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We study the coherence of transport of an overdamped Brownian particle in frictional ratchet

system in the presence of external Gaussian white noise fluctuations. The analytical expressions

for the particle velocity and diffusion coefficient are derived for this system and the reliability or

coherence of transport is analysed by means of their ratio in terms of a dimensionless Péclet number.

We show that the coherence in the transport can be enhanced or degraded depending sensitively on

the frictional profile with respect to the underlying potential.
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I. INTRODUCTION

The study of the interplay of noise and nonlinear dy-

namics in systems under nonequilibrium conditions has

generated wide interdisciplinary interests in the last

two decades. Noise or fluctuations, which are normally

considered to be an hinderance, are found to play an

active constructive role in nonequilibrium systems. In-

fact, this constructive role of noise (as opposed to the

conventional wisdom of its destructive or its disorgan-

ising role) has become a new paradigm in the study

of complex systems. In the so called ratchet systems

the presence of spatial/temporal anisotropy in poten-

tial together with nonequilibrium perturbations enable

the extraction of useful work from random fluctuations

without the violation of the second law of thermody-

namics [1, 2]. In such systems it is possible to in-

duce directed motion from nonequilibrium fluctuations

in the absence of bias. Much of the studies in differ-

ent classes of ratchet models deal with the nature of

currents and their reversals [1], stochastic energetics

(thermodynamic efficiency) [3, 4] etc. However, trans-

port of Brownian particle is always accompanied by a

diffusive spread and this spread is intimately related to

the question of reliability or quality of transport. The

diffusive spread infact detriments the quality of trans-

port. There exists very few studies which address the

question of diffusion accompanying transport in ratchet

systems [5, 6, 7]. In our present work we address this

aspect of transport and study the coherence in trans-
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port in a frictional ratchet in the presence of an exter-

nal parametric Gaussian white noise fluctuation. This

is infact studied in terms of a dimensionless quantity

called the Péclet number (Pe) which is the ratio of ve-

locity to the diffusion constant. Higher the Pe, lesser is

the diffusive spread and higher is the transport coher-

ence. Infact, subcellular transport in biological systems

amidst a noisy environment are modeled based on the

principle of ratchet mechanism and the experimental

studies on these molecular motors show them to have

highly efficient and reliable transport with Péclet num-

ber ranging from 2 to 6 [8]. A value of Pe greater than

2 corresponds to coherent transport [5]. The Péclet

numbers for some of the models like flashing and rock-

ing ratchets were found to be ∼ 0.2 and ∼ 0.6 [5] re-

spectively implying a less reliable transport. Another

study on symmetric periodic potentials along with spa-

tially modulated white noise showed a coherent trans-

port with Péclet number less than 3. In the same study

a special kind of strongly asymmetric potential is found

to increase Pe to 20 in some range of physical param-

eters [6].

There exists many physical systems like flashing

ratchets [9], rocking ratchets [10], time asymmetric

ratchets etc., where different aspects of noise induced

transport has been widely studied [1, 2]. In the above

models, to generate unidirectional current the nonequi-

librium fluctuations need to be correlated in time.

There exists a possibility to get unidirectional cur-

rent even in presence of symmetric ratchet potentials

provided it is driven by a time correlated asymmetric

force [11]. In our present work we consider yet an-

other class of ratchets, namely the frictional ratchets,

where the friction coefficient and subsequently the dif-
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fusion coefficient varies in space [12, 13]. In these fric-

tional ratchets it is possible to get unidirectional cur-

rents even in a symmetric underlying potential but in

presence of an external noise which need not be corre-

lated in time unlike in earlier models.

Space dependent diffusion coefficient, D(x), felt by

the Brownian particle could arise either due to space

dependent temperature or space dependent friction co-

efficient. In the frictional ratchet system which we

consider in the present work the unidirectional current

arises due to a combination of both space dependent

friction coefficient and external parametric white noise.

The temperature of the bath (or the environment) of

the Brownian particle is characterised by a constant

temperature T . In the presence of external paramet-

ric noise the overdamped Brownian particle on an av-

erage absorbs energy from the external noise source.

The strength of the absorbed energy depends on the

local frictional coefficient. Hence the problem of par-

ticle motion in an inhomogeneous medium in presence

of an external noise becomes equivalent to the prob-

lem in a space dependent temperature [12, 13, 14].

Such systems are known to generate unidirectional

currents. This follows as a corollary to Landauer’s

blow torch theorem that the notion of stability changes

dramatically in the presence of temperature inhomo-

geneities [15]. In such cases the notion of local stability,

valid in equilibrium systems, does not hold.

