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5 Enhanced thermodynamic efficiency in time asymmetric ratchets
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Abstract: The energetic efficiency of an overdamped Brownian particle in a saw tooth potential
in the presence of time asymmetric forcing is studied in the adiabatic limit. An error made
in the earlier work on the same problem in literature is corrected. We find that asymmetry in
potential together with temporal asymmetry in forcing leads to much enhanced efficiency without
fine tuning of parameters. The origin of this is traced to the suppression of backward current.
We also present a comparative study between the role of continuous and discontinuous ratchet
forces on these measurable quantities. We find that the thermal fluctuations can optimize the
energy transduction, the range of parameters, however, being very small. This ratchet model
also displays current reversals on tuning of parameters even in the adiabatic regime. The possi-
ble relationships between nature of currents, entropy production and input energy are also addressed.

PACS numbers: 05.40.-a, 05.60.Cd, 02.50.Ey.

I. INTRODUCTION

The study of the nature of directed motion induced
by random noise in periodic systems in the absence of
a bias has attracted wide interest. By now, the rec-
tification of thermal fluctuations have become a major
area of research in nonequilibrium statistical mechanics.
The presence of unbiased nonequilibrium perturbations,
either stochastic or deterministic, together with a bro-
ken spatial or temporal asymmetry play a key role in
obtaining directed motion without violating the second
law of thermodynamics. Such systems or ratchets con-
vert nonequilibrium fluctuations into useful work in the
presence of load. Moreover, in these systems, noise play
a constructive role (i.e., transformation of noise in spa-
tially periodic systems into directed current). A large
family of models of Brownian ratchets [1, 2, 3, 4] have
been introduced to obtain insight into the basic mech-
anism of noise rectification. Some of them are flash-
ing ratchets, rocking ratchets, time asymmetric ratch-
ets, frictional ratchets etc [2]. Numerous studies have
been carried out to understand the nature of currents,
their possible reversals and also the efficiency of energy
transduction. The results obtained are utilized to de-
velop proper models that efficiently separate particles
of micro and nano sizes and also for the development of
machines at nano scales [4]. Such models are also the
prototype to understand the basic mechanism of oper-
ation of molecular motors or protein molecules in our
cells that transfer cargo and organelles very efficiently
in a very noisy environment. It also has extensions in
game theory under the name of Parrondo’s paradox [5].
These are basically counter intuitive games based on
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translation of the dynamics of Brownian particle in a
flashing ratchet to gambling games. Here, two losing
games (or strategies), when alternated randomly or pe-
riodically give rise to a winning game. These paradoxes
have a profound role in several multidisciplinary areas.

With the emergence of a separate subfield called
stochastic energetics [6, 7] it is possible to establish the
compatibility between Langevin or Fokker-Planck for-
malism, which describes stochastic dynamics, and the
laws of thermodymanics. Using this framework one can
calculate various physical quantities such as thermody-
namic efficiency of energy transduction [8], energy dis-
sipation (hysteresis loss), entropy (entropy production)
[9] etc., thereby providing a new tool to study systems
far from equilibrium.

The intrinsic irreversibility associated with ratchet
operation makes the ratchet to be less efficient. For
example, the attained value of efficiency in flashing and
rocking ratchet were found to be below the subpercent-
age regime. However, it has been shown that at very low
temperatures fine tuning of parameters could lead to a
larger efficiency, the regime of parameters being very
narrow [10]. Optimization of energetic efficiency of the
sawtooth ratchet in presence of spatial symmetry but
in presence of time symmetric rocking has been worked
out in detail in [10]. Moreover, protocols to optimize
the efficiency is given in [10, 11].

Recently Makhnovskii et al. [12] constructed a special
type of flashing ratchet with two asymmetric double-
well periodic-potential- states displaced by half a period.
Such flashing ratchet models were found to be highly ef-
ficient with efficiency an order of magnitude higher than
in earlier models [6, 7, 8, 13]. The basic idea behind
this enhanced efficiency is that even for diffusive Brow-
nian motion the choice of appropriate potential profile
ensures suppression of backward motion and hence re-
duction in the accompanying dissipation. Similar to the
case of flashing ratchets [12], we had earlier [14] stud-
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ied the motion of a particle in a rocking ratchet by ap-
plying a temporally asymmetric but unbiased periodic
forcings [15, 16, 17, 18] in the presence of a sinusoidal
potential. The efficiency obtained was very high, much
above the subpercentage level (about ∼ 30− 40% with-
out fine tuning) in the presence of temporal asymmetry
alone.

