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Abstract.

We study the noise-induced currents and reliability or coherence of transport
in two different classes of rocking ratchets. For this, we consider the motion of
Brownian particles in the over damped limit in both adiabatic and non-adiabatic
regimes subjected to unbiased temporally symmetric and asymmetric periodic driving
force. In the case of a time asymmetric driving, we find that even in the presence
of a spatially symmetric simple sinusoidal potential, highly coherent transport occurs.
These ratchet systems exhibit giant coherence of transport in the regime of parameter
space where unidirectional currents in the deterministic case are observed. Outside this
parameter range, i.e., when current vanishes in the deterministic regime, coherence in
transport is very low. The transport coherence decreases as a function of temperature
and is a non-monotonic function of the amplitude of driving. The transport becomes
unreliable as we go from the adiabatic to the non-adiabatic domain of operation.
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1. Introduction

Ratchets, Brownian motors or rectifiers are nonequilibrium systems that rectify
fluctuations in the medium to achieve directed motion [Il 2, B, 4, B]. The main criteria
for these systems are spatially extended periodic structures and unbiased external
fluctuations that drive the system out of equilibrium. Preferential directed motion
is possible if either the potential and/or the external fluctuations is asymmetric (broken
symmetry) [I]. Even in the presence of a spatially asymmetric potential, the principle
of detailed balance prohibits any net unidirectional current at equilibrium. Only when
the system is driven out of equilibrium, this principle no longer holds and the Brownian
particles can achieve directed motion by rectification of thermal fluctuations. These
ratchet models are found to have wide ranging applications in physical and biological
systems [1}, 2, B, 4 B

Considerable amount of work has been devoted to understand the nature of currents
and their reversals in different classes of ratchet models (namely flashing ratchets [2,
rocking ratchets [6], frictional ratchets [7], etc). Moreover, these ratchets or motors
are engines at the molecular scale converting input energy from a nonequilibrium
environment into useful work. Hence a lot of attention has been given to the
performance characteristics of these systems, namely thermodynamic [, [0, [0, [TT] and
generalised [I2), 3] efficiencies. In recent years, another important property of these
systems is being explored, namely the reliability or coherence of transport.

The unidirectional current of Brownian particles in stochastic ratchets, however, is
always accompanied by a diffusive spread (dispersion). This spread is intimately related
to the question of reliability or quality of transport to the extent that it may completely
overshadow the ratcheting effect in a system with finite spatial extensions. For example,
if a particle on an average moves a distance L due to it’s finite average velocity, v, there
will always be an accompanying diffusive spread. If this spread is much smaller than the
distance traveled, then the motion of the particle is considered as coherent or reliable.
This, in turn, can be quantified in terms of a dimensionless number called the Péclet
number(Pe), which is the ratio of the average velocity, v, to the diffusion constant, D.
More specifically Pe = vL/D. In our studies, we take L to be the length of the period of
the relevant spatially periodic potential. Quantitatively, if Pe > 2, the transport is said
to be coherent, otherwise it is incoherent or unreliable. There exist very few studies,
which address the question of reliability of transport. Pe for some models of flashing
and rocking ratchets were found to be ~ 0.2 and ~ 0.6 respectively [I4], implying a
less reliable transport. A study on symmetric periodic potentials along with a spatially
modulated white noise showed a coherent transport with Pe less than 3. In the same
study a special kind of strongly asymmetric potential was found to increase Pe to 20 in
some range of physical parameters [0, [[6]. Experimental studies in biological motors
show them to exhibit highly efficient and reliable transport with Pe ranging from 2
to 6 [I7]. In a very recent work, the collective effects of coupled Brownian motors
were found to show high transport coherence [I8]. Reliability of transport has also
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been studied in frictional ratchets and coherent transport is observed in a part of the
parameter space [19].

