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Incorporating Spatial Variation in Density Enhances the Stability
of Simple Population Dynamics Models
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Simple discrete time models of population growth admit a wide variety of dynamic behaviors,
including population cycles and chaos. Yet studies of natural and laboratory populations
typically reveal their dynamics to be relatively stable. Many explanations for the apparent
rarity of unstable or chaotic behavior in real populations have been developed, including the
possible stabilizing roles of migration, refugia, abrupt density-dependence, and genetic vari-
ation in sensitivity to density. We develop a theoretical framework for incorporating random
spatial variation in density into simple models of population growth, and apply this approach
to two commonly used models in ecology: the Ricker and Hassell maps. We show that the
incorporation of spatial density variation into both these models has a strong stabilizing
influence on their dynamic behavior, and leads to their exhibiting stable point equilibria or
stable limit cycles over a relatively much larger range of parameter values. We suggest that one
reason why chaotic population dynamics are less common than the simple models indicate is,
these models typically neglect the potentially stabilizing role of spatial variation in density.

Introduction

Following the demonstration that even very
simple first-order difference equation models of
population growth can exhibit a wide range of
dynamic behaviors, from stable points to chaos
(May, 1974), many studies of dynamic behavior
in both laboratory and wild populations of ani-
mals have been undertaken in order to assess
how common complex dynamic behaviors like
chaos may be in real populations (Hassell et al.,
1976; Thomas et al., 1980; Mueller & Ayala, 1981;
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Turchin & Taylor, 1992; Godfray & Grenfell,
1993; Hastings et al., 1993; Dennis et al., 1995;
Ellner & Turchin, 1995; Stenseth et al., 1996).
Although some of the more recent studies do
suggest that dynamic behavior other than an
approach to a stable point may be more common
than thought earlier, the overall impression is
that unstable equilibria and chaos seem to be
relatively uncommon. Broadly speaking, ex-
planations for this apparent anomaly have, been
of two kinds: evolutionary and non-evolutionary.

Evolutionary explanations are often based
upon group selectionist arguments resting on the
premise that populations with demographic
properties resulting in severe fluctuations in
numbers would tend to go extinct, and that,
therefore, extant populations would be precisely
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those that happened to have relatively stable
dynamics (Thomas et al, 1980; Berryman &
Millstein, 1989). On the other hand, many workers
have also argued that, under a variety of biolo-
gically meaningful scenarios, selection at the indi-
vidual level may be expected to give rise to the
evolution of enhanced stability (Mueller & Ayala,
1981; Hansen, 1992; Mueller & Huynh, 1994;
Doebeli & Koella, 1995; Ebenman et al., 1996),
although this notion is supported by very meager
empirical evidence (Stokes et al., 1988; but see
also Mueller et al., 2000; Mueller & Joshi, 2000).

Non-evolutionary explanations for the pre-
ponderance of stable populations are, if anything,
more varied than evolutionary ones. The main-
tenance regimes typically used for laboratory
populations of Tribolium and Drosophila have
been shown to result in relatively stable dynam-
ics, whereas experimental alterations to the la-
boratory ecology of such cultures can give rise to
unstable dynamic behavior (Dennis et al., 1995;
Mueller & Huynh, 1994; Sheeba & Joshi, 1998;
Mueller et al., 2000). Incorporation of more real-
istic elements into simple population dynamics
models can also enhance the range of parameter
values permitting stable behavior. Constant
levels of immigration have major stabilizing im-
pact on the behavior of the Ricker map (Sinha
& Parthasarathy, 1994). Constant emigration
can, depending on the level of emigration, either
cause extinction or stabilize the dynamics of
the Ricker map at high intrinsic growth rates
that would normally yield extinction (Sinha &
Parthasarathy, 1996). Migration among groups
of populations in coupled map lattice models,
where subpopulation dynamics are governed by
simple unidimensional maps, can also stabilize
subpopulation  dynamics  (Doebeli, 1995;
Parthasarathy & Sinha, 1995). Similarly, the
existence of a minimum size, below which the
population cannot fall, can also stabilize popula-
tion dynamics, at least under certain conditions
(Ruxton & Rohani, 1998). Ecologically, such
“floors” could be a result of spatial refugia, the
existence of an invulnerable age-class, or because
density-dependent regulatory mechanisms set in
abruptly above a certain threshold (Getz, 1996).
Within-population genetic variation in sensi-
tivity to density can also stabilize population
dynamics (Doebeli & De Jong, 1999).