In the present work we study the same problem but
in a saw tooth potential and make a comparison so as to
elucidate the sensitivity of these physical quantities on
the smoothness or regularity of the underlying ratchet
potential. The important underlying factor is the tem-
poral asymmetry [15, 16, 17, 18] in the external forcing
which leads to noise induced currents in the absence of
external bias even for the case of spatially symmetric
potential. In this adiabatically rocked time asymmetric
correlation ratchet, a larger force field is applied for a
short time interval of period in one direction as com-
pared to a smaller force for a longer time interval in
the other direction, see Fig. 1. Some qualitative differ-
ences between the smooth and piecewise linear ratchet
potential which are observed is discussed. The sur-
prisingly sensitive dependence of the physical quantities
such as unidirectional current on the degree of regularity
or smoothness of the ratchets (continuous and discon-
tinuous forces) has been demonstrated by Doering et
al [19].

Ai et al. [18] have also studied the same problem of
a Brownian particle moving in a periodic saw tooth po-
tential subjected to a temporally asymmetric periodic
rocking. However, there is an error in the expression for
the energy per unit time that a ratchet gets from the ex-
ternal force or in other words, the input energy [14]. In
this work we take into account this correction and have
calculated the efficiency and other physical quantities
and presented our results. We find that the temporal
asymmetry in driving enhances the efficiency in a very
significant manner even for a spatially symmetric po-
tential. Also, in the presence of spatial asymmetry in
potential, the efficiency is found to be almost 90% at
low temperature. Current reversals are also observed in
the parameter space of operation even in the adiabatic
regime.

We also present our analysis of the behaviour of en-
tropy production, current and input energy with tem-
perature in this ratchet system. In the absence of any
bias the noise induced currents show a peak with tem-
perature. The question that naturally arises is whether
this peak is related to underlying resonance (stochastic
resonance [20]) due to the synchronization of the posi-
tion of the particle with the external drive induced by
the noise. Our analysis of input energy Ein, rules out
the presence of any resonance features in the dynamics
of the position of the particle in these systems in the
adiabatic regime [9, 21]. This follows from the earlier
works which show that the existence of stochastic res-
onance in the dynamics of the particle is revealed by a

peak in the input energy [22, 23].
The onset of unidirectional currents in ratchet

systems can also be viewed as an example of temporal
order coming out of disorder. This can happen only
at the expense of an overall increase in the entropy
production in the system along with its environment.
Thus one expects a correlation between the maxima
in current and the maxima in entropy production.
However, our results show that the maxima in current
and entropy production do not correlate with each
other.

II. THE MODEL:

A simple model for our ratchet system is described by
the stochastic differential equation (Langevin equation)
for a Brownian particle in the overdamped regime. This
is given by [24]

q̇ = −
V ′(q) − F (t) + L

γ
+ ξ(t), (1)

where ξ(t) is a randomly fluctuating Gaussian thermal
noise with zero mean and correlation, < ξ(t)ξ(t′) > =
(2 kBT/γ)δ(t − t′).
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FIG. 1: Schematic representation of the potential and the
external force F (t) as a function of space and time respec-
tively.

In the present work we consider the piecewise linear
ratchet potential, Fig. 1, as in the case of Magnasco et
al. [25] with periodicity λ set equal to unity. This also
corresponds to the spacing between the wells. We later
on scale all the lengths with respect to λ. F (t) which
corresponds to the externally applied time asymmetric
force with zero average over the period is also shown in
Fig. 1. The force in the gentler and steeper side of the
potential are respectively f+ = −Q

λ1

and f− = Q

λ2

and
Q is the height of the potential. In the above expres-
sion we have also included the presence of an external
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load L, which is essential for defining thermodynamic
efficiency. Following Stratonovich’s interpretation [26],
the corresponding Fokker-Planck equation [27] is given
by

∂P (q, t)

∂t
=

∂

∂q

[

kBT
∂P (q, t)

∂q
(2)

+ [V ′(q) − F (t) + L]P (q, t)
]

.