In the present work, we study the transport coherence in two different classes
of rocking ratchets. In the first case (hereafter referred to as case 1), we study a
ratchet model, where the potential is simply sinusoidal(spatially symmetric) while the
driving is temporally asymmetric. In Refs. [20, 21, 22] an unbiased discontinuous
temporally asymmetric driving has been considered. For the case of the asymmetric
drive, characterised by an additive Poissonian white shot noise with a constant bias
ensuring zero time average, analytical solutions have been obtained for the noise induced
currents [23]. The time asymmetric drive can be generated by the application of
biharmonic drive at frequencies w and 2w. This phenomenon is known as harmonic
mixing [24] and has been studied extensively in the context of ratchet dynamics [25],
in the problem of kink-assisted directed energy transport in soliton systems [26] etc.
Experimentally time asymmetric ratchet mechanism has been used to generate photo-
current in semiconductors [27] (for details see section 5.2 of Ref. [1]). Recently, Brownian
motors with time-asymmetric driving in a periodic potential have been realised in cold
atoms in a dissipative optical lattice [28]. In the second case (hereafter referred to as
case 2), the ratchet is characterised by a spatially asymmetric potential driven by a
temporally symmetric ac force. We report our results on the reliability of transport on
the model earlier studied by Bartussek et al [29] in the same parameter space explored by
them. Our work on transport coherence is relevant to the aforementioned experimental
studies [B, 27, 28]. One can readily perform measurements of transport coherence in
experimental set-ups akin to Ref.  [28]. We show throughout this work that that
these ratchets exhibit a generic effect in the deterministic limit(absence of noise or
temperature) : if the ratchet exhibits a finite current , one observes giant coherence at
low temperatures while if the current vanishes, the associated transport coherence is
very low. Moreover, this enhanced coherence is maintained as long as currents in the
backward direction are suppressed. The suppression of backward currents also leads to
an enhanced thermodynamic efficiency of energy transduction [0, 1] in absence of
which the thermodynamic efficiency in ratchet systems is very low [30]. The transport
coherence decreases as a function of temperature and is a non-monotonic function of
the driving amplitude. Moreover, the transport becomes less reliable as we approach
the non-adiabatic domain of operation.

2. Model:

2.1. Case 1 : spatially symmetric potential with temporally asymmetric driving

The starting point of our equation is the Brownian motion of an overdamped particle in
presence of a potential and a driving force which can be described by the overdamped
Langevin equation [31].

Vi = =0, [V(x) — 2 F(t)] + £(1) (1)
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Figure 1. Illustration of time asymmetric force for time period 7 and temporal
asymmetry factor e

The thermal noise is modeled by a zero mean Gaussian white noise &(t), with correlation
(E)E)) = 2kgT~vo(t — t'). The periodic potential is chosen as V(z) = V; sin(z).
Since V(x) is symmetric, to generate unidirectional currents, one has to apply a time
asymmetric driving. F(t) is the externally applied time periodic driving force, whose
average over a time period is zero [10, 20, 21] and is given by

1 1
F(t) = 1—+€ Fy, (nt <t<nr+ 57‘(1 —€)), (2)
—€

1
= — Iy, (n7+57(1—6) <t<(n+1)7),

Here, the parameter € signifies the temporal asymmetry in the periodic forcing while 7
is the time-period and n = 0,1,2, ... is an integer. The force profile is shown in Fig. [

2.2. Case 2 : spatially asymmetric potential with temporally symmetric driving

We consider the same ratchet model as considered by Bartussek et al [29] with the
potential V (z) = —*2[sin(kz) +0.25 sin(2kz)] with k = 27. We now impose a periodic
unbiased ac force, F'(t) = Fysin(wt). The underlying asymmetric potential breaks the
symmetry of the system and generates a current .

3. Numerical details

The analytical expressions for the currents(j) and diffusion coefficient(D) can only be
obtained in the adiabatic or quasi static limit , i.e., when the frequency of the driving
force is small compared to the other frequency scales in the problem [10, 32]. In such a
situation, the system can be considered to be in a steady state at each instant of time.
For the general case, we are forced to take recourse to numerical simulations [33, 34]. In
this work, we have used Langevin simulations to evaluate j and D. We use the Huen’s
method in these simulations[33] and calculate the current in the asymptotic regime. The
expressions for j and D are given by,
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and
D = lim — [(2*(8) — (2(t))’] (4)

t—oo 2t

Here (...) denotes ensemble averaging. We discard the initial transients (to = 5007)
and then evolve the system for ¢ = 250007. In each case the time-step is taken equal to
0.01 and the averaging is done over 5000 ensembles.

