�cult
to get information on its local structure at uB. For general systems, the following observation is immediate.

Proposition 3.2. Fix a state uB 2 U and suppose that for some p one has

�p(uB) < 0 < �p+1(uB) (3.4)

and the basis rj(u) is a family of eigenvectors for B(u). Then the set obtained by formally plugging the expansion

f(u0) t f(uB) +rf(uB)(u0 � uB) +r2
f(uB) �

�
u0 � uB ; u0 � uB

�
;

F (u0) t F (uB) +rF (uB)(u0 � uB) +r2
F (uB) �

�
u0 � uB; u0 � uB

� (3.5)

in the de�nition of Eentropyviscosity(uB) is an a�ne manifold of dimension p containing uB and spanned by the vectors

rj(uB), j = 1; 2; � � � ; p. tu
Proof of Proposition 3.2. The inequality under consideration in (3.3) then becomes

r2
U (uB)rf(uB)

�
u0 � uB ; u0 � uB

� � 0:

Since U is an entropy and the system is strictly hyperbolic, the matrix r2
U (uB) � (rj(uB); rj(uB)

�
is a diagonal

matrix. On the other hand, r2
U (uB)B(uB ) is positive and rj(u) is a family of eigenvectors for B(u), therefore

the matrix r2
U (uB) � (rj(uB); rj(uB)

�
has positive diagonal elements. The desired result follows immediately.

tu

We now introduce a second set of admissible boundary values.

De�nition 3.3. Given any uB 2 U , the set of admissible boundary values E layerviscosity(uB), based on the boundary

layer equation associated with the vanishing viscosity method is the set of all v1 2 U such that the problem

B(v)@yv = f(v) � f(v1);

v(0) = uB;

lim
y!1

v(y) = v1:

(3.6)

admits a (smooth) solution v(y) 2 U for y � 0. tu
To study the local structure of E layerviscosity(uB), we apply the following theorem concerning the existence of

invariant manifolds. Cf. Hartman [23] for a proof.
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Theorem 3.4. Consider the di�erential equation

d�

dy
= E� +H(�; �0); �(y) 2 RI

N
; y 2 RI ; (3.7)

where H : RI N � RI
N ! RI

N is of class C1 and for each �0

H(0; �0) =
dH

d�
(0; �0) = 0; (3.8)

and E is a constant square matrix with d eigenvalues having negative real part, e eigenvalues having positive

real part, and N � d� e eigenvalues having zero real part. For every (small enough) �0 2 RI
N , let �y = �(y; �0)

be the solution of (3.7) with the initial condition �(0; �0) = �0. Denote by Ty the mapping �0 ! �(y; �0).
There exists a one-to-one mapping of class C1, S : � ! S(�) = (wI

; w
II
; w

III), having non-vanishing Jacobian

and de�ned on a neighborhood of � = 0 2 RI
N onto a neighborhood of (wI

; w
II
; w

III) = (0; 0; 0)2 RI
d�RI N�d�e�

RI
e, such that the mapping STyS

�1 takes the simple form

STyS
�1 : w

I
y = e

P Iy
w
I
0 +W

I(y;wI
0; w

II
0 ; w

III
0 );

w
II
y = e

P IIy
w
II
0 +W

II(y;wI
0 ; w

II
0 ; w

III
0 );

w
III
y = e

P IIIy
w
III
0 +W

III(y;wI
0; w

II
0 ; w

III
0 );

(3.9)

where P I , P II, and P
III are constant real-valued matrices with all eigenvalues having moduli less than one so

that the matrix exponentials eP
I

, eP
II

, and e
P III

are well-de�ned, the absolute value of any eigenvalue of eP
I

is less than 1, and that for eP
III

is greater than 1, and that for eP
II

is exactly 1. Moreover the mapping W I ,

W
II , and W

III are of class C1 and their �rst order partial derivatives with respect to (wI
0; w

II
0 ; w

III
0 ) vanish at

(0; 0; 0). Moreover one has

W
I = 0 and W

II = 0 if w
I
0 = 0 and w

II
0 = 0; (3.10)

and

W
II = 0 and W

III = 0 if w
II
0 = 0 and w

III
0 = 0: (3.11)

tu
The condition (3.10) means that the e-dimensional plane

�
w
I
0 = 0; wII

0 = 0
	
is a locally invariant manifold.

If S(�0) belongs to this plane, then j�(y; �0)j ! 1 as y !1. The manifold
�
� =w

I
0 = 0; wII

0 = 0
	
is called the

unstable manifold of initial data for the equation (3.7).
The condition (3.11) means that the d-dimensional plane

�
w
II
0 = 0; wIII

0 = 0
	
is a locally invariant manifold.If

S(�0) belongs to this plane, then �(y; �0) ! 0 as y ! 1. The manifold
�
� =w

II
0 = 0; wIII

0 = 0
	
is called the

stable manifold.

Using Theorem 3.4 we prove the following result.

Theorem 3.5. Let uB 2 U be given and assume that, for all u in a small neighborhood of uB ,

the basis rj(u) is a family of eigenvectors for B(u);

the eigenvalues of B(u); say bj(u); are positive,
(3.12)

and

�p(u) < 0 � �p+1(u) (3.13)

holds for some p. Then the set E layerviscosity(uB) contains the point uB and, locally nearby uB , contains a manifold

with dimension p at least. When 0 < �p+1(uB), E layerviscosity(uB) is a manifold with dimension exactly p and its

tangent space at the point uB is spanned by the eigenvectors rj(uB), j = 1; 2; � � � ; p. tu
A similar result has been proved by Gisclon in [19] by another method.
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Proof of Theorem 3.5. The system in (3.6) can be written in the form

d~v

dy
= B(v1)�1rf(v1)~v +G(~v; v1);

~v(0) = uB � v1;

~v(1) = 0;

(3.14)

where ~v(y) = v(y) � v1 and the mapping G(~v; v1) satis�es G(0; v1) = 0; @G
@~v (0; v1) = 0. In view of the

assumption (3.12), the two matrices rf(v1) and B(v1)�1rf(v1) have the same eigenvectors, and so exactly
the same number of positive, zero, and negative eigenvalues. Let

�̂j(v1) = bj(v1)�1 �j(v1)

be the eigenvalues of B(v1)�1rf(v1). Applying Theorem 3.4 with

�(y; �0) = ~v(y;uB � v1);

we see that there exists a one-to-one C1 mapping S, de�ned on a neighborhood of 0 2 RI
N , onto a neighborhood

of (wI
; w

II
; w

III) = (0; 0; 0) 2 RI
p �RI

N�p�1 � RI
1, such that the manifold

E � �
~v =wII(~v) = 0; w

III(~v) = 0
	
;

which is of dimension p, is stable. For any point uB � v1 taken in this manifold as an initial data for the
di�erential equation in (3.14), the solution ~v(y) converges to 0 as y !1, which is the third condition required
in (3.14).

If v1 belongs to this manifold, then (3.14) has a solution and hence v1 solves the boundary layer problem.
Furthermore the local structure of the ser nearby uB can be described as follows.

Suppose that 0 < �p+1(uB). The following estimate follows from (3.14):

~v(y) =

NX
j=1

e
�̂iy`j(v1) � (uB � v1)rj(v1) + 0(~v(y))2: (3.15)

For the right handside of (3.15) to go to zero, we must have

gj(v1) � `j(v1) � (uB � v1) = 0; j = p+ 1; � � �N: (3.16)

Keeping uB �xed, consider the map g : U ! RI
N�p with components gj given by (3.16). We have

dg

dv1
(uB) = �(`p+1(uB); � � � ; `N (uB)); (3.17)

whose rank is N � p. By the implicit function theorem, (3.16) de�nes a manifold passing through uB and of
dimension p. By construction its tangent space at uB coincides with the one for the stable manifold E . Therefore,
in view of (3.17), the tangent space at uB for E is spanned by the rj(uB), j = 1; 2; � � � ; p. tu

A general inclusion can be proven regarding the sets introduced in the previous sections. It has been �rst
pointed out by Serre [43] (cf. also [19]) that:

Proposition 3.6. The two family of sets introduced in De�nitions 3.1 and 3.3 satisfy the inclusion

E layerviscosity(uB) � Eentropyviscosity(uB) (3.18)

for all uB 2 U . tu
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Proof of Proposition 3.6. Let v1 be a point in E layerviscosity(uB) and denote by y ! v(y) the associated boundary

layer function which satis�es v(0) = uB and v(1) = v1. Consider the following function of the variable y > 0:


(y) � F (v1)� F (v(y)) +rU (v(y))�f(v1)� f(v(y))
�
: (3.19)

It is easy to see that
d


dy
(y) = r2

U (v(y))

�
f(v1)� f(v(y)); f(v1 ) � f(v(y))

�
� 0

So the function 
 is non-decreasing, and since limy!1
(y) = 0, we deduce that 
(y) � 0 for all y, in particular
for y = 0, that is

F (v1) � F (uB) +rU (uB)
�
f(v1) � f(uB)

� � 0:

Thus v1 belongs to Eentropyviscosity(uB). tu
3.2 Finite Di�erence Schemes. We now turn to formulations of the boundary condition that are based on
�nite di�erence approximations. We use the notation in Section 2.2. We consider a scheme characterized by its
mesh parameters � and h with � = �=h small enough, and by its numerical 
ux g(:; :) and its family of numerical
entropy 
uxes G(:; :). It is tacitly assumed that the values u remain in a small neighborhood of a given state
and attention is restricted to those entropies U such that the discrete entropy inequalities (2.38) are satis�ed. In
fact attention is mostly restricted to the Lax-Friedrichs type schemes and the Godunov scheme.