Since we are interested in the adiabatic limit we first
obtain an expression for the probability current density
j in the presence of a constant external force F . The
expression for current [25] is

j(F ) =
P2

2 sinh{λ[F − L]/2kBT }

kBT (λ/Q)2P3 − (λ/Q)P1P2 sinh{λ[F − L]/2kBT }
(3)

where

P1 = ∆ +
λ2 − ∆2

4

F − L

Q
(4)

P2 = (1 −
∆[F − L]

2Q
)2 − (

λ[F − L]

2Q
)2 (5)

P3 = cosh({Q − 0.5∆[F − L]}/kBT ) −

cosh{λ[F − L]/2kBT } (6)

where λ = λ1 + λ2 and ∆ = λ1 − λ2, the spatial
asymmetry parameter. The current in the stationary
regime averaged over the period τ of the driving force
F (t) is given by

< j >=
1

τ

∫ τ

0

j(F (t)) dt. (7)

We assume that F (t) changes slow enough, i.e., its fre-
quency is smaller than any other frequency related to
the relaxation rate in the problem such that the system
is in a steady state at each instant of time.

In the present work we consider time asymmetric
ratchets with a zero mean periodic driving force [14,
16, 18] given by

F (t) =
1 + ǫ

1 − ǫ
F0, {nτ ≤ t < nτ +

1

2
τ(1 − ǫ)}, (8)

= −F0, {nτ +
1

2
τ(1 − ǫ) < t ≤ (n + 1)τ}.

Here, the parameter ǫ signifies the temporal asymmetry
in the periodic forcing, τ the period of the driving force
F (t) and n = 0, 1, 2.... is an integer. For this forcing
in the adiabatic limit the expression for time averaged
current is [8, 16]

< j >= j+ + j− , (9)

with

j+ =
1

2
(1 − ǫ) j(

1 + ǫ

1 − ǫ
F0) , (10)

j− =
1

2
(1 + ǫ) j(−F0)

where j+ is the current fraction in the positive direction
over a fraction of time period (1 − ǫ)/2 of τ when the
external driving force field is (1+ǫ

1−ǫ
)F0 and j− is the cur-

rent fraction over the time period (1 + ǫ)/2 of τ when
the external driving force field is −F0. The input energy
Ein per unit time is given by [8, 14]

Ein = F0[(
1 + ǫ

1 − ǫ
)j+ − j−]. (11)

In order that the system does useful work a load L
is applied in a direction opposite to the direction of
current in the ratchet. The overall potential is then
V (q) = [V0(q)+ qL]. As long as the load is less than the
stopping force Ls current flows against the load and the
ratchet does work. Beyond the stopping force the cur-
rent flows in the same direction as the load and hence
no useful work is done. Thus in the operating range of
the load, 0 < L < Ls, the Brownian particles move in
the direction opposite to the load and the ratchet does
useful work (storing energy in the form of potential or
say, charging the battery). The average work done over
a period is given by [8]

Eout = L[j+ + j−] . (12)

The thermodynamic efficiency of energy transduction is
[6, 7]

η =
L[j+ + j−]

F0[(
1+ǫ
1−ǫ

)j+ − j−]
. (13)

In the limit when the current fraction in the forward
direction is much larger than that in the backward di-
rection, j+ >> j−, and at very low temperature (tem-
perature tending to zero) the efficiency is given by [14]
as

η =
L(1 − ǫ)

F0(1 + ǫ)
. (14)
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The suppression of backward current at low tempera-
ture occurs for values of F0 less than Q/λ2. However, fi-
nite current fraction flows in the positive direction when
(1+ǫ)
(1−ǫ)F0 > − Q

λ1

or F0 > Q(1−ǫ)
λ1(1+ǫ) . Hence, in the operat-

ing range of F0,
Q

λ2

> F0 > Q(1−ǫ)
λ1(1+ǫ) , a high efficiency is

expected in the low temperature regime [10].
In the absence of a load the particle moves in a pe-

riodic potential without tilt and hence the system does
not store any energy. Consequently all the input energy
in the steady state is dissipated away. In such a case
the energy loss in the medium EL = Ein. EL inturn is
equal to the heat Qh transferred to the bath and thus
entropy production Sp = Qh/T = EL/T [7]. Thus the
total increase in the entropy (or the entropy production)
of the bath (universe) integrated over the period of the
external drive is given by [7]

Sp =
Qh

T
=

Ein

T
=

EL

T
.