When thinking about the density of real popu-
lations, it is often useful to visualize space as
being a lattice comprising of sites that can be
either occupied or vacant (Auerbach & Shmida,
1987), a view that directly leads to a distinction
being drawn between the mean density of a popu-
lation and the local density actually experienced
by an individual (Lloyd, 1967). Clearly, the im-
portant factor in determining the level at which
density-dependent regulatory mechanisms oper-
ate will, in this case, be the local density, which is
likely to be highly variable unless the spatial
distribution of individuals is absolutely uniform.
Consequently, analyses of lattice models that do
not take local density into account are likely to
yield misleading results (Matsuda et al.,, 1992;
Harada & Iwasa, 1994). In this paper, we develop
an approach to incorporate random spatial vari-
ation in density into two commonly used simple
models of population growth, the Ricker & Has-
sell maps (Ricker, 1954; Hassell et al., 1976), and
show that the stability properties of these models
are greatly altered by incorporation of spatial
variation in density.

The Model

Before developing the modified versions of the
Ricker & Hassell maps, we briefly discuss the
motivation and rationale for the specific form in
which we incorporate spatial variation in density
into these population dynamics models. Consider
a population such that its habitat consists of
n patches (or area, or volume, as the case may be).
Further, let the total number of individuals be
mn, so that the mean number of individuals per
patch is m, with no restriction on how many
individuals a patch may accommodate; the only
assumption made is that the distribution of indi-
viduals among the patches is random. It follows,
then, that the probability that a patch is occupied
by k individuals equals ((mn)!(n — 1)!™ %) /((k)!
(mn — k)l(n)™), from which, letting n —» oo, we
obtain the Poisson distribution,

—my,,i

m

(!

Plm,i] =° (1)

The Poisson distribution gives the probability
of i individuals being present in one patch, given
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that the mean number is m individuals per patch.
When dealing with models of density-dependent
growth, however, we require a continuous
version of the Poisson distribution because the
variable to be distributed, the population density
X, is continuous. For a more intuitive perspective,
imagine a population distributed over a large
area. The global density can be estimated by
dividing the total number of individuals by the
total number of patches. One could envisage do-
ing the same to calculate local densities, which
are the ultimate quantities we are interested in.
However, as population size gets smaller, it be-
comes increasingly difficult to make accurate es-
timates of local densities because the number of
individuals likely to be occupying a patch de-
creases dramatically with patch size. Ultimately,
we are faced with local densities as quantities
defined on point areas (volumes), which clearly
cannot be estimated directly. One way out of this
problem is to assume that local density is a ran-
dom variable, with the mean equal to the global
density. This assumption permits estimation of
the local density of the population as a function
defined at every point in the habitat, from which
the density function over any region can be ob-
tained by integration.

In order to incorporate spatial variation into
population dynamics models in the manner de-
scribed above, we assume that the population be
randomly distributed spatially at every genera-
tion. This may appear to be an unduly restric-
tive and unnatural assumption. We note,
however, that in the framework we develop
here, the population dynamic models are to be
applied to point local densities. On such a
small spatial scale, some amount of micro-
spatial migration will inevitably occur even in
sessile organisms (through propagule dispersal),
and it is not unreasonable to assume that migra-
tion at this fine spatial scale will be essentially
random.

The kind of continuous density function we
discussed in the preceding paragraphs can be
obtained by letting i o0 in eqn (1), and
applying Stirling’s formula

lim

__mW
n (y/2nm)nfe)’

to yield
e "(me/y)’

Sy ?

where y is the averaging parameter. This means
that while the expected (average) value of the
random variable is m, it can actually take values
ranging from 0 to oo, and the probability that it
takes the value y is given by P[m, y]. Simple
models of population dynamics are typically of
the form dx/dt = f(x), for continuous time mod-
els, and x,+; = ¢g(x,) for discrete time models,
where x is the population density. What is typi-
cally meant by that is that x is the average popu-
lation density over the entire population range
space, and that the whole population exhibits
dynamical behaviour governed by this single
average value. Incorporating random spatial
variation in density as represented by eqn (2) into
such simple models would yield equations of the
form

Plm, y] =

dx/de =3 n, f(y), (3a)

y

Xi+1 = Znyf(y) (3b)

y

where n, is the population size in the patch y, for
all patches y, since y is the space-averaging para-
meter. Since we do not know this number in each
patch a priori, we use an appropriate probability
distribution estimate of the number of patches
with a particular population size n,. On nor-
malizing, this becomes a probability density func-
tion P[m, y] with the reasonable assumption
made that the distribution depends on the overall
average density m. Then we let the patch size go
to zero, since this would enable us to obtain
a truly local, indeed point-wise, definition of local
population density.

It could be argued that the function thus ob-
tained is a mere mathematical artifact and has no
biological significance. However, it should be
noted that the number of individuals per non-
zero area patch can be obtained simply by integ-
rating the equation over a suitable range. This
representation of the system is, thus, a finer
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representation than the original one we started
off with, in which the population was divided into
patches. Without losing accuracy, we have gained
the advantage of mathematical tractability.