De�nition 3.7. Given uB 2 U , the set of admissible boundary values based on the entropy inequalities associ-

ated with di�erence scheme is

Eentropyscheme (uB) =
�
u0 2 U ; There exists v1 s.t. for all convex (U;F ); G(uB; v1)) � F (u0)

	
: (3.20)

tu
As for Eentropyscheme (uB), this set may be too large to garantee that the boundary value problem is well posed. We

also use the obvious notation EentropyLax (uB), Eentropysplitting(uB), and EentropyGodunov(uB).

For general systems and the diagonalizable splttings, i.e. those such that the vectors rj form a basis of
eigenvectors for the matrices rf�, we have:
Proposition 3.8. Consider a Lax-Friedrichs type scheme or, more generally an diagonalizable, entropy 
ux-

splitting scheme. Fix a state uB 2 U and suppose that (3.4) holds for some p. Then the set obtained by formally

linearizing the inequalities in the de�nition of Eentropyscheme (uB) is an a�ne manifold of dimension p containing uB

and spanned by the vectors rj(uB), j = 1; 2; � � � ; p. tu
Proof of Proposition 3.8. We formally plug the second order expansion

F
�(u0) t F

�(uB) +rF�(uB)(u0 � uB) +r2
F
�(uB)

�
u0 � uB; u0 � uB

�
(3.21)

and obtain the second order version of the inequalities in (3.20):

rF (uB)(u0 � uB) +r2
F (uB)

�
u0 � uB; u0 � uB

� � rF�(uB)(v1 � uB) +r2
F
�(uB)

�
v1 � uB ; v1 � uB

�
:

Using the trivial entropies (i.e. choose for F the components of f), we get an (second order) expression for v1:

rf�(uB)(v1 � uB) +r2
f
�(uB)

�
v1 � uB ; v1 � uB

�
= rf(uB)(u0 � uB) +r2

f(uB)
�
u0 � uB ; u0 � uB

�
;

which can be used to rewrite the above inequality:

r2
U (uB)rf(uB)

�
u0 � uB; u0 � uB

� � r2
U (uB)rf�(uB)

�
v1 � uB ; v1 � uB

�
:
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At the �rst order, v1 is given by

rf�(uB)(v1 � uB) = rf(uB)(u0 � uB)

so we arrive at the inequality

�rf+(uB)Trf�(uB)�Tr2
U (uB)rf(uB)

�
u0 � uB; u0 � uB

� � 0:

The desired result follows immediatly since rj is a basis of eigenvectors for the matrices rf+, rf�, and rf ,
and the function U is convex. tu

The second family of sets is now de�ned.

De�nition 3.9. Given any uB 2 U , the set of admissible boundary values E layerscheme(uB), based on the boundary

layer equation associated with the di�erence scheme is the set of all v1 2 U such that the problem

g(v(y); v(y + 1)) = f(v1);

v(y) = uB for y 2 [0; 1);

lim
y!1

v(y) = v1;

(3.22)

admits a (piecewise constant) solution v(y) 2 U for y � 0. tu
To study the local structure of E layerscheme(uB), we apply the following theorem concerning the existence of discrete

invariant manifolds. (Cf. Hartman [23] for a proof.)

Theorem 3.10. Let T : RI N ! RI
N , �0 ! �1, be a mapping of the form

�1 = ��0 + E(�0); (3.23)

where E(�0) is of class C
1 for small �0 and satisfy E(0) = 0 and DE

D�0
(0) = 0, and the matrix � is constant,

non-singular, and has d � 0, N � d � e, e � 0 eigenvalues of absolute value less than 1, equal to 1, and greater

than 1, respectively.
There exists a map S of a neighborhood of �0 = 0 onto a neighborhood of the origin in the space of

(wI
0; w

II
0 ; w

III
0 ) 2 RI

d � RI
N�d�e � RI

e such that S is of class C
1 with non-vanishing Jacobian and STS

�1

takes the simple form

STS
�1 : w

I
1 = A

I
w
I
0 +W

I(wI
0; w

II
0 ; w

III
0 );

w
II
1 = A

II
w
II
0 +W

II(wI
0; w

II
0 ; w

III
0 );

w
III
1 = A

III
w
III
0 +W

III(wI
0; w

II
0 ; w

III
0 );

(3.24)

where P I, P II, and P
III are d � d, (N � d � e) � (N � d � e), and e � e square matrices with eigenvalues of

absolute value less than 1, equal to 1, greater than 1, respectively, and the mappingW I , W II , and W
III are of

class C1 and their �rst order partial derivatives with respect to (wI
0; w

II
0 ; w

III
0 ) vanish at (0; 0; 0). Moreover one

has

W
I = 0 and W

II = 0 if w
I
0 = 0 and w

II
0 = 0; (3.25)

and

W
II = 0 and W

III = 0 if w
II
0 = 0 and w

III
0 = 0: (3.26)

tu
The condition (3.25) means that the plane v0 = 0; w0 = 0 of dimension d is locally invariant manifold and if

R(�0) belongs to this manifold then T
n
�0 ! 0 as n!1.

The condition (3.26) means that the plane u0 = 0; w0 = 0 is a locally invariant manifold and if R(�0) belongs
to this manifold, j Tn

�0 j! 1 as n!1.
Using this theorem we shall prove:
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Theorem 3.11. Consider a Lax-Friedrichs type scheme. Let uB 2 U be given and assume that (3:13) holds

for some p. Then the set E layerLax (uB) contains the point uB and, locally nearby uB, contains a manifold with

dimension p. When 0 < �p+1(uB), E layerLax (uB) is a manifold with dimension exactly p and its tangent space at

the point uB is spanned by the eigenvectors rj(uB), j = 1; 2; � � � ; p. tu
Proof of Theorem 3.11. We search for all v1 that solve the problem:

H(v(y); v(y + 1); v1) = 0

v(0) = 0;

v(1) = v1

(3.27)

with

H(v(y); v(y + 1); v1) � v(y + 1)� v(y) � �

2Q

�
f(v(y)) + f(v(y + 1)) � 2f(v1)

�
: (3.28)

Using the notation H = H(v; w; v1), we compute

@H

@v
(v; w; v1) = Id+

�

2Q
rf(v);

@H

@w
(v; w; v1) = Id� �

2Q
rf(w):

(3.29)

For �=(2Q) small enough, the matrix @H=@w is invertible and its inverse is uniformly bounded w.r.t the variables
v, w, and v1. By the global implicit function theorem (see J.T. Schwartz [45]) the system (3.27) can be solved
for v(y + 1). So there exists a smooth mapping K(v(y); v1) such that

v(y + 1) = K(v(y); v1) (3.30)

and K(v1; v1) = 0. Moreover one has

@K

@v
(v(y); v1) =

�
Id� �

2Q
rf(v(y + 1))

��1�
Id+

�

2Q
rf(v(y))�: (3.31)

The system (3.30) can be linearized around v1:

v(y + 1) =� �Id� �

2Q

@f

@u
(v1)

��1�
Id +

�

2Q

@f

@u
(v1)

�
v(y)

+K(v(y); v1) +
�
Id� �

2Q

@f

@u
(v1)

��1�
Id +

�

2Q

@f

@u
(v1)

�
v(y):

Set v�(y + 1) = v(y + 1)� v1. The system can be written as

v
�(y + 1) =� �Id� �

2Q

@f

@u
(v1)

��1�
Id+

�

2Q

@f

@u
(v1)

�
v
�(y)

+ G(v�(y) + v1; v1) +
�
Id � �

2Q

@f

@u
(v1)

��1�
Id+

�

2Q

@f

@u
(v1)

�
v
�(y):

In other words
v
�(y + 1) = A(v1)v�(y) +K

�(v�(y); v1); (3.32)

where

A(v1) � �Id � �

2Q
rf(v1)

��1�
Id +

�

2Q

@f

@u
(v1)

�
(3.33a)
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and

K
� and

@K
�

@v�(y)
vanish at v�(y) = 0: (3.33b)

We observe that

The eigenvalues of the matrix A(v1) are
1 + ��i(v1)

1� ��i(v1)
(3.34)

where we recall that �i(v1) are the eigenvalues of rf(v1).
Namely (3.34) follows from the fact that the following two statements

(1) a is an eigenvalue of A(v1),
(2) There exists r 6= 0 such that A(v1)r = ar,

are equivalent.
Using the expression (3.21) of A(v1) and simplifying the resulting equation, we get

rf (v1)r =
(a � 1)

�(1 + a)
r:

So a is an eigenvalue of A(v1) if and only if a�1
�(1+a) is an eigenvalue of @f@u(v1) with right eigenvector r; so

a� 1

�(a + 1)
= �i(v1) (3.35)

for some i with left eigenvector `i(v1) and right eigenvector ri(v1). Solving (3.35) for a we get ith eigenvalue
of A(v1)

ai =
1 + ��i(v1)

1� ��i(v1)
: (3.36)

let T be a matrix which diagonalize rf (v1). Then the same matrix diagonalize A(v1):

TAT
�1 = diag(a1; a2; � � �an):

Set w�(y + 1) = Tv
�(y + 1), we get

w
�(y + 1) =

0
BBBB@

a1

a2 0

.. .