As discussed in the introduction, currents in ratchet sys-
tems are generated at the expense of entropy and thus
we expect a correlation between the magnitude of cur-
rent and the total entropy production.

In our work all the physical quantities are taken in
dimensionless units. Moreover, the energies and lengths
are scaled with respect to Q, the barrier height and λ,
the spatial period of the potential respectively. In the
following section we present our results and the discus-
sion of our calculations.

III. RESULTS AND DISCUSSIONS

We study the motion of an overdamped Brownian
particle subjected to a time asymmetric periodic forcing
but in presence of a saw tooth potential. We present the
noticeable differences between the motion in a smooth
potential as in [14] with that in a piecewise linear saw
tooth potential. The role of smoothness or regularity
in potential on the efficiency of energy transduction is
clearly presented here.

To start with, in Fig. 2 we study the behaviour of
efficiency with load in a spatially symmetric saw tooth
potential (∆ = 0) in the presence of time asymmetric
driving field for fixed values of F0 = 0.1, T = 0.01 and
Q = 1 for different values of ǫ. Currents in this ratchet
model arise solely due to the temporal asymmetry fac-
tor. For a given ǫ, the efficiency increases as a function of
load and then decreases. The attained value of efficiency
is much higher than those attained in other models and
it keeps increasing with increasing ǫ. The stopping force
Ls too is found to increase with increase in ǫ. Large the
ǫ, larger will be the current and efficiency as long as
F0 is less than the critical field, so that the barriers
to motion in one direction alone disappears and there
will be no current in the opposite direction. We notice

that efficiency depends linearly on the load as long as
L is much less than Ls where the backward motion is

suppressed and the slope is given by (1−ǫ)
(1+ǫ)F0 consistent

with Eqn. 14. In contrast to the case of smooth sinu-
soidal potential [14] the locus of the peak in efficiency
monotonously increases in the saw tooth case. The value
of efficiency is also much higher than that obtained in
the smooth potential case. The input energy, Ein, out-
put energy, Eout, the fraction of currents j+, j− and
the average current < j > show the same qualitative
behaviour as a function of load as is seen in Fig.3 of [14]
and the observed behaviour has been discussed in de-
tail in reference [14]. Hence we do not deal with these
quantities separately in the present work.

As noted in Fig. 2 one can attain an efficiency of the
order of 40% for given physical parameters for the spa-
tially symmetric (∆ = 0.0) rocked ratchet. We now
explore the additional role of spatial asymmetry on the
above results. For that, in Fig. 3 we plot efficiency as a
function of load for various asymmetry in potential (∆)
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FIG. 2: Efficiency vs load for ∆ = 0.0, F0 = 0.1, T =
0.01, Q = 1 with varying ǫ.
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FIG. 3: Efficiency vs load for various ∆ = 0.9, 0.6, 0.3, 0.0
with fixed F0 = 0.1 ǫ = 0.7, T = 0.01 and Q = 1. Inset
shows the efficiency for ∆ = −0.5 with other parameters
remaining the same.
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with fixed F0 = 0.1, T = 0.01, Q = 1 and ǫ = 0.7. We
observe that an asymmetry in the potential enhances
efficiency and also increases the range of operation of
the ratchet. As in the smooth potential case, the higher
the ǫ, the larger the current and hence a larger load is
necessary for the current to reverse its direction. From
this figure it is clear that we can obtain a peak value
of efficiency of the order of 30% even in the absence of
spatial asymmetry. This peak value of efficiency and the
range of operation of the load increases for higher asym-
metry. For ∆ = 0.9 we obtain a peak value of efficiency
of more than 80% which is very high given the fact that
ratchet operates in an irreversible mode. It should also
be noted that the initial slope of the efficiency versus
load curve (for L < Ls) is the same, i.e., independent of
∆, again in consistency with Eqn. 14. We can conclude
from the above figure that additional spatial asymme-
try will further help in enhancing the efficiency of time
asymmetric ratchets. This is also due to the fact that
currents due to the finiteness in the spatial asymmetry
parameter ∆ and it being positive enhances the currents
in the system as compared to the case when ∆ = 0.0.
Opposite conclusions will be reached on the effect of ∆
on efficiency if ∆ is negative, which is obvious. The
reduction in currents when ∆ is negative and ǫ is posi-
tive will be discussed in detail later in connection with
current reversals.