In all the figures to follow, the physical quantities taken are in dimensionless
units [I6]. Energies are scaled with respect to the potential strength, Vp; lengths
are scaled with respect to the spatial period of the potential. Also, the frequency
of oscillation is scaled with respect to the friction coefficient and Fy = % As a check
we have reproduced the main results of Refs. [29, B35, B6]

4. Results and Discussion

4.1. case 1

Fig. @ shows the variation of j, D and Pe versus force. In our work, current(j) and
velocity(v) carry the same meaning. We have taken the time period 7 = 1000 to be very
large so that we are in the quasi static limit. For a simple potential V(x) = V; sin z
in the presence of a static force (Fp), in the deterministic limit current flows only when
Fy crosses a critical threshold(F,), namely, Fy > F. = 1. Beyond the critical threshold,
barriers to the motion in the forward direction disappear. Consequently, the particle is in
the running state (i.e., the particle is free to move). Below the critical field, the particle
experiences barriers in the direction of the applied field and hence at temperatures
T — 0, particle will be trapped at a local minimum of the potential (i.e., in a locked
state). It is also known that giant diffusion arises around the “dynamical bottleneck”
at Fp = F. = 1 and is expected as a fallout of the instability between the locked
state and the running state [36, B7, B8]. The peaks in the D versus force curve around
F. ~ 1, gets sharpened as the temperature is reduced. At high temperatures, due to
thermal smearing, the peaks become broader. In the adiabatic limit, we can consider
the total current to arise from the sum of the contributions of the fraction of the current
when the field is in the forward direction and the fraction of the current when the
field is in the backward direction [T9, B2]. In the same limit, we can also consider the
total diffusion coefficient to arise from the sum of similar contributions of the diffusion
coefficients from force fields in the forward and backward directions. As we increase the
amplitude of the temporal force Fj, in the deterministic limit (7" — 0 limit), current
in the forward direction starts flowing when %Fg > 1 or Iy > }—: We have chosen
e = 0.8, hence, one observes significant currents only above Fy > 0.11. As we increase
the amplitude Fp, j increases till Fy becomes of the order of 1. Up to this limit, current

in the backward direction is absent (as the force applied in the backward direction is

1+4€
1—e

increases monotonically. Beyond Fy > 1 the barriers to motion for a particle in both

Fy which is independent of €). Thus in the range of Fj between and 1, the current
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Figure 2. Plot of (a) j (b) D and (c) Pe (from above) versus Fy at e = 0.8 for

various values of T in the temporally asymmetric driving case in the adiabatic limit
(7 =1000).

directions disappear and consequently current decreases as we increase Fy further. The
temperature only broadens the peak and the value of F at which the peak appears,
shifts to the left. This is because, temperature can facilitate current in the backward
direction, even when barriers are present.

In fig. BA(b), we have plotted D (scaled with respect to the bare diffusion coefficient,
Dy = kgT/v) versus the driving force Fy. For very small values of the driving force,
i.e, when Fy < 1, D < Dy due to the presence of barriers in motion in both directions.
Two peaks are observed at Fy ~ 0.1 and 1, which correspond to the vanishing of barriers
for forward and backward directions respectively (i.e., instability points) as discussed
earlier. The diffusion peak around Fy = 1 is pronounced and has a value greater than
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1, i.e., D> Dy. This is an anticipated effect [36, B7]. The peak broadens with the rise
in temperature. However, unlike the peak in j, it does not shift with temperature [36].

We notice clearly from fig. P(a) and fig. Bi(b) that in the range between Fy =~ 0.1
and 1, enhanced currents are accompanied by minimal diffusion. As a consequence it
is in this region, that one observes enhanced or giant transport coherence (Pe =~ 450
for T'= 0.05 around Fj ~ 0.6). The observed values are very much larger than those
obtained for other ratchet systems [14, [T5] [T6, [T9]. Tt may be noted that, in the regime
of giant coherence, current in the backward direction is suppressed as mentioned earlier.
Precisely in this regime of Fj, it has been shown that the thermodynamic efficiency
(n) [10] and the generalised efficiency [39] is quite high, even though the ratchet operates
in an irreversible mode.