Frictional inhomogeneities are common in superlat-

tice structures, semiconductors or motion in porous

media. Particles moving close to a surface experience

space dependent friction [16]. It is believed that molec-

ular motor protiens moving close along the periodic

structures of microtubules experience a space depen-

dent friction [17]. Frictional inhomogeneity changes

the dynamics of the particle nontrivially as compared

to the homogeneous case. This in turn has been shown

to give rise to many counter intuitive phenomena like

noise induced stability, stochastic resonance, enhance-

ment in efficiency etc., in driven non-equilibrium sys-

tems [17, 18].

In our present work we show that system inhomo-

geneities may help in enhancing/degrading the coher-

ence in the transport depending sensitively on the

physical parameters. We emphasize mainly the case

where the underlying potential is a simple sinusoidal

symmetric potential. The role of spatial asymmetry in

potential is also discussed. The external noise is found

to play a constructive role in enhancing the coherence

in transport. As opposed to this, temperature (internal

fluctuations) degrades the coherence in transport.

II. MODEL:

We start with the Kramer’s equation of motion for a

Brownian particle of unit mass in contact with a heat

bath in a medium with spatially varying friction coef-

ficient η(q) at temperature T . In addition an external

parametric Gaussian white noise fluctuation ξ(t) is also

included. The equation of motion is given by

q̈ = −η(q)q̇ − V ′(q) +
√

kBTη(q)f(t) + ξ(t) (1)

where V (q) is the potential seen by the Brownian par-

ticle and f(t) is an internal Gausian white noise fluc-

tuation arising from the bath having the property that

< f(t) >= 0, and < f(t)f(t′) >= 2δ(t − t′) where

< ... > denotes the ensemble average and q the co-

ordinate of the particle. Also, < ξ(t) >= 0 and

< ξ(t)ξ(t′) >= 2Γδ(t − t′), where Γ is the strength

of the external white noise ξ(t). The above equation,

Eq. 1, has been derived earlier from the microscopic

consideration of system bath coupling [12, 13].

On time scales larger than the inverse friction coef-

ficient, η−1, one can in most practical cases consider

the overdamped limit of the Langevin equation. This

in turn correspond to the adiabatic elimination of the

fast variable, velocity, from the equation of motion by

putting ṗ = q̈ = 0 for a homogeneous system. In con-

trast, for the case of inhomogeneous system the above

method of elimination does not work and Sancho et

al. [19] has given a proper prescription for the elimina-

tion of fast variables. The corresponding overdamped

Langevin equation for the Brownian particle in a space

dependent frictional medium is given by

q̇ = −

V ′(q)

η(q)
−

kBTη
′(q)

2[η(q)]2
+

√

kBT

η(q)
f(t) +

ξ(t)

η(q)
. (2)

Using van Kampen Lemma [20] and Novikov’s the-

orem [21] we get the corresponding Fokker-Planck

or Smoluchowski equation for the probability density

P (q, t) of a particle being at q at a time t as [22]

∂P

∂t
=

∂

∂q

[{

V ′(q)

η(q)
−

Γη′(q)

η3(q)

}

P +

{

kBT

η(q)
+

Γ

η2(q)

}

∂P

∂q

]

.

(3)

For periodic functions V (q) and η(q) with periodic-

ity L a finite probability current is obtained and one
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readily gets the analytical expression for the particle

velocity as [22]

v = L
(1 − exp (−δ))

∫ 2π

0
dy exp [−ψ(y)]

∫ y+2π

y
dx exp [ψ(x)]

A(x)

. (4)

Here ψ(q) is the dimensionless generalized effective po-

tential given by

ψ(q) =

∫ q

dx
V ′(x)η2(x) − Γη′(x)

η(x)[kBTη(x) + Γ]
(5)

and A(q) is the effective space dependent diffusion co-

efficient given by

A(q) =
kBTη(q) + Γ

η2(q)
. (6)

Also,

δ = ψ(q) − ψ(q + 2π) (7)

determines the effective slope of the generalized poten-

tial ψ(q). Thus the sign of δ gives the direction of

current in Eq. 4.

In our present work we have taken the potential

V (q) = V0 sin(q) and η(q) = η0[1 − λ sin(q − φ)],

0 < λ < 1. The phase lag φ between V (q) and η(q)

brings in the intrinsic asymmetry in the dynamics of

the system.