In the inset of Fig. 3 we plot efficiency as a function of
load for a representative positive and negative value of ǫ
and ∆ respectively. Here, one can clearly notice that the
attained efficiency is in the subpercentage regime. Our
further analysis will be restricted to the case wherein
∆ and ǫ remains positive as in this parameter space we
naturally expect high efficiency.

0.0 0.5 1.0 1.5 2.0
Load

0.0

0.2

0.4

0.6

0.8
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Ef
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cy

 ε=0.0
 ε=0.3
 ε=0.6
 ε=0.8
 ε=0.9

FIG. 4: Efficiency vs load for ∆ = 0.9, F0 = 0.1, T =
0.01, Q = 1 with varying ǫ.

We now study the role of the temporal asymmetry pa-
rameter ǫ for the case of spatially asymmetric (∆ = 0.9)
ratchets. Fig. 4 shows the behaviour of efficiency as a
function of load for varying ǫ for fixed value of ∆ = 0.9.
It is clear that the inclusion of time asymmetry leads to

enhanced value of efficiency and the operational range
of load. An efficiency of about ∼ 90% is readily attained
as can be seen in Fig. 4. The locus of the peak value
in efficiency monotonously increases with increase in ǫ.
This is in contrast to the non monotonic behaviour ob-
served in a smooth sinusoidal potential [14]. Moreover,
the efficiencies are much higher for these ratchets with
discontinuous potential. For the case ǫ = 0 we get an
efficiency of ∼ 40%. Such a case with ǫ = 0 and fi-
nite ∆ is discussed in [10]. As has been mentioned
earlier, the initial slopes are linear in accordance with
Eqn. 14. There are some studies in the deterministic
limit where one can attain efficiency to the ideal limit
(η = 1). However, these ratchets work in a reversible
quasi-static mode of operation but not in the adiabatic
regime [7, 10]. The protocols of the operation rely on
synchronizing the dynamics of the particle with external
force [7, 10].
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 ε
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FIG. 5: Efficiency vs ǫ for various values of ∆ with fixed
F0 = 0.1, Q = 1, L = 0.1 and T = 0.01.

In Fig. 5 we plot the efficiency as a function of ǫ for
different strength of potential asymmetry for F0 = 0.1,
L = 0.1, Q = 1 and T = 0.01. Similar to the earlier
figure we see that the potential asymmetry increases
the efficiency value. Larger the asymmetry in potential
lower is the value of ǫ for which one gets higher efficiency.
This follows from the fact that larger the ∆, the smaller
is the critical value of ǫ to get current in the forward
direction. The critical value of ǫ, ǫc, in the absence of
load is given by ǫc = Q0−F0λ

Q0+F0λ
. One can notice that this

critical value decreases as F0 increases. In the absence
of load the current vanishes for ǫ = 0.0 and moreover the
current fraction in the positive direction j+ vanishes as
ǫ → 1. Hence naturally a peak is expected in efficiency
as a function of ǫ. For higher values of ǫ in the regime
where the backward current is suppressed the slope in
the figure is consistent with Eqn. 14 (which is again
independent of ∆ as clearly seen in the figure).

In Fig. 6 we plot efficiency as a function of F0 for the
case of symmetric potential (∆ = 0.0) for different val-
ues of ǫ with fixed L = 0.1, Q = 1 and T = 0.01. Con-
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FIG. 6: Efficiency vs F0 for various values of ǫ for the sym-
metric case with fixed L = 0.1, Q = 1 and T = 0.01.

sistent with the general observation of this problem, for
lower ǫ values we need larger F0 to get forward current.
Moreover, in the absence of load, the current vanishes
in both zero F0 and large F0 limit. In the large F0 limit,
the barriers to motion in the forward as well as back-
ward direction disappear and consequently the average
current over the period vanishes. Thus a peak in the effi-
ciency as a function of F0 is obvious. Additional spatial
asymmetry enhances the efficiency by a large amount.
This can be clearly seen in Fig. 7 where we have plotted
efficiency versus F0 for the case ∆ = 1.0. The difference
between Figs. 6 and 7 is that the envelope of the peak
value of efficiency show opposite behaviour. In the case
of smooth potential we had observed earlier [14] that the
envelope of the peak of efficiency decreases with increase
in ǫ in contrast with that in Fig. 6.