Carrying out the limiting process described
above yields equations of the form

dx ==

G| e e
y=0+

ot = f U Pholeidy (@b)
y=0+

for continuous and discrete time, respectively. It
should be noted here that the integrals on the
RHS of eqns (4a) and (4b) will typically return the
original functions f(x), g(x), only for models of
exponential growth wherein f(x) = cx (¢ con-

density-dependent feedback terms, each patch
will follow its own density-dependent growth
rate, and the various density-dependent functions
will not average out across patches to match the
growth rate determined by the average density of
the population. In eqns (4a) and (4b), the integrat-
ing procedure assumes a random (Poisson) distri-
bution of the population density among patches
in every generation, and then deterministically
calculates the growth in the population.

We applied this integration procedure to two
widely used simple discrete time population dy-
namic models, namely the Ricker & Hassell
maps, in order to examine how the stability
properties of these models may be affected by
incorporating spatial variation in density. The
standard form of the Ricker map, with popula-
tion density scaled by carrying capacity, is

stant). Clearly, in models incorporating some Xepq = xe (5)
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F1G. 1. Bifurcation diagrams depicting the stabilizing effect of incorporating random spatial variation in density into the
Ricker and Hassell maps. The unmodified Ricker and Hassell plots were obtained by iterating eqns (5) and (7), respectively,
and plotting the 125th-400th to 400th iterates, and the modified versions by doing the same with eqns (6) and (8). All functions
were integrated linearly with a step size of 0.01. The value of y for simulations of the modified and unmodified Hassell map was

fixed at 10.
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When the random spatial variation in density is
incorporated into the Ricker map, we obtain

= [ (e an @
y=0+ 27'Cy y

which is henceforth referred to as the modified
Ricker map. Similarly, the Hassell map, with
population density scaled by carrying capacity,
can be represented by

Xy

1+ x,)” @)

Xi+1 =

and upon incorporating random spatial vari-
ation in density into the Hassell map, we obtain

ry
1+ yy

dy, (8

JY“’O 1 <ex,>y
Xi+1 = -
‘ y=0+ /2y \ ¥V

Unmodified

which is henceforth referred to as the modified
Hassell map. We examined the behavior of the
unmodified and modified Ricker & Hassell maps
by simulating the dynamics of populations fol-
lowing these models across a range of parameter
values. All programs were written in Borland
Turbo C and implemented on a Pentium
machine.

Results and Discussion

In their unmodified form, both the Ricker and
Hassell maps exhibit a period doubling route to
chaos, with the Hassell map tending to show
stable behavior (point equilibria or stable cycles)
over a relatively greater range of parameter
values (Fig. 1). In general, the bifurcations in the
case of the Hassell map are less violent than in
the case of the Ricker map, because the latter,
being governed by the exponential function, is
highly sensitive to small changes around zero.
Since eqn (5) is of the form x,, ; = x,e"1 ™™, even
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FIG. 2. Plots of the relationship between population densities at successive generations, depicting the stabilizing effect of
incorporating random spatial variation in density into the Ricker and Hassell maps. All details are as in Fig. 1.
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if x, is small but not too close to zero, x,, ; can be
very large for large values of r.

More interestingly, both the Hassell and
Ricker maps tend to exhibit greater stability over
a larger range of r values in their modified form,
when the spatial distribution averaging process is
factored in Fig. 1. Essentially, the averaging pro-
cess tends to flatten out the successive generation
density graph for both models (Fig. 2), resulting
in a smaller negative slope to the right of the
inflection point and, thus, to increased stability.
The modified Hassell map, in particular, exhibits
a stable point equilibrium for a wide range of
r values (Fig. 1), and this enhanced stability is
clearly reflected in the relatively smaller negative
slope to the right of the inflection point in the
successive generation density plot for the modi-
fied Hassell map (Fig. 2). Intuitively, this in-
creased stability can be viewed as being due to
the fact that severe reductions in local population
growth rates in regions of locally very high den-
sity, will tend to be compensated for by higher
growth rates in regions of local low density,
coupled with a random redistribution of local
(point) densities each generation.

Overall, it is clear that incorporating random
spatial variation in local density into the com-
monly used Ricker and Hassell maps has a major
stabilizing influence on the dynamics of these
models, especially in the case of the Hassell map.
It may be that one of the reasons we do not see
chaotic behavior in real biological populations as
often as we might expect based on studying
simple population growth models is the models
do not incorporate spatial variation in popula-
tion density, even though such variation is likely
to be the norm in natural populations.
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