0 an

1
CCCCAw

�(y) + L
�(T�1w�(y); v1)

where G� and @G�

@w�(y) are zero at w�(y) = 0.

Note that
a1 < a2 < � � �ap < 1 � ap+1 < � � � < an: (3.37)

and
ap+1 = 1, �p+1(v1) = 0:

Since all the hypothesis of Theorem 3.10 are satis�ed, there exists a p-dimensional invariant manifold de�ned
near 0 such that, if the data v�0 belongs to this manifold, then w

�(y + 1)! 0 as y !1. In fact in terms of the
original variable v(y + 1), we have the expansion

v(y + 1)� v1 =

NX
j=1

a
y
j < `j(u); vb � v1 > rj(v1) + 0(j v(y + 1)� v1 j)2: (3.38)
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In order for this to go to zero, as y ! 0 we must have

< `j(v1); uB � v1 >= 0; j = p+ 1; � � �N: (3.39)

This for �xed uB de�nes a map from R
N ! R

N�p and whose Jacobian at uB = v1 is the matrix whose N � p

rows are `j(v1). Since `j(v1) are linearly independent by implicit function theorem we deduce that (3.39)
de�nes a p dimensional manifold passing through uB and if v1 is in this manifold then there exist a solution to
(3.29) whose local structure is given by (3.39). tu

The following general inclusion can be proven:

Proposition 3.12. The two family of sets introduced in De�nitions 3.7 and 3.8 satisfy, for all uB 2 U ,
E layerscheme(uB) � Eentropyscheme (uB): (3.40)

tu
Proof of Proposition 3.12. We consider as before a di�erence scheme that satis�es discrete entropy inequal-

ities. For every v1 in the set E layerscheme(uB , there exists a corresponding boundary layer pro�le v(y), solution
of

g(v(y); v(y + 1)) = f(v1):

The function v(y) is actually a stationnary solution to the scheme since

v(y) � v(y) + �
�
g(v(y); v(y + 1))� g(v(y � 1); v(y))

�
= 0:

Therefore for every convex entropy pair (U;F ), it sati�es the entropy inequality

U (v(y)) � U (v(y)) + �
�
G(v(y); v(y + 1)) �G(v(y � 1); v(y))

� � 0;

which is nothing but
G(v(y); v(y + 1)) �G(v(y � 1); v(y) � 0

Since limy!1 v(y) = v1, we get
G(v(y); v(y + 1)) � F (v1)

and so with y = 0, since v(y) = uB for y 2 [0; 1),

G(uB; v1)) � F (u0)

with v1 = v(1). That establishes that v1 belongs to the set Eentropyscheme (uB). tu

Finally we treat the Godunov scheme. The sets E layerGodunov(uB) and EentropyGodunov(uB) are de�ned by De�nitions 3.7
and 3.8. We now prove:

Theorem 3.13. Consider the Godunov scheme and let uB 2 U be given. We have

E layerGodunov(uB) = EentropyGodunov(uB): (3.41)

This set can also be described as the set

ERiemann(uB) =
�
R(uB; w) =w 2 U

	
;

where R(uB ; w) denotes the value at x=t = 0+ of the solution of the Riemann problem with data uB and w

on the left and right, respectively. Moreover when (3:4) holds for some p, the set above contains the point uB
and, locally nearby uB, is a manifold with dimension p and with tangent space at the point uB spanned by the

eigenvectors rj(uB), j = 1; 2; � � � ; p. tu
Observe that the Godunov scheme does not produce any boundary layer, in the sense that the layer contains

no interior point.
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Proof of Theorem 3.13. We recall that the set E layerGodunov(uB) is de�ned by the equation

f(uB) = f(R(v(y); v(y + 1));

v(y) = uB for all y 2 [0; 1);

lim
y!1

v(y) = v1;

(3.42)

while the set EentropyGodunov(uB) is de�ned by the inequalities

F (R(uB; v1)) � F (u0) for all convex pair (U;F ) (3.43)

and for some v1 2 U . So it is not hard to see from the de�nition that

ERiemann(uB) � E layerGodunov(uB):

On the other hand the inclusion
E layerGodunov(uB) � EentropyGodunov(uB)

also holds in view of Proposition 3.12.
It remains to show that

EentropyGodunov(uB) � ERiemann(uB):

Consider a pair (u0; v1) that solves (3.43). Then w need show that there exists w such that

R(uB ; w) = u0: (3.44)

Using the trivial entropies, we get
f(R(uB ; v1)) = f(u0)

which, combined with the inequality (3.43), shows that the pair of states (R(uB ; v1); u0) is an entropy satisfying,
stationnary shock wave. On the other hand the Riemann problem with left and right initial data uB and
R(uB ; v1), respectively, contains only waves with non-positive speeds. Therefore the Riemann solution, with uB
as a left state and u0 as a right state, only contains waves with non-positive speeds. This function takes the
value u0 in the whole half-interval x=t > 0 and thus R(uB; u0) = u0, which proves (3.44) with w = u0. tu
4. Selected Examples I.

In this section, we investigate �rst the convex scalar conservation laws and establish that all the sets introduced
in Section 4 are essentially the same. Some remarks are then given for the linear hyperbolic systems. Next we
return to the scalar equation and treat a non-convex 
ux function, showing again that the sets are the same with
the exception of the set based on the boundary layer equations.

4.1. Scalar Conservation laws: Convex Fluxes. We consider a scalar conservation law with strictly convex


ux, i.e. f
00

(u) > 0 and analyze the boundary layer equation. Let u� be the unique point such that f 0(u�) = 0.
To the state uB, when uB 6= u�, we associate the solution u

�
B 6= uB of the equation f(u�B) = f(uB).

We show here that some of the sets introduced in Section 3 coincide in this case. We also recover the
formulation of the boundary condition discovered by Bardos-Leroux-Nedelec [4] and Leroux [34].

Theorem 4.1. Consider a scalar conservation laws with convex 
ux.

1) For any uB 2 U � RI , the sets of admissible boundary values Eentropyviscosity(uB), E layerGodunov(uB), and EentropyGodunov(uB),

coincide with

ERiemann(uB) =

(
(�1; u

�
B] [

�
uB

	
if uB > u�;

(�1; u�] if uB � u�:
(4.1)

and

E layerviscosity (uB) = ERieman(uB)�
�
u
�
B
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2) Given uB 2 U � [�M;M ] for a �xed value of M > 0, we set kf 0k1 = supw2[�8M;8M ] jf 0(w)j and consider a

Lax-Friedrichs type scheme with coe�cient � and Q satisfying kf 0k1�=Q � 1, then

E layerLax (uB) \ [�M;M ] = ERiemann(uB) \ [�M;M ]� �u�B	
EentropyLax (uB) \ [�M;M ] = ERiemann(uB) \ [�M;M ]

(4.2)

tu
Proof of Theorem 4.1.

Step 1: The set E layerviscosity(uB).

The problem to be solved is
B(v)@yv = f(v) � f(v1) (4.3)

with the boundary conditions uB and v1 at y = 0 and y = 1 respectively. We need show that (4.3) has a
solution if and only if v1 belongs to the set described in (4.1).

Case 1 : uB > u�. In this case f 0(uB) > 0 and uB is an \entering" data.
If v1 > uB (4.1) has no solution because, at y = 0, @yv < 0 and hence v is decreasing at y = 0 and hence all

later points.
If uB > v1 > u

�
B then f(uB )� f(v1) > 0, and hence v is increasing at y = 0 and at every point for the same

reason and hence there does not exist solution.
If v1 < v

�
0, then f(uB) � f(v1) < 0 and v is decreasing at 0 and for all points for a similar reason. Since

u(y) cannot cross v1, because v1 is a critical point v(y) converges to v1 as y !1.

If v1 = u
�
B , then f(uB) = f(v1)

@yv(0) = 0:

Now the equation (4.3) with initial conditions v(0) = uB; @yv(0) = 0 has a unique solution namely v(y) = uB .
Hence v(y) does not go to u�B as y !1. Hence no solution.

Case 2 : uB � u�.
If v1 � u� reasoning the same way as before we get existence of solution.
If v1 > u�, since we want u(y) ! v1 as y ! 1, there exists y1 such that u� < v(y1) < v1 and at

y1; f(v(y1)) � f(v1) < 0 and hence v(y1) is decreasing at y1 and hence v(y) cannot go to v1.