For the case with T = 0 we get a simple analytical

expression for the effective potential as

ψ(q) =
V0η0

Γ

(λx sin(φ)

2
+
λ

4

[

cos(2x) cos(φ) (8)

+ sin(2x) sin(φ)
]

+ sin(x)
)

− ln[η(x)] (9)

with δ given by

δ = −

V0η0πλ sin(φ)

Γ
. (10)

The first term in the right hand side of Eq. 9

represents the tilt in the effective potential. This

tilt identically vanishes when φ = 0 or π. Hence

it is expected that the unidirectional current does

not arise for the case when the phase lag is 0 or π.

From Eq. 4 and Eq. 10 it is clear that for 0 < φ < π

current will be in the negative direction while for

π < φ < 2π the current will be in the positive

direction. Fig. 1 shows the plot of the effective

potential as a function of coordinate q for a fixed

noise strength Γ = 0.36 for two different values of
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FIG. 1: Effective potential ψ(q) as a function of q for V0 =

1, Γ = 0.36 and λ = 0.9 at zero temperature for φ = 0.59π

and 0.89π.

phase lag φ between the potential and frictional

profile for the above zero temperature case. The

effective potential is scaled with respect to V0. For

the parameters chosen in the figure the current flows

in the negative direction as has been mentioned earlier.

Following references [23, 24], one can obtain exact

analytical expressions for the diffusion coefficient D as

D =

∫ q0+L

q0

dx
L
A(x) [I+(x)]

2
I−(x)

[

∫ q0+L

q0

dx
L
I+(x)

]3 (11)

where I+(x) and I−(x) are as given below

I+(x) =
1

A(x)
exp [ψ(x)]

∫ x

x−L

dy exp [−ψ(y)] ,(12)

I−(x) = exp [−ψ(x)]

∫ x+L

x

dy
1

A(y)
exp [ψ(y)] .(13)

L here represents the period of the potential (= 2π in

our case). The Brownian particle takes a time τ =

L/v to traverse a distance L with a velocity v. The

diffusive spread of the particle in the same time is given

by < (∆q)2 >= 2Dτ . The criterion to have a reliable

transport is that the diffusive spread should be less

compared to the distance traversed, i.e., < (∆q)2 >=

2Dτ < L2. This in turn implies that Pe = Lv/D > 2

for coherent transport.
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III. RESULTS AND DISCUSSIONS

The velocity (v), diffusion constant (D) and the

Péclet number (Pe) are studied as a function of dif-

ferent physical parameters. All the physical quantities

are taken in dimensionless form. In particular, velocity

and diffusion are normalized by (V0/η0L) and (V0/η0)

respectively. Throughout our work we have set V0

and η0 to be unity. Similarly, Γ and T are scaled with

respect to V0η0 and V0 respectively. We have used

the globally adaptive scheme based on Gauss-Kronrod

rules for numerical evaluations [25].
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FIG. 2: Plot of v, D and Pe vs φ for Γ = 0.36, λ = 0.9 and

T = 0.0.

In Fig. 2 we plot v, D and Pe as a function of

phase difference φ at T = 0 for a fixed noise strength

of Γ = 0.36. The values of the physical parameters

are mentioned in the figure caption. All the physical

quantities are periodic function of φ as expected and

the velocity is zero at φ = 0 , π and 2π. As can be

seen from the plot of effective potential, Fig. 1, the di-

rection of current is negative for φ upto π and then it

becomes positive. The current is antisymmetric around

the point φ = π, (V (φ+π) = −V (φ)). This is expected

on general grounds for the case of a simple sinusoidal

symmetric potential. The absolute value of current ex-

hibits a maxima between 0 to π and π to 2π. The

nature of currents being positive or negative can be

readily inferred from the slope of the effective poten-

tial (for example see Fig. 1). The diffusion coefficient

is finite at all values of φ and exhibits minima wher-

ever the currents are zero (φ = 0, π, 2π). However, the

magnitude of minima is more at the point where φ = π.

As expected, the diffusion coefficient is periodic in φ.

However, it exhibits maxima at different values of φ

than that for current. In the plot for Pe as a function

of φ we have drawn a dotted line as a guide for eye. In

regions where Pe > 2 the transport is said to be coher-

ent. It is evident from the figure that there exists wide

range of φ in which the transport is coherent (Pe > 2)

along with adjoining regions where the transport is less

coherent (Pe < 2). These regions are however sensi-

tively dependent on other physical parameters. In the

present case of sinusoidal potential Péclet number as

high as 4 can be obtained by properly tuning the pa-

rameters.
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FIG. 3: Plot of v, D and Pe vs φ for Γ = 0.36, µ = 1.0,

λ = 0.9 and T = 0.0.