O r N W &~ OO0 O
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Fo
Figure 3. Plot of j, D and Pe versus Fy at e = 0.8 and 7 = 5 (non-adiabatic limit) at

T = 0.2 in the temporally asymmetric driving case. The j has been scaled by a factor
of 10.

We now very briefly discuss the nature of j, D and Pe as a function of Fj in the
non-adiabatic limit. For this, we have plotted in fig. B the variation of j, D and Pe
versus Iy for 7 =5 at T'= 0.2 and € = 0.8. We notice that j exhibits a peak shifted
to the right as compared to the graph in the adiabatic limit i.e., fig. Bl(a). The currents
are very low for small Fj, even for the regime around (Fy > 0.11). In this regime,
particle cannot take advantage of vanishing of barriers in the forward direction as it
will not be able to traverse a distance of half a period in the duration in which the
force is in positive direction, i.e., force reverses its sign before the particle could traverse
a distance of half a period. However, on increasing the value of Fj, the particle will
naturally take advantage of the vanishing barriers. Hence, peak shifts towards the right.
Unlike adiabatic case, D does not exhibit a two-peak structure. The peak at smaller
value of Fy =~ 0.11 disappears. Here too the particle does not take advantage of the
vanishing of barriers in the forward motion. Pe exhibits values which are very much
smaller than those obtained in the adiabatic limit. Hence, coherence in transport is
reduced as the time-period is reduced.

Fig. @l shows the variation of j, D, and Pe with respect to T' (scaled with respect
to Vo, the strength of the potential) for various values of € at Fy = 0.3 . The j and D
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Figure 4. Plot of (a) j (b) D and (¢) Pe (from above) versus T at Fy = 0.3 for
various values of € in the temporally asymmetric driving case, in the adiabatic limit
(7 =1000).

versus 1’ curves show the crucial role played by the temporal asymmetry factor e. The
higher values of current are obtained for higher €. For ¢ = 0.4 at Fy = 0.3, barriers for
the motion of the particle are present in both the directions and as a result the current
vanishes in the zero temperature limit. Thus, for intermediate values of temperature,
a peak is witnessed. For other values of €, namely, ¢ = 0.6 and ¢ = 0.8, barriers to
the motion in the forward direction vanish but are present in the backward direction.
Hence, at zero temperature, we get a finite current which vanishes at high temperature.
For € = 0.8 the current decreases monotonically whereas for € = 0.6 the current exhibits
a small peak.

The origin of the temperature axis in fig. B(b) is at 7" = 0.04. The scaled
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diffusion coefficient (D/Dy) exhibits a minima as a function of temperature in the range
considered (for ¢ = 0.6,0.8). This is due to the fact that the scale Dy = kgT'/~.
We have observed that without this scaling factor, D increases monotonically with
temperature, starting at zero at T = 0. In the high temperature limit, 7" > 1, (i.e.,
when 7" > V), D/Dy — 1 as anticipated. At low temperatures, D/D, exhibits a
non-monotonic behaviour as a function of €. Other quantities like the thermodynamic
efficiency [10] and the generalised efficiency [39] also exhibit a non-monotonic behaviour
as a function of the temporal asymmetry factor e. This is not surprising as there are two
competing effects : as one increases ¢, the barriers in the forward direction are reduced
while the fraction of the time period during which the particle is subject to a positive
force is also decreased.

From fig. Bi(c) we see that Pe diminishes as we increase the temperature. Higher
the e value, higher is the coherence. This enhanced coherence is sustained over a large
temperature regime. We would like to emphasise that at very low temperatures (
T — 0), finite current results for a range of parameters. However, D tends to zero
in the same range. As a result, Pe exhibits a divergent behaviour. Hence, to avoid
numerical errors, the origin of the temperature axis is chosen as T" = 0.04. It should be
noted that for ¢ = 0.4, current in the deterministic limit vanishes as can be observed in
fig. Bl(a) and consequently transport coherence is very low as seen from fig. Bl(c). These
results bring out the generic effect mentioned in Section [
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Figure 5. Plot of Pe versus T at ¢ = 0.8 and Fy = 0.3 for various values of the time
period (7) in the temporally asymmetric driving case.