Step 2: The set E layerLax (uB).
Recall that the boundary layer equation here is

�

2Q
(f(v(y + 1)) � f(v1)) +

�

2Q
(f(v(y)) � f(v1)) = v(y + 1)� v(y) (4.4)

We show:

Either v(y + 1) = v1 = uB for all y or v(y + 1) > v(y) for all y or v(y + 1) < v(y) for all y. (4.5)

To show (4.5), we subtract the equation (4.4) with y replaced by y � 1 to the original equation (4.4). Using
the mean value theorem we get

�

2Q
f
0(�1)(v(y + 1)� v(y)) +

�

2Q
f
0(�2)(v(y) � v(y � 1)) = (v(y + 1)� v(y)) � (v(y) � v(y � 1)):

Rearranging the terms, we arrive to

1� �

2Q
f
0(�1)(v(y + 1)� v(y)) = (1 +

�

2Q
f
0(�2))(v(y) � v(y � 1)):
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The claim (4.5) follows since (1 � �
2Qf

0(�1)) and (1 + �
2Qf

0(�2)) are positive.

By the implicit function theorem, given uB, there exists a solution v(1); v(2); � � � ; v(y + 1) to (4.4) on the
interval [0; y+1]. We have to �nd v1 for which v(y+1) ! v1 and show that this set is E(uB)Riemann\ [�M;M ].

Case 1 : uB > u�.
If v1 > uB there is no solution. Namely, if there is a solution we must have u� < uB < v(y) < v(y+1) < v1.

This implies on one hand v(y + 1)� v(y) > 0 and on the other hand from (4.4), v(y + 1)� v(y) < 0, since both
terms on the left are < 0.

If u�B < v1 < uB, there is no solution. Namely if there is a solution we must have v(1) < uB and

�

2Q
(f(v(1)) � f(v1)) +

�

2Q
(f(uB )� f(v1)) = v(1) � uB (4.6)

Since u�B < v1 < uB; f(uB)� f(v1) > 0 and hence from (4.6), we get

�

2Q
(f(u1)� f(uB)) < u1 � uB:

By the mean value theorem (�1+ �
2Q
f
0(�1))(u1�uB) < 0, which implies v(1)�uB > 0 contradicting v(1) < uB .

If v1 < u
�
B , then there exists a solution to (4.3). Indeed from (4.4) we have

uB > v(1) > v(2) > � � �v(y + 1) > v(y + 2) � � �

We have to show that v(y + 1) > v1 for all y. Otherwise, there exists y0 such that v(y0 � 1) > v1 > v(y0). But
then f(v(y0)) > f(v(y0 � 1)) and from (4.4) we have

�

2Q
(f(v(y0 � 1)) � f(v(y0)) < vy0 � v(y0 � 1):

This implies (1+ �
2Qf

0(�))(v(y0)�v(y0�1)) > 0, which is not possible since v(y0) < v(y0�1). Hence v(y) > v1.

Since v(y + 1) is a monotone sequence, there exists u1 su that

v(y + 1)! u1 as y !1:

Letting y !1 in (4.4) we get
f(u1) � f(v1) = 0:

Since u1 and v1 are less that u�, we deduce that u1 = v1.

If v1 = u
�
B then

�

2Q
(f(v1) � f(v1)) = v1 � uB:

Since f(v1) = f(uB ), we get
�

2Q
(f(v1)� f(uB)) = v1 � uB :

That is (1 � �
2Q
f
0(�))(v1 � uB) = 0. Since (1 � �

2Q
f
0(�)) > 0, we get v1 = uB and hence v(y) = uB for all y.

Thus v(y) cannot converge to v1.

Case 2 : uB < u�.
By an arguments similar to that we have done above we can show that the set of v1 for which (4.4) has a

solution is (�1; u�] \ [�M;M ].



26 BOUNDARY LAYERS FOR SYSTEMS

Step 3: The set Eentropyviscosity(uB).

This is the set of all u0 2 RI such that

F (uB) +5U (uB)(f(u0) � f(uB)) � F (u0) (4.7)

for all convex entropy pairs (U;F ). It is well known that for scalar conservation laws it is enough to consider
Kruzhov entropics: U (u) =j u� k j; F (u) = sgn(u � k)(f(u) � f(k)) for k 2 RI . In this case (4.7) reduces to�

sgn(uB � k)� sgn(u0 � k)
�
(f(u0)� f(k)) � 0 (4.8)

for all k 2 RI . This inequality holds trivially if k is not in [min(u0; uB);max(u0; uB)]. We determine the set of
all u0 such that (4.8) holds for all k 2 [min(u0; uB);max(u0; uB)]. We need to consider several cases.

Case 1 : uB > u�.
If u0 > uB, then for (4.8) to hold we must have �2(f(u0) � f(k)) � 0 for k 2 [uB; u0], which is not possible

as f(u0)� f(k) > 0 for k 2 (uB; u0).

If u�B < u0 < uB, then we must have f(u0) � f(k) � 0 for k 2 (u0; uB). This is not possible for k > u
�
0.

If u0 � u
�
B < uB, then we must have f(u0) � f(k) � 0 for all k 2 [u0; uB], which is true. Thus we get

Eentropyviscosity (uB) = (�1; u
�
B] if uB > u�:

Case 2 : uB � u�.

If u0 � uB � u�, then for (4.8) to hold we must have f(u0) � f(k) � 0 for all k 2 [u0; uB], which is true.

If uB < u0 � u�, we must have �(f(u0)� f(k)) � 0 for all k 2 [uB; u0], which is true.

If u0 > u�, then we must have �(f(u0)� f(k)) � 0 for all k 2 [uB; u0]. This is not true because u� 2 [uB; u0]
and f(u0) � f(u�) > 0.

Thus we get
Eentropyviscosity (uB) = (�1; u�]; if uB � u�:

Step 4. EentropyLax (uB) \ [�M;M ].

This is the set of all u0 2 [�M;M ] such that there exists v1 for which

F (uB) + F (v1) +
Q

2�
(U (uB)� u(v1)) � F (u0) (4.10)

for all convex entropy pairs. Since the Kruzkov entropies

U (k) =j u� k j; F (u) = sgn(u� k)(f(u) � f(k));

generates the set of all convex functions, (4.10) reduces to

sgn(uB � k)[
�

2Q
(f(uB )� f(k)) + (uB � k)]+

sgn(v1 � k)[
�

2Q
(f(v1)� f(k)) � (v1 � u)]+

sgn(u0 � k)[
�

Q
(f(u0) � f(k)) � 0:

(4.11)
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for all k 2 RI . If there exists v1 then by taking large negative and positive k we get v1 must satisfy

�

2Q
(f(uB) + f(v1)) + uB � v1 =

�

Q
f(u0): (4.12)

From (4.12) we get

j v1 � �

2Q
f(v1) j� 4M (4.13)

provided we choose � and Q such that �
Q
max�2[�M;M ] j f 0(�) j� 1. From (4.13) we get j 1� �

2Q
f
0(�) jj v1 j� 4M ,

for some � between 0 and v1. Now if we choose � and Q such that �
Q
maxj�j�8M j f 0(�) j� 1, then (1 � 1=2) j

v1 j� 4M . In otherwords if we choose � and Q such that

�

Q
max
j�j�8M

j f 0(�) j� 1 (4.14)

then there exists a solution v1 of (4.12) and v1 has the estimate

j v1 j� 8M: (4.15)

Let I(uB ; u0; v1) be the closed interval [min(uB; u0; v1);max(uB; u0; v1)]. Then for all k outside I(uB ; u0; v1)

the inequality (4.11) is trivially satis�ed. Thus u0 is in EentropyLax (uB) \ [�M;M ] i� v1 satisfy (4.11) for all k in
I(uB ; u0; v1). Rewriting (4.12) and applying mean value theorem we get

(1� �

2Q
f
0(�1))(v1 � u0) = (1 +

�

2Q
f
0(�2))(uB � u0)

for some �1 in between v1 and u0 and �2 in between uB and u0. This says by (4.14) and (4.15)

uB > u0 () v1 > v0; uB < u0 () v1 < u0; uB = u0 () v1 = u0: (4.15)

So far we have not used convexity of f(u). Now consider f(u) is convex.

Case 1 : uB > u�.

If uB < u0, then by (4.15) v1 < u0. On the other hand from (4.12) �
2Q(f(v1) � f(uB)) + uB � v1) > 0. By

the mean value theorem, this implies (1 � �f 0

2Q
(�))(uB � v1) > 0 for some � in between v1 and uB. This means

that uB > v1. Now for (4.11) to hold for k = uB , we must have

� �

2Q
(f(v1) � f(uB )) + (v1 � uB)� �

Q
(f(u0)� f(uB)) � 0:

Since f(u0) � f(uB) > 0, we must have v1 � uB � �
2Q

(f(v1) � f(uB)) > 0. Applying mean value theorem we

get v1 � vB > 0. This contradicts uB � v1 > 0. Thus u0 is not admissible. If u�B < u0 < uB , as before we get
u0 < uB < v1. By taking k = uB, we can show that u0 is not admissible. If u0 � u

�
B, then we get u0 < v1 � uB .