So far we have shown that a large efficiency of the
order of unity can be obtained readily in the time asym-
metric rocked ratchets in presence of additional spatial
asymmetry. Notably, this large efficiency is obtained
in the irreversible mode of operation in the adiabatic
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FIG. 7: Efficiency vs F0 for various values of ǫ with fixed
L = 0.1, Q = 1, ∆ = 1 and T = 0.01.
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FIG. 8: Efficiency vs temperature for various values of load
and ∆ with fixed Q = 1, F0 = 0.1 and ǫ = 0.9. Inset
shows the peaking of current with temperature for ∆ = 0.2,
F0 = 0.1, L = 0.9, Q = 1.0 and ǫ = 0.9.

regime. In presence of both ∆ and ǫ we do not have
to fine tune the parameters and we get much higher
efficiency above the subpercentage limit. In the follow-
ing we address the question, can thermal fluctuations
(noise) facilitate energy transduction?, a subject which
has been pursued widely and is of fundamental impor-
tance in its own right in the areas in which noise play a
constructive role [8].

In Fig. 8 we plot the efficiency as a function of tem-
perature for various load and ∆ with fixed ǫ = 0.9. We
observe that the efficiency decreases with noise strength
(T ). We find the value of efficiency at very low temper-
ature to be exactly coinciding with the values obtained
from the analytical expression for efficiency in the limit
j+ >> j−, Eqn.14.

In Fig. 9 we plot efficiency as a function of tempera-
ture for different spatial asymmetry parameter ∆ with
fixed L = 0.77, ǫ = 0.9, Q = 1 and F0 = 0.1. One
can notice readily that at low temperatures efficiency is
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FIG. 9: Efficiency vs temperature for various values of ∆
with fixed ǫ = 0.9, F0 = 0.1, L = 0.77 and Q = 1.
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FIG. 10: Efficiency vs temperature for three different cases
of physical parameters. (i) F0 = 0.3, ∆ = 0.8, ǫ = −0.8
(ii)F0 = 0.7, ∆ = 0.9, ǫ = −0.9 (iii) F0 = 0.8, ∆ = 0.9,
ǫ = −0.9 for fixed L = 0.01, and Q = 1.

independent of ∆, Eqn.14, and it decreases with tem-
perature. Also, as one increases ∆ a larger range of
temperature is obtained over which the efficiency value
is high. In the parameter range we have considered we
generally observe that temperature (noise) cannot fa-
cilitate energy transduction i.e., it cannot optimize the
efficiency. This is in spite of the fact that in all the cases
current as a function of temperature exhibits a peaking
behaviour ( for example see the inset of Figs. 8 and 9)
for a representative parameter value mentioned in the
figure captions.
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FIG. 11: Efficiency vs temperature for ∆ = 0.9, F0 =
0.10, L = 0.01, Q = 1 and ǫ = −0.9. The inset shows the
behaviour of input and output energy for the same set of pa-
rameters. The output energy curve is blown up by a factor
of 1000 to make it consistent with the scale chosen.

However, with a judicial choice of parameters which
require fine tuning we obtain a regime in parameter
space where the efficiency exhibits a peak with temper-
ature. In this parameter range, temperature or noise
facilitates energy transduction. Fig. 10 shows the peak-
ing behaviour of thermodynamic efficiency with temper-

ature for three representative sets of parameters men-
tioned in the figure caption. The magnitude of current
and efficiency are, however, quite small in this range
which we have verified separately.
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FIG. 12: Efficiency vs temperature for ∆ = 0.9, F0 =
0.1, L = 0.01, Q = 1 and ǫ = 0.9. The inset shows the
behaviour of input and output energy for the same set of
parameters. The output energy curve is blown up by a fac-
tor of 100 to make it consistent with the scale chosen.