In fig. B, we show the variation of Pe for a fixed value of ¢ = 0.8, as a function
of time-period. The origin of the temperature axis is at T = 0.15. It is clear, that
the transport which is coherent in the adiabatic limit (7 = 1000) loses its coherence
as the non-adiabatic limit is reached. This conclusion about the superior reliability of
transport of the ratchet at the adiabatic limit is generally true(we have verified this
separately).
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4.2. case 2

Now we turn to case 2 , which has been studied extensively for the nature of currents
by Bartussek et al [29]. In fig. B, we have plotted D and Pe as a function of Fj
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Figure 6. Plot of (a) j (b) D and (c) Pe (from above) versus Fy at T' = 0.1 for the
temporally symmetric driving case.

at T = 0.1 for various frequencies w. In fig. Bl(a) we reproduce the same results as
obtained in fig. 1(b) of Ref. [29]. w = 0.25 corresponds to the adiabatic regime. Here,
current flows in a positive direction and exhibits a peak. During the fraction of the
time-period when force is in positive direction, the particle experiences a smaller barrier
in the forward direction as opposed to the fraction of the period when force is in the
negative direction and particle experiences a higher potential barrier. During each half
cycle particle traverses a distance much larger than the spatial period of the potential.
In this regime, the particle takes advantage of the presence of anisotropy in the potential
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and hence positive current arises [I]. As we approach the non-adiabatic limit (w = 7,
w = 10), we observe multiple current reversals. For details see Refs. [29, A].

In fig B(b), we have plotted D as a function of F for various frequencies. D /D
starts from a finite value at F' = Fj, and asymptotically approaches 1 as expected. Some
local maxima are observed at finite driving frequencies. These features are also seen for
the case of symmetric periodic potential driven by a temporally symmetric periodic force
as discussed in Refs. [B5, B8]. These peaks are attributed to optimised enhancement of
the escape rate by modulation for a given noise strength. As discussed in Refs. [35, B8],
for certain values of the driving force (or forces), the position probability peak of the
particles may just happen to be on the top of the potential barrier and the diffusion
is naturally more than there would have been if this peak had been located elsewhere
(especially if it was at the potential minimum for example).

In fig. B(c) we have plotted corresponding Pe as a function of F. We readily notice
that even in the adiabatic limit, transport is incoherent since values of Pe =~ 0.45 are
obtained which further decrease as we cross over to the non-adiabatic limit . Therefore
the noise induced transport in this system is completely incoherent in the range of
parameters considered here. This range corresponds to the current being zero in the
deterministic regime.

We would like to emphasise that the phenomenon of current reversal in ratchets
plays a major role in devising novel separation techniques for nanoparticles [H]. Once
the current reversal as a function of any parameter is established, it follows readily
that current reversals can be observed by varying other parameters in the system [IJ, B].
In these devices, particles with different masses move in the opposite direction which
can be readily separated. However, we notice from the figure that, around the current
reversals, the Péclet numbers are quite small and transport is incoherent.