Now let k 2 [u0; v1] in (4.11) we must have

�

2Q
(f(uB) � f(k)) + (uB � k) +

�

2Q
(f(v1) � f(k)) � (v1 � k) +

�

Q
(f(u0)� f(k)) � 0:

Using (4.12) this is equivalent to (f(u0) � f(k)) � 0, which is true since u0 � u
�
B and v1 � uB and k 2 [u0; v1].

Now if k 2 (v1uB ], we need to check

�

2Q
(f(uB) � f(k)) + (uB � k)� �

2Q
(f(v1) � f(k)) + (v1 � k) +

�

Q
(f(u0)� f(k)) � 0:
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Using (4.12) this is equivalent to

�

2Q
(f(uB) � f(k)) + (uB � k) � 0; for all k 2 (v1; uB]:

Byy mean value theorem it follows that this is true. Thus we have the admissible set

EentropyLax (uB) \ [�M;M ] = [�M;u
�
B] if uB > u�:

Case 2 : uB � u�.

If u� < u0 � u
�
B, then as before uB � v1 < u0. For u0 to be admissible from (4.11) for all k 2 (v1; u0] we

must have f(k) � f(u0) � 0 which is not possible since u0 > u�.

By a similar argument we can show that if u0 > u
�
B; u0 is not admissible.

If uB < u0 � u�, then we get uB < v1 < v0 � u�. If k 2 [uB; v1] (4.11) is equivalent to
�
2Q

(f(k) � f(uB)) +

(k � uB) � 0, which is true. If k 2 (v1; u0] (4.11) is equivalent to f(k)� f(u0) � 0 which again is true. Thus u0
is admissible.

If u0 � uB , it can be shown by the same reasoning as above u0 is admissible. Thus we have

EentropyLax (uB) \ [�M;M ] = (�M;u�] if uB � u�:

tu

4.2 Linear Hyperbolic Systems.

It is not hard to prove that for a linear and strictly hyperbolic system, the sets de�ned in Section 3 are all
equivalent. We only consider here the case of the discrete boundary layer based on the Lax-Friedrichs scheme.

We also focus attention in this section to establish that the restriction (3.12) on the viscosity matrix is essential
to our purpose here, as was observed in another context by Majda-Pego [40] in their study of traveling wave
solutions to (2.1). The following example shows a situation where the viscosity matrix is a positive diagonal
matrix, and does not satisfy (3.12), while the formulation may lead to a \wrong" boundary condition.

We consider the linear system

@tu+

�
5 � 5

3 � 3

�
@xu = �

�
5 0

0 1

�
@xxu: (4.16)

According to our earlier analysis, the boundary layer equation is

@yyv(y) =

�
1=5 0

0 1

��
5 � 5

3 � 3

�
@yv(y);

i.e.

@yyv(y) =

�
1 � 1

3 � 3

�
@yv(y):

Integrating this equation once and using v(+1) = v1, we get

@yv(y) =

�
1 � 1

3 � 3

�
(v � v1): (4.17)
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Now the eigenvalues of

�
5 � 5

3 � 3

�
are �1 = 0 and �2 = 2. On the other hand, the eigenvalues of

�
1 � 1

3 � 3

�
are �1 = �2 and �2 = 0. The solution of (4.17) with the initial condition v(0) = vB � v1 is

v(y) � v1 =< �̀
1; vB � v1 > �r1e

�2y+ < �̀
2; vB � v1 > �r2;

where

�̀
1 =

�
1p
2

�1p
2

�
; �̀

2 =

��3
2
;
1

2

�
; �r1 =

 
1=2

3=2

!
; �r2 =

 
1=
p
2

1=
p
2

!
:

In order for v(y) ! v1 as y !1, we must have < �̀
2; vB � v1 >= 0 or

< �̀
2; v1 >=< �̀

2; vB > :

This requires that we prescribe < �̀
2; u > at the boundary. But the correct boundary condition for the hyperbolic

system

@tu+

�
5 � 5

3 � 3

�
@xu = 0

is to prescribe < `2; u > where `2 =
�

1p
2
;� 1p

2

�
.

Let us now consider the numerical boundary layer for a general linear and strictly hyperbolic system. Set
f(u) = Au, where A is a constant matrix. The boundary layer equation becomes

�

2
Av(y + 1) +

�

2
Av(y) � 1

2

�
v(y + 1) � v(y)

�
= �Av1; (4.18)

v(0) = vB ; v(1) = v1:

For a given uB, we search for the set of states v1 for which this problem has a solution. Set v1(y) = v(y+1)�v1 .
The �rst equation in (4.18) becomes

(�A� I)v1(y) = �(�A + I)v1(y � 1): (4.19)

Let `j and rj be the left- and right- eigenvectors for A associated with the eigenvalues �j. Set Cj(y) =<
`j ; v(y + 1) >. From (4.19) we get

(1� ��j)C(y)
j = (1 + ��j)C

j(y � 1)

or

C
j(y) =

�
1 + ��j

1� ��j

�
C
j(y � 1)

with

C
j
0 =< `j ; vB � v1 > :

Integrating this, we get

C
j(y) =< `j ; vB � v1 >

�
1 + ��j

1� ��j

�y
or

v(y + 1)� v1 = v
1(y) =

nX
j=1

�
1 + ��j

1� ��j

�y
< `j ; uB � v1)rj :
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For v(y+1) ! v1, we need < `j ; vB�v1 >= 0; j = p+1; � � �n because �1 < �2 < � � ��p < 0 � �p+1 < � � ��n.
This gives correct boundary condition when the eigenvalues are not zero; i.e. to prescribe

< `j ; u > for j = p+ 1; � � � ; N:
4.3 Scalar Conservation Laws: Non-Convex Fluxes.

We return to scalar conservation laws but now with non-convex 
uxes. For de�niteness we treat the case of
the cubic 
ux given by

f(u) =
1

2
(u3 � 3u); (4.20)

which has one minima and one maxima; indeed

f(1) = �1; f 0(1) = 0; f
00

(1) = 3; f(�1) = 1; f 0(�1) = 0; f
00

(�1) = �3:
For a given uB 2 RI and the function f given by (4.20), we shall need the solution of the equation

f(u) = f(uB ); u 6= uB : (4.21)

If uB < �2 or uB > 2, there is no solution for (4.21). If uB 2 (�2;�1) [ (1; 2), then (4.21) has exactly two
solutions. In this case we denote by u

`
B and u

s
B the largest and smallest solutions of (4.21), respectively. If

uB = �2;�1; 1, or 2, then (4.21) has exactly one solution; namely 1; 2;�2, and �1, respectively.
For the formulation of the results in this subsection, it will be convenient to introduce the following set, which

is either the empty set or contains a single element:

E(uB) =

8>>>>>>>><
>>>>>>>>:

;; if uB 2 (�1;�2) [ [�1; 1][ (2;1)�
1
	

if uB = �2�
u
s
B

	
; if � 2 < uB < �1�

u
`
B

	
; if 1 < uB < 2:�� 1
	

if uB = 2:

(4.22)

When E(uB) is non-empty, we denote by u��B its element.

Theorem 4.2. Consider the scalar conservation law with the non-convex 
ux (4:20).

1) For any uB 2 U = R, the set of admissible boundary values Eentropyviscosity(uB); E layerGodunov(uB), and EentropyGodunov(uB)
coincide with

ERiemann(uB) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

�
uB

	
; if uB < �2�� 2; 1
	
; if uB = �2

[usB; 1][
�
uB

	
; if� 2 < uB < �1

[�1; 1] if � 1 � uB � 1

[�1; u`B] [
�
uB

	
; if 1 < uB < 2�

uB

	
; if uB > 2�

2;�1	; if uB = 2

(4.23)

and

E layerviscosity(uB) = ERiemann(uB)� E(uB):

2) Given any state uB 2 U = [�M;M ] for a �xed value M > 2, we set k f 0 k1= supw2[�8M;8M ] j f 0(w) j and
consider a Lax-Friedrichs type scheme with coe�cient � and Q satisfying k f 0 k1 �

Q
� 1. Then

E layerLax (uB) \ [�M;M ] = ERiemann(uB) \ [�M;M ]�E(uB);

EentropyLax (uB) \ [�M;M ] = ERiemann(uB) \ [�M;M ]:
(4.24)

tu
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Proof of Theorem 4.2.

Step 1. E layerviscosity (uB).

This is the set of all v1 such that the problem

B(v) @yv = f(v) � f(v1);

v(0) = uB; v(1) = v1;
(4.25)

has a solution. First of all we note that, for any uB , the state v1 = uB is admissible. On the other hand, any
solution of (4.25), if it exists, should be strictly monotone or constant throughout the interval.

Case 1 : uB < �2.
If v1 < uB , then @yv > 0 at y = 0 and v(y) increasing at y = 0 and hence at all later points. Thus (4.25)

cannot have a solution.
If v1 > uB , then f(v1) > f(uB) and hence @yv < 0 at y = 0 and, thus, for all y > 0. Therefore (4.25) does

not have solution.
Thus we get

E layerviscosity (uB) =
�
uB

	
if uB < �2:

Case 2 : �2 � uB < �1.
If v1 < uB or uB < v1 < u

s
B, arguments similar to Case 1 shows that (4.25) has not solution. If v1 = u

s
B ,

then from the de�nition of usB and the ODE in (4.25) we get @yv(0) = 0. But this, together with v(0) = uB ,
uniquely determine the solution of B(v)@yv = f(v) � f(v1), namely v = uB . Thus (4.25) has no solution since
v(y) cannot go to v1. (For uB = �2, we used notation u

s
B = 1.) If usB < v1 < 1, then f(uB) � f(v1) =

f(usB )� f(v1) > 0. Hence @yv > 0 at y = 0 and for all y such that v(y) < 1. Since v1 is a critical point v(y)
cannot cross v1 which is less than one and v(y) ! v1.