To understand this behaviour of efficiency with tem-
perature, in Fig. 11 we plot the input energy, (Ein), and
the output work, (Eout), as a function of temperature.
The input energy is found to increase monotonically
with temperature. However, the output energy shows
a peak with temperature. The output energy curve is
blown up by a factor of 1000 to make it comparable with
the scale chosen. At very low temperature (T < 0.006)
the efficiency is negative. The current in the absence of
load is very small in this regime. For a given applied
load, the current flows in the direction of the load and
consequently the output energy is also negative (which
could not be seen on the scale we have chosen in the
figure). The output energy then increases with tem-
perature and becomes positive for T > 0.06. At the
crossover points the finite value of the input energy give
rise to zero efficiency since the output work is zero. As
the temperature is increased the output work increases
non monotonically and then becomes zero at a temper-
ature value of about 0.21, beyond which (i.e., beyond
the operating range of the load), the current flows in
the direction of the load. Thus at T ∼ 0.21 the output
energy and consequently the efficiency is zero. Hence we
expect a peaking behaviour in efficiency as a function
of temperature as is shown in the inset of the figure. It
should be noted that the current in the absence of load
shows a peak with temperature.

In Fig. 12 we plot the input and output energy for the
case where the efficiency monotonically decreases with
temperature. All the physical parameters are mentioned
in the figure captions. In contrast to that observed in
Fig. 11, we note that both the output energy and the
input energy are finite at zero temperature leading in
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turn to a finite value of efficiency. As we increase the
temperature, the input energy increases monotonically
whereas the output energy exhibits a small peak. Be-
yond a temperature of 0.52, Eout becomes negative. The
rise in input energy is very rapid as compared to that
of the output energy and consequently the efficiency de-
creases monotonically with temperature as shown in the
inset of the figure up to T = 0.52 beyond which it be-
comes negative.

So far we have discussed the nature of the efficiency
of energy transduction as a function of system vari-
ables. We now concentrate on another aspect in ratchet
systems, namely, current reversals, which play a cen-
tral role in designing separation devices. It is known
that symmetrically rocked spatially asymmetric ratch-
ets do not exhibit current reversals in the adiabatic
regime [2, 28, 29]. However, the presence of system
inhomogeneities (frictional or inhomogeneous ratchets)
can induce single or multiple current reversals even in
the adiabatic regime [14, 30]. In our present case of ho-
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FIG. 13: Current vs temperature for ∆ = −0.9, F0 =
0.3, Q = 1 and ǫ = 0.8. < j > is multiplied by a factor
of 10 for the cases (i) ǫ = 0.8, ∆ = −0.9 and (ii) ǫ = 0.0,
∆ = −0.9 to make it comparable with the scale chosen.

mogeneous ratchets it is easy to tune current reversals
as there are two asymmetric parameters present in the
problem. In Fig. 13 we plot current as a function of T for
a particular value of ǫ and ∆ given in the caption. The
parameters are chosen such that the direction of current
in presence of either of the parameters alone should be
in opposite directions. For example, in Fig. 13 the cur-
rent is in the positive direction when ǫ = 0.8 and ∆ = 0
whereas it is in the reverse direction when ǫ = 0.0 and
∆ = −0.9. So by tuning a combination of these two
parameter values for ǫ = 0.8 and ∆ = −0.9 one gets
current reversal as a function of T .

It should be noted that this is not an additive effect
separately arising from ǫ and ∆. The current reversal
arises due to complex interplay of these two asymmetry
parameters. It should be emphasized that once cur-
rent inversion upon the variation of one parameter is
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FIG. 14: Current vs temperature for ∆ = −0.9, F0 =
0.3, Q = 1 and varying ǫ.

established, an inversion upon variation of any other
parameter can be readily inferred. For details we refer
to [2]. In accordance with the above reasoning for cur-
rent reversals, in Fig. 14 we have plotted current versus
temperature with fixed value of ∆ = −0.9 and varying
ǫ. As we vary ǫ from large value to a small value, in the
intermediate range of ǫ we get current reversal.