In fig. [@ we plot the variation of Pe as a function of F, in the adiabatic
limit(w = 0.25) for two fixed values of 7" = 0.01 and 7" = 0.1. The inset shows
the variation of j as a function of Fy at T'= 0.01 and 7" = 0.1. At T" = 0.01, we are
close to the deterministic regime, where the values of j and Pe are expected to be large.
The figure corresponding to 7" = 0.01 shows a higher value of Pe. In the adiabatic
limit the total current is expected to be the sum of the current contributions due to
the forward and backward driving. It is readily seen from the figure, that the value of
Pe in the curve for which T" = 0.01, is high above Fy ~ 0.72, i.e, when the barriers
to the current(inset) in the forward direction are absent. The current steadily increases
with driving until Fy ~ 1.5 where a peak in current is observed. However, beyond this
value of Fy, the barriers to the motion in the other direction also disappear and hence
the net current starts decreasing as can be seen from the inset of fig [l It is notable
that the value of Pe in the observed regime beyond the value of Fy ~ 0.72is > 2
and in fact seen to be as high as 16. In the region F; < 0.72, where the current in
the low T limit vanishes, the transport is incoherent. For T = 0.1, the particles can
take the aid of significant thermal fluctuations to cross the barriers in both directions.
Hence, the current values at 7' = 0.1 for F; > 0.72 are much lower than those observed
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for T'= 0.01. Therefore, the associated Pe values are much lower for 7' = 0.1 and the
transport is seen to be completely unreliable in fig. [1
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Figure 7. Plot of Pe and j(inset) versus Fy at T = 0.01 and T = 0.1 in the
temporally asymmetric driving case for w = 0.25(adiabatic limit).
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Figure 8. Plot of Pe and j(inset) versus T at F; = 0.9 and Fy = 1.25 in the
temporally asymmetric driving case for w = 0.25(adiabatic limit).

In fig. @ we plot the variation of Pe and j (inset) as a function of T" at two fixed values
of Fp = 0.9 and Fy = 1.25. We have restricted ourselves to the adiabatic(w = 0.25)
domain of operation, where the values of j and Pe are expected to be large. For these
values of [y, a finite current results at T = 0, as shown in the inset of fig. B Hence,
giant coherence is expected at low temperatures. To avoid divergence of Pe, the origin
of the T axis is chosen at T" = 0.0025. With increase in T, the transport coherence
diminishes.

In fig. @, we have plotted j, D and Pe as a function of T" for various frequencies
mentioned in fig@at Fy = 0.5. Fig. Bi(a) reproduces the currents of fig. 1(b) of Ref. [29].
In the adiabatic limit (w = 0.25), current remains positive and exhibits a peak. Current
in the non-adiabatic limit (w = 4.0 and w = 7.0) starts with a negative value and
exhibits current reversals [29, B0]. D saturates to a value D/Dy ~ 1 in the high
temperature limit. Depending on the temperature regime, whether D is a monotonic
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Figure 9. Plot of (a) j (b) D and (c) Pe (from above) versus T at Fy = 0.5 for the
temporally symmetric driving case.

or non-monotonic function of frequency can be inferred from fig. Bi(b). Corresponding
Pe are plotted in fig B(c). Similar to the behaviour seen in fig. Bl(c), we observe that
as we go from the adiabatic to the non-adiabatic regime, transport becomes incoherent.
Beyond T' = 0.1, the transport becomes completely unreliable (Pe < 2).

5. Conclusions

We have studied the Brownian dynamics of a particle in a symmetric sinusoidal potential
in presence of time-symmetric unbiased forcing. We have shown that the resulting
fluctuation induced currents exhibit giant coherence in transport. This is observed in
the parameter space where currents are finite in the deterministic limit. Moreover,
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this coherence can be sustained over a large temperature range and variations in other
relevant physical parameters. Transport is most coherent in the adiabatic limit and
decreases as we approach the non-the adiabatic limit. The coherence in transport
reduces as a function of temperature and is a non-monotonic function of the amplitude
of driving.

In general, the ratchet systems which favour currents in the forward direction and
suppresses currents in the backward direction are expected to show enhanced coherence,
other examples being flashing ratchets where two periodic states are displaced with re-
spect to each other [IT]. The ratchet systems at finite driving frequencies studied in
this work exhibit several complex features in the nature of current and diffusion coef-
ficient in the deterministic limit. Current exhibits quantisation (plateaus) associated
with phase or frequency locking behaviour as a function of the amplitude of the driving
force and other parameters [29, 40, A1), @2]. Correspondingly, diffusion exhibits giant
peaks and crests in presence of small noise. These curves develop oscillatory features
(namely resonances and antiresonances) in the presence of small noise (multiple peaks in
diffusion and currents can be observed). These intriguing features can be attributed to
the complex dynamics of the particle which arises due to the combined effects between
non-linearity, frequency of driving and noise [42]. However, all of these complex features
are not robust in the presence of finite noise, the subject matter of which is under study
vis-a-vis the coherence in transport.
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