If �2 < uB < �1 and v1 = 1, by the same argument as above there is solution for (4.25).
If uB = �2 and v1 > 1, or �2 < uB < �1 and v1 > u

`
B , there is no solution for (4.25) for @yv(0) > 0. If

�2 < uB < �1 and 1 < v1 < u
`
B, then @yv(0) > 0 and v(y) increases at zero and for all uB < v(y) < u

`
1.

Also v(y) has to take all values between uB and v1 if v(y) ! v1. But since @yv is decreasing if v(y) lies in

(v`1; v1); v(y) cannot tend to v1 as y !1. Thus we get

E layerviscosity (uB) =

( � � 2
	

if uB = �2
(usB; 1][

�
uB

	
if uB 2 (�2;�1):

Case 3 : �1 � uB � 1.

Repeating the same argument above it can be easily seen that

E layerviscosity = [�1; 1]:

Case 4 : 1 < uB � 2.
By the same proof as the one in Case 2, we have

E layerviscosity (uB) =

( �
2
	

if uB = 2��1; u`B� if 1 < ub < 2:

Case 5 : uB > 2.
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By the same proof as the one in Case 1, we have

E layerviscosity(uB) =
�
uB

	
:

Step 2. E layerLax (uB), where uB 2 U = [�M;M ] for some M > 0.
In this case the boundary layer equation is

�

2Q
(f(v(y + 1))� f(v1)) +

�

2Q
(f(v(y)) � f(v1)) = v(y + 1)� v(y): (4.26)

v(0) = uB; lim
y!1

v(y) = v1: (4.27)

As in the earlier case, once v(0) = uB is given, the equation (4.25) has a unique solution v(0); v(1); v(2); � � � ,
which is either strictly monotone or constant throughout. We determine the set of v1 in [�M;M ] for which

v(y) ! v1 as y !1. This is the set E layerlax (uB)\ [�M;M ] by de�nition. Note that uB is always in this set. In
the following we take M large enough so that all points under consideration are in [�M;M ].

Case 1 : uB < �2.
If v1 < uB, then

�
2Q

(f(v1)�f(uB )) < v1�uB ; since f(uB)�f(v1 ) > 0. This implies (1� �
�0
f
0(�))(v1�uB) >

0 for some � in the interval (min (vB ; v1) max (uB; v1). Hence v1 > uB. Thus the sequence v(y) cannot decrease
to v1 as y !1.

If v1 > uB , by a similar reasoning, the problem (4.26)-(4.27) does not have a solution. We get

E layerlax (uB) \ [�M;M ] =
�
uB

	
:

Case 2 : uB = �2.
As in Case 1, it can be easily seen that (4.26)-(4.27) does not have a solution if v1 6= �2 or 1. When v1 = 1,

then v1�uB = �
2Qf(v1)�f(uB ), where we used f(uB) = f(�2) = f(1). This implies (1� �

�'
f
0(�))(v1�uB) = 0

because of our choice of � and Q and v1 = uB. Thus v(y) = uB for all y. Thus v(y) does not go to 1 as y !1.

Case 3 : �2 < uB < �1.
If v1 < u

s
B or v1 > u

`
B, following the same reasoning as Case 1 gives that (4.26)-(4.27) has no solution.

If v1 = u
s
B , we can argue as in the second part of Case 2 to show that a solution does not exist.

If usB < v1 � 1, then v1�uB >
�
2Q

(f(v1)�f(uB )) since f(uB ) > f(v1). This implies (1� �
2Q

)f 0(�)(v1�uB) >
0 and thus v1 > uB and v(y) is a strictly increasing function. We show that v(y) < v1. From (4.26) we have

�

2Q
(f(v(y + 1)) � f(v1)) +

�

2Q
(f(v(y)) � f(v1)) = (v(y + 1)� v1)� (v(y) � v1):

Applying the mean value theorem and rearranging the terms, we get

(1� �

2Q
f
0(�1))(v(y + 1)� v1) = (1 +

�

2Q
f
0(�2))(v(y) � v1):

Since 1� �
2Q
f
0(�1) > 0; 1+ �

2Q
f
0(�2) > 0, we �nd that v(y) � v1 is positive or negative. In our case v1 � v1,

is negative and hence v(y) < v1. Hence v(y) ! v � v1. From (4.26) we get

f(v) = f(v1):

This equation has only one solution v = v1 in the interval (uB; v1]. So (4.26)-(4.27) has a solution.
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If 1 < v1 < u
`
B, there is no solution. For if there is a solution then uB < v(1) < v(2) < � � �v(y) ! v1 and

except for a �nite number of integers y, the state v(y) lies in (1; v1). But then f(v(y)) � f(v1) < 0 for all y
except for a �nite number of integer values of y. Using this fact in (4.26), we get v(y + 1) < v(y) except for a
�nite number of integers y which is not possible.

As in the second part of Case 2, it can be seen that, if v1 = u
`
B, there is no solution. Finally we have

E layerLax (uB) = (usB; 1][
�
uB

	
if uB 2 (�2;�1):

Case 4 : uB = �1.
If v1 < uB = �1, then f(v1) < f(uB). Using this in (4.26), we get v1 � uB >

�
2Q

(f(v1) � f(uB )). This

implies (1� �
2Qf

0(�))(v1 � uB) > 0 and hence v1 > uB. Hence there is no solution.

If �1 < v1 � 1, then f(uB) � f(v1) > 0 and, as before, v1 > uB . It is easily shown as in Part 3 of Case 3
that there exists a solution to (4.26)-(4.27). If 1 < v1 < 2 there is no solution. Proof of this fact is same as in
Case 1.

If 2 < v1, then using the same reasoning as for Case 1, we see that there is no solution.

If v1 = 2, there is no solution because we can easily show that (1� �
2Qf

0(�))(v1�vB) = 0 and hence v1 = uB .

Combining the two, we get

E layerLax (uB) = [�1; 1]; if uB = 1:

Case 5 : �1 < uB � 1.

By the same arguments as above we get

E layerLax (uB) = [�1; 1]; if uB 2 (�1; 1]:

Proofs the following cases are repetition of earlier cases and are omitted.

Case 6 : 2 > uB > 1. Then E layerLax (uB) = (u`B ; 1][
�
uB

	
.

Case 7 : uB = 2. Then E layerLax (uB) =
�
2
	
.

Case 8 : uB > 2. Then E layerLax (uB) =
�
uB

	
.

Step 3. The set Eentropyviscosity(uB).

As observed in the convex case, this is the set of all u0 2 RI such that

�
sgn(uB � k)� sgn(u0 � k)

�
(f(u0)� f(k)) � 0 (4.28)

holds for all k 2 [min(uB ; u0);max(uB; u0)].

Case 1 : uB < �2.
If u0 < uB , then, for u0 to be admissible, we must have from (4.28) f(u0) � f(k) � 0 for all k 2 [u0; uB],

which is not possible.

If uB < u0 � �1, for u0 to be admissible we should have f(k) � f(u0) � 0 for all k 2 [uB; u0], which again is
not possible.

If u0 > �1, then plugging k = �2 in (4.28) gives f(�2) � f(u0) � 0, which is not possible. Thus

Eentropyviscosity (uB) =
�
uB

	
if uB < �2:
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Case 2 : uB = �2.
If u0 6= 1 or �2, then by the same argument as above u0 is not admissible. If u0 = 1 then (4.28) to hold for

all k 2 [�2; 1] we must have f(k) � f(u0) � 0, which is true. Thus

Eentropyviscosity (�2) = � � 2; 1
	
:

Case 3 : �2 < uB < �1.
If u0 < uB, then from (4.28) we get u0 is admissible if f(u0) � f(k) � 0 for all k 2 [u0; uB], which not true.

If uB < u0 < u
s
B for admissibility we should have for k 2 [uB; u0]; f(k)� f(u0) � 0 which is not possible.

If usB � u0 � 1 it follows as above that (4.28) is satis�ed and if u0 > 1 (4.28) is not satis�ed for k = 1. Thus

Eentropyviscosity (uB) = [usB; 1][
�
uB

	
:

Case 4 : uB = �1.
If u0 < �1, (4.28) is violated for k 2 (u0;�1) and if 1 < u0 < 1, (4.28) is violated for example for k = 1. If

�1 < u0 � 1 then (4.28) is satis�ed for all k 2 [uB; u0]. Thus

Eentropyviscosity = [�1; 1]:

In a similar way we can show that

Case : �1 < uB � 1. Then Eentropyviscosity (uB) = [�1; 1]

Case : �1 < uB < 2. Then Eentropyviscosity (uB) =
�
uB

	
U [�1; u`B]

Case : uB = 2. Then Eentropyviscosity (2) =
�� 2;�1	

Case : uB > 2. Then Eentropyviscosity (uB) =
�
uB

	
.