To understand the role of spatial asymmetry in the

potential we have included an asymmetry in the po-

tential such that V (q) = V0[sin(q)−µ/4 sin(2q)] where

µ is the asymmetry parameter. Fig. 3 shows the be-

haviour of v, D and Pe for this simple asymmetric

case at zero temperature with the other physical pa-

rameters kept the same as in Fig. 2. The potential

asymmetry parameter µ affects the behaviour of veloc-

ity, diffusion and thereby Pe dramatically. We have

considered the case of maximal asymmetry (µ = 1).

We first notice that the simple symmetry observed for

the case of periodic potential no more holds true in

the presence of spatial asymmetry in potential. The

magnitude of velocity is nonzero for φ values 0 , π and
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2π. The velocity and diffusion constant in the region

between 0 to π are suppressed while in the region be-

tween π and 2π are enhanced as compared with sym-

metric case. Consequently, the presence of asymmetry

can enhance or suppress the coherence in the transport.

For the chosen parameters, Péclet number as high as

5 is obtained. Moreover, for a given φ, Pe either in-

creases or decreases monotonically with the asymmetry

parameter µ (0 < µ < 1) which has been verified sep-

arately. In our further analysis we restrict to the case

of symmetric potential alone.
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FIG. 4: Plot of v, D and Pe vs Γ for φ = 0.62π, λ = 0.9

and T = 0.01.

In Fig. 4 we plot velocity, diffusion and Pe as a func-

tion of external noise strength Γ with φ = 0.62π and

λ = 0.9 at finite temperature T = 0.01. It should be

noted that velocity is negative in the entire range. The

velocity is initially zero for Γ equal to zero and then

increases with Γ and saturates to a constant value at

higher values of noise strength. On the contrary, the

diffusion constant keeps increasing monotonically with

Γ. It is also clear that the external noise play a con-

structive role in optimizing the coherence in transport

i.e., the Pe exhibits a peak as a function of Γ.

In Fig. 5 we plot velocity, diffusion and Pe as a

function of temperature T with φ = 0.62π, λ = 0.9 and

Γ = 0.36. This value of noise strength corresponds to

an optimal value for Pe in Fig. 4. The noise induced

current is negative. The current exhibits a peak and

then decreases to zero with temperature. This is

expected because higher temperatures overshadows

the effect of potential and frictional inhomogenieties
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FIG. 5: Plot of v, D and Pe vs T for Γ = 0.36, φ = 0.62π

and λ = 0.9.
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FIG. 6: Plot of v, D and Pe vs λ for Γ = 0.36, φ = 1.4π

and T = 0.01.

thereby suppressing the ratchet effect. In contrast,

the diffusion constant increases monotonically. As

opposed to the case of Fig. 4 we observe that internal

fluctuations or temperature degrades the coherence

in the transport i.e., Pe decreases with increase in

temperature.

In Fig. 6 we plot velocity, diffusion and Pe as

a function of λ, the amplitude of oscillation of the

friction coefficient (0 < λ < 1) for φ = 1.4π, Γ = 0.36

and T = 0.01. All the physical quantities, namely,
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velocity, diffusion and Pe increases monotonically

with λ. Thus the increase in λ makes the transport

more coherent.

IV. CONCLUSIONS

We have studied the coherence or reliablity of trans-

port of an overdamped Brownian particle in a frictional

ratchet system with an underlying sinusoidal potential

in the presence of external Gaussian white noise fluctu-

ations. The frictional inhomogeneities along with ex-

ternal fluctuations lead to a noise induced current or

transport. The attained noise induced transport is al-

ways accompanied by a diffusive spread which inturn

makes the transport to be less reliable. We have shown

that frictional inhomogeneities with respect to the un-

derlying potential can make the transport coherent or

incoherent. While the external noise (Γ) optimizes the

coherence in transport the internal noise (T ) degrades

the coherence.

In our present case, as mentioned in the beginning,

the transport can be associated with an effective po-

tential and an effective space dependent diffusion con-

stant. The effective potential exhibits a tilt as a func-

tion of system parameters (Fig. 1). By looking at this

effective potential one can infer only the direction of

current and not its magnitude. The particle motion

in this effective potential is determined by two time

scales, (i) escape from the potential minima over the

barrier along the effective bias followed by (ii) the re-

laxation into next minima. The coherent transport in

homogeneous medium is obtained when the relaxation