Having discussed efficiency and nature of currents
and their reversals we now study other thermodynamic
quantities namely, input energy and entropy produc-
tion. We would like to find whether any relation exists
among them with the nature of currents as discussed in
the introduction. Some recent studies have also tried to
reveal the relations between two completely unrelated
phenomena, namely, stochastic resonance and Brown-
ian ratchets in a formal way through the consideration
of Fokker-Planck equations [31]. Stochastic resonance
is a phenomenon where we can obtain optimal output
from a system by adding noise to the system [20]. It
has been argued that the rate of flow of particles in a
Brownian ratchet is analogous to the rate of flow of in-
formation in the case of stochastic resonance [32].

In Fig. 15 we plot the entropy production, current
and input energy for a representative case, ∆ = 0.4,
F0 = 0.1 and ǫ = 0.8, as a function of temperature or
noise strength. We observe that current exhibits a peak
as a function of temperature while the input energy is a
monotonously increasing function of temperature [21].
It has been argued earlier that the peak in the input
energy is a good measure for the occurrence of stochastic
resonance in the dynamics of the particle [22, 23]. It
is natural to expect at resonance that the system will
extract more input energy from the environment which
in turn is consequently dissipated away in the steady
state (for details see [22, 23]). However, the observed
monotonic behaviour of the input energy, as opposed to
the nature of current, rules out the possibility of any
resonance in the dynamics of the particle as a function
of noise strength.
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FIG. 15: < j >, Sp and Ein vs temperature for ∆ = 0.4
with fixed F0 = 0.1, Q = 1 and ǫ = 0.8. The current < j >

is blown up by a factor of ten to make it more clearer.

The presence of net currents in the ratchet increases
the amount of known information about the system than
otherwise. This extra bit of information comes from
the negentropy or the physical information supplied by
the external nonequilibrium bath. Since the currents
are generated at the expense of entropy one normally
expects the maxima in current and the maxima in the
overall entropy production to coincide at the same value
of noise strength. In fact, in a related development it
has been pointed out that the amount of information
transferred by the nonequilibrium bath is quantified in
terms of algorithmic complexity. Moreover, the algo-
rithmic complexity or Kolmogorov information entropy
exhibits a maxima at the same value of physical param-
eter where the current is maximum [33]. From Fig. 15,
we see that the entropy production, Sp, also exhibits a
peak as a function of noise strength. The peaks in the
average current, < j > and total entropy production
Sp do not occur at the same T . This clearly indicates
that maxima in the entropy production does not take
place at the same value where the current is maximum
thereby ruling out the correlation between the entropy
production peak and the peak in current maximum [21].

IV. CONCLUSIONS

We have studied in detail the nature of energetic effi-
ciency driven by zero average time asymmetric forcing

in the adiabatic limit. The potential is taken to be of the
saw tooth type characterized by an asymmetry parame-
ter ∆. In the presence of temporal and spatial asymme-
try we have shown that a much higher efficiency ,above
the subpercentage regime (known for other ratchets),
can be readily obtained. Spatial asymmetry together
with temporal asymmetry give larger efficiency as com-
pared to the presence of spatial or temporal asymmetry
alone. At low temperatures an efficiency value closer to
the ideal limit can be obtained by judicious tuning of
physical parameters even though the operation of the
ratchet is in the irreversible mode. In the bigger range
of parameter space temperature does not facilitate en-
ergy transduction. By fine tuning the parameters one
can obtain a regime in which temperature facilitates en-
ergy transduction. However, in this parameter space the
attained value of efficiency is found to be in the subper-
centage level.

We also observe current reversals in the adiabatic
limit by proper tuning of different parameters. These
reversals are attributed to the complex dynamics of the
system. From our study of the nature of input energy
and currents we conclude that there is no resonance phe-
nomenon occurring in the system. The analysis of cur-
rent and entropy production results show that the peak
in current and entropy production do not coincide.

It is worthwhile exploring whether the transport in
these efficient ratchet is coherent or not. Noise induced
currents are always accompanied by a diffusive spread.
If the diffusive spread of the particle is less than the
average distance (say, length of the period of the poten-
tial) travelled by the particle in a given time then the
transport is said to be coherent. This is quantified in
terms of the so-called dimensionless Peclet number [34].
The present work is concentrated mainly on optimizing
the thermodynamic efficiency. One can as well optimize
maximum work or have the best compromise between
maximum work and efficiency. This can be done using
known optimizing criterion [11]. Studies in this regard
is currently in progress.
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