Step 4. The set EentropyLax (uB) \ [�M;M ].

Let uB 2 [�M;M ]. Here we take M > 2 to include all the interesting cases. The set EentropyLax (uB)\ [�M;M ]
is the set of all u0 2 [�M;M ] for which there exists v1 such that

sgn(uB�k)
� �
2Q

(f(uB )�f(k))+(uB�k)
�
+sgn(v1�k)

� �
2Q

(f(v1)�f(k))�(v�k)
��sgn(u0�k)� �

Q
f(u0)�f(k))

� � 0:

(4.29)
We have seen in Step 4 of Theorem 4.1 (for any smooth 
ux f) that if such a v1 exists for a given u0 2 [�M;M ]
then it must satisfy

�

2Q
(f(uB) + f(v1)) + uB � v1 =

�

Q
f(u0): (4.30)

There, we also have seen that if � and Q are chosen such that �
Q
maxj�j�8M j f 0(�) j< 1, then (4.30) has a unique

solution v1 satisfying j v1 j� 8M and

uB > u0 () v1 > u0; uB < u0 () v1 < u0; uB = u0 () v1 = u0: (4.31)

Further if k is outside the interval I(uB ; u0; v1) limited by the states uB; u0; v1, then (4.29) is automatically
satis�ed. Thus the admissible values u0 in [�M;M ] are those for which uB ; u0 and the solution v1 of (4.30)
satisfy (4.29) for all k in I(uB ; u0; v1) = [min(uB ; u0; v1);max(uB; u0; v1)].
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Case 1 : uB < �2.
If u0 < uB, then, from (4.30) and (4.31), we get u0 < uB < v1. Take k = uB in (4.29) and use (4.30); we

get, (uB � v1) +
�
2Q (f(v1) � f(uB)) � 0, which by the mean value theorem and our choice of � and Q implies

uB � v1 � 0, contradicting uB < v1.

If u0 > uB , then as before v1 must satisfy v1 < uB < u0. So, for k = uB , (4.29) is not satis�ed and

EentropyLax (uB) =
�
uBg if uB < �2:

Case 2 : uB = �2.
By the same argument as in Case 1, it can be seen that no point in the set [�M;M ]

��2; 1	 is in EentropyLax (�2).
If u0 = 1, then we get from (4.30) that v1 = uB. Now for u0 = 1 to be admissible from (4.29) we must have
f(k) � f(�2) � 0 for all k 2 [�2; 1], which is true.

Thus EentropyLax (�2) = �� 2; 1
	
.

Case 3 : �2 < uB < �1.
If u0 < uB , then u0 < uB < v1 and for k = uB, (4.29) is not satis�ed.

If uB < u0 < u
S
B, then v1 < uB < u0 and for k = uB, (4.29) is not satis�ed.

If uB < u0 < u
s
B, then v1 < uB < u0 and for k = uB, (4.29) is not satis�ed.

If usB � u0 � 1, then from (4.30) and (4.31) we have uB < v1 < u0 and it can be easily seen that (4.29) is
satis�ed for all k 2 [uB; u0].

If u0 > 1, it can be easily shown that u0 is not admissible. Thus we have

EentropyLax (uB) = [usB; 1]U
�
uB

	
; if � 2 < uB < �1:

Case 4 : �1 � uB � 1.

If u0 < �1, then by (4.31) u0 < v1. If f(u0)� f(uB ) < 0, then from (4.30) uB < v1 and thus u0 < uB < v1.
It can be seen easily that for k = uB (4.29) is not satis�ed.

If f(u0) = f(uB ) then v1 = uB and for k = �1, (4.29) is not satis�ed.
If f(u0) � f(uB) > 0 then as before u0 < v1 < uB . Now take k 2 (u0;min(v1;�1), for u0 to be admissible

from (4.29) and (4.30) we must have have f(u0) � f(k). This is not true for k in (u0, min (v1 � 1)). Thus u0 is

not admissible if u0 < �1.
If �1 � u0 < uB, we have u0 < v1 < uB . If k 2 [u0; v1] (4.29) is equivalent to f(u0) � f(k)) � 0, which is

true. Similarly (4.29) holds for k 2 (v1; uB]. Thus u0 is admissible.

If u0 > 1, it can be easily checked that u0 is not admissible. Thus we have

EentropyLax (uB) = [�1; 1] if uB 2 [�1; 1]:

In the following cases the proofs are repetition of earlier cases and are omitted.

Case : �1 < uB < 2. Then E textentropyLax (uB) =
�
uB

	
U [�1; u`B].

Case : uB = 2. Then E textentropyLax (uB) =
�
2;�1	.

Case : uB > 2. Then E textentropyLax (uB) =
�
uB

	
. tu
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5. Selected Examples II.

5.1 Nonlinear Elastodynamics. The system considered now arises in the modeling of elastic materials [10]:

@tv � @xu = 0;

@tu� @x�(v) = 0:
(5.1)

It describes the evolution of a nonlinear material with deformation gradient v and velocity u. The stress function
� is assumed to be smooth enough and satisfy the following conditions:

�
0(v) > 0; v �

00(v) > 0: (5.2)

Let us discuss the vanishing viscosity approximation for the viscosity matrix B(u) = I. The boundary layer
problem to be studied here is

� @yu = @
2
yv;

� @y�(v) = @
2
yu;

v(0) = vB ; v(1) = v1;

u(0) = uB; u(1) = u1

(5.3)

We need determine the set of (v1; u1) for which (5.3) has a solution. Integrating once the ODE'S and using
the boundary condition at in�nity, we get

@yv = u1 � u; uy = �(v1)� �(v): (5.4)

Cross multiplying the equations and integrating, we get

(u� u1)2

2
=

Z v

v1

(�(s) � �(v1)) ds;

so

(u� u1)2 = �
�Z v

v1

2 (�(s) � �(v1)) ds

�1=2

: (5.5)

Note that
R v
v1

(�(s) � �(v1))ds � 0 because of the condition �0(v) > 0. From (5.5) it follows that

v(y) = v1 , u(y) = u1:

Since we are interested in a solution connecting (vB ; uB) at y = 0 to (v1; u1) at y =1, we get from (5.4) that
either

vB < v(y) < v1 and uB > u(y) > u1

or

vB > v(y) > v1 and uB < u(y) < u1:

(5.6)

This determines the sign in (5.5):

u =

8>>>><
>>>>:

u1 �
�Z v

v1

2 (�(s) � �(�v)) ds

�1=2

ifv > v1

u1 +

�Z v

v1

2 (�(s) � �(�v)) ds

�1=2

ifv < v1:
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Since we need (vB ; uB) to be on this curve, we obtain that the set of (v1; u1) so that (5.3) has a solution lies
on the curve

u1 =

8>>>><
>>>>:

uB +

�Z uB

v1

2 (�(s) � �(�v)) ds

�1=2

if v1 < vB

uB �
�Z uB

v1

2 (�(s) � �(�v)) ds

�1=2

if v1 > vB;

(5.7)

where (vB ; uB) is �xed.

Let us now turn to the Lax Friedrichs scheme. For the system (5.1), the discrete boundary layer equation is

H(v(y); v(y + 1); u1; v1) �
 
�(v(y + 1) + v(y)) + v(y) � v(y � 1)� 2�u1)

�(�(v(y)) + �(v(y � 1)) + v(y + 1)� v(y) � 2��(v1)

!
= 0; (5.8)

(v; u)(0) = (uB; u0); (v; u)(1) = (v1; u1):

Here the eigenvalues of the system (5.1) are

�2(v1; u1) = ��1(v1; u1) = �
0(v1)1=2

and, with the notations of Section 3,

a1(v1; u1) =
1� ��

0(v1)1=2

1 + ��0(v1)1=2
; a2(v1; u1) =

1 + ��
0(v)1=2

1� ��0(v1)1=2
:

Thus 0 < a1(v1; u1) < 1, a2(v1; u1) > 1. By the analysis of Section 3, it follows that the set of (v1; u1) near
(vB ; uB) for which (5.8) has a solution lie on a curve passing through (vB ; uB).

5.2. Eulerian Isentropic Gas Dynamics. We now consider the isentropic approximation to the compressible
Euler system. The system is composed of the two conservation laws for the mass and the momentum of a gas
[10]:

@t� + @x(�u) = 0;

@t(�u) + @x(�u
2 + p(�)) = 0:

(5.9)

The main unknowns are the speci�c density � and the velocity u. The pressure is a function of the density and,
for simplicity, we shall restrict to a polytropic perfect gas:

p(�) = �


; 
 2 (1;1): (5.10)

We consider the boundary layer equation generated by the vanishing viscosity method with B(u) = I:

@y(�u) = @
2
y�

@y(�u
2 + p(�)) = @

2
yu

�(0) = �B ; u(0) = uB; �(1) = �1; u(1) = u1:

(5.11)

Integrating the ODE'S and using the boundary condition at in�nity, we get

@y� = �u � �1 u1

@yu = �u
2 + p(�) � �1u

2
1 � p(�1)

�(0) = �B ; u(0) = uB; �(1) = �1; u(1) = u1:

(5.12)
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The eigenvalues of the matrix obtained by linearizing the R.H.S. of (5.12) around (�1; u1) are

�1(�1; u1) = u1 � c(�1); �2(�1; u1) = u1 + c(�1) (5.13)

where c2(�1) = p
0(�). We have to distinguish between �ve di�erent cases. We de�ne the following regions in

(�; u){plane:


I =
�
(�; u) : u� c(�) < 0; u+ c(�) < 0

	

II =

�
(�; u) : u� c(�) < 0; u+ c(�) = 0

	

III =

�
(�; u) : u� c(�) < 0; u+ c(�) > 0

	

IV =

�
(�; u) : u� c(�) = 0; u+ c(�) > 0

	

V =

�
(�; u) : u� c(�) > 0; u+ c(�) > 0

	
(5.14)

Thus in 
I both eigenvalues are negative, whereas in 
II one has �1 < 0; �2 = 0. In 
III , one has �1 < 0; �2 < 0,
wheras in 
IV , one has �1 = 0; �2 > 0 and in 
V , �1 > 0 and �2 > 0. Following the analysis that we did for the
proof of Theorem 3.2, it is not hard to get the following local result.

Case 1 : (�B ; uB) 2 
I . In this case the set of (�1; u1) close to (�B ; uB) for which (5.12) has a solution is an
open neighborhood of (�B ; uB).

Case 2 : (�B ; uB) 2 
II . In this case the set of (�1; u1) close to (�B ; uB) for which (5.12) has a solution is a
union of a two-dimensional region U in 
I and a curve in 
III through (�B ; uB) intersecting U .

Case 3 : (�B ; uB) 2 
III . In this case the set of states (�1; u1) close to (�B ; uB) for which (5.12) has a
solution is a curve through (�B ; uB)

Case 4 : (�B ; uB) 2 
IV . In this case the set of states (�1; u1) near (�B ; uB) for which (5.12) has a solution
lies in a curve in 
III through (�B ; uB). This does not extend to 
V .

Case 5 : (�B ; uB) 2 
V . There cannot be any point (�1; u1) in 
V for which (5.12) has a solution.

Nest we consider the Lax-Friedrichs scheme. The discrete boundary layer problem to be solved is

�(�(y)v(y + 1) + �(y � 1)v(y)) � 2��1u1 � (�(y) � �(y � 1)) = 0

�(�(y)v(y + 1)2 + �(y � 1)v(y)2)� 2��1u
2
1 � (�(y)v(y + 1)� �(y � 1)v(y)) = 0

(5.15)

(�B ; uB) given and (�; u)(1) = (�1; u1).

Given (�B ; uB) we determine (�1; u1) close to (�B ; uB) for which (5.15) has a solution. Following the analysis
of the proof of Theorem (3.4), we get the eigenvalues of the linearized matrix at (�1; u1) are

a1 = a1(�1; u1) =
1 + ��1(�1; u1)

1� ��1(�1; u1)
; a2 = a2(�1; u1) =

1 + ��2(�1; u1)

1� ��2(�1; u1)

where �1 and �2 are given by (5.13). If (�1; u1) 2 
I ; a1 < 1; a2 < 1, if (�1; u1) 2 
II ; a1 < 1; a2 = 1, if
(�1; u1) 2 
III ; a1 < 1; a2 > 1, if (�1; u1) 2 
IV ; a1 = 1; a2 > 1 and if (��; u1) 2 
V ; a1 > 1; a2 > 1. It follows
from the proof of Theorem (3.4), that if (�B ; uB) 2 
I , then the set of states (�1; u1) near (�B ; uB) for which
(5.15) has a solution connecting (�B ; uB) to (�1; u1) is a neighborhood of (�B ; uB). If (�B ; uB) 2 
II this set
is a union of an open set U in 
I and a curve in 
III through (�B ; uB) which interset U . If (�B ; uB) 2 
III

this set of (�1; u1) near (�B ; uB) consists of a curve through (�B ; uB) and if (�B ; uB) 2 
IV this set consists
of a curve in 
III through (�B ; uB). If (�B ; uB) 2 
V no point (�1; u1) 2 
V can be connected by a solution
of (5.15) from (�B ; uB).
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5.3. Lagrangian Isentropic Gas Dynamics. Finally, we consider the system of gas dynamics in Lagrangian
coordinates

@tvt � @xu = 0;

@tu+ @x

�
1

v

�
= 0;

(5.16)

where u is the velocity and v > 0 is the speci�c density. The eigenvalues of the system (5.16) are

�1 = �1

v
< 0; �2 =

1

v
> 0; (5.17)

hence the boundary x = 0 is not characteristic.

The purpose of this section is to provide an explicit formula for the boundary layer set associated with the
Lax-Friedrichs scheme. The boundary layer equation takes the form

�(u(y + 1) + u(y)) � 2�u1 + v(y + 1)� v(y) = 0

�

�
1

v(y + 1)
+

1

v(y)

�
� 2

�

v1
� u(y + 1) + u(y) = 0

(5.18)

with

(v(0); u(0)) = (vB ; uB); (v; u)(1) = (v1; u1): (5.19)

We restrict attention to vB > � > 0 for �xed �, and we determine the set of (v1; u1) for which (5.18) has a
solution. We set

w(y) =
v(y)

�
(5.20)

so that (5.18) becomes
1

w(y + 1)
+

1

w(y)
� u(y + 1) + u(y) =

2

w1

w(y + 1)� w(y) + u(y + 1) + u(y) = 2u1:

Adding the two equalities, we get

w(y + 1) +
1

w(y + 1)
+

1

w(y)
�w(y) + 2u(y) =

2

w1
+ 2u1:

Setting

N (y) = �2u(y) + 2u1 � 1

w(y)
+

2

w1
+ w(y);

we obtain a quadratic equation for w(y + 1):

w
2(y + 1)�N (y)w(y + 1) + 1 = 0: (5.21)

Therefore

w(y + 1) =
1

2

�
N (y) � �N (y)2 � 4

�1=2�

from which we get an expression for u(y + 1) as well:

u(y + 1) =
�

2
N (y) � �

2
(N (y)2 � 4)1=2: (5.22)
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Observe that N (1) = w1 + 1=w1, where w1 = v1=� and N (1)2 � 4 = (w1 � 1=w1)
2. The product of the

two roots of (5.21) is equal to one. Stability requires winfty > 1 so we choose the larger root in (5.22). We have
�nally from (5.22) and (5.18).

v(y + 1) =
�

2
N (y) +

�

2
(N (y)2 � 4)1=2

u(y + 1) = 2u1 � u(y) +
v(y)

�
� N (y)

2
� 1

2
(N (y)2 � 4)1=2:

(5.23)

The Jacobian of the R.H.S. of (5.23) at (v1; v1) is easily seen to be

A(v1; u1) =

0
BB@

w
2
1 + 1

w2
1 � 1

�2�w2
1

w2
1 � 1

�2
�(w2

1 � 1)

w
2
1 + 1

w2
1 � 1

1
CCA ;

whose eigenvalues are

a1 =
w1 � 1

w1 + 1
; a2 =

w1 + 1

w1 � 1
:

In terms of v1, we have

a1 =
1� �

v1

1 + �
v1

; a2 =
1 + �

v1

1� �
v1

:

If the data for the Lax-Friedrichs scheme are chosen such that the v component is bounded away from zero, then
so is the approximate solution. Hence we can restrict attnetion to v1 > �

0 for some �0 > 0. For � small enough,
we have

0 < a1 < 1 and a2 > 1;

and Theorem 3.10 applies. We deduce that the set of all states (v1; u1) near (vB ; uB) for which (5.18)-(5.19)
has a solution is a curve passing through (vB ; uB).

6. Concluding Remarks.

Given a family of sets such as those introduced in this paper, we can formulate the boundary condition for
the hyperbolic problem. When the solutions u under consideration are functions of bounded variation, the traces
exist in a strong sense and one can require that

u(0+; t) 2 E(uB(t)); t > 0; (6.1)

holds for all, except countably many, t. This type of regularity has been recently proven by Amadori by the

front tracking scheme and for the family of sets EGodunov (= E layerGodunov = EentropyGodunov).
When considering L1 solutions constructed by the vanishing viscosity method, the boundary condition

supp �0;t � Eentropyviscosity (6.2)

has been rigorously derived in Theorem 2.1. When the method of compensated compactness applies [12], an
existence theorem for the boundary-value problem (1.1){(1.3), (6.2) follows immediatly from Theorem 2.1. Such
a result is satisfactory provided the condition (6.2) yields, for simple enough initial and boundary data at least, a
well-posed problem. This is the case for the scalar equations and the linear systems, but more di�cult to answer
for systems.

The formulation based on boundary layers may not be appropriate as it is when the boundary is characteristic.
On the hand, the formulation based on entropy inequality seems to capture all of the features in the solution
near the boundary, but it is more di�cult to work with it analytically. Further study of the connection between
the two sets for systems is in progress [26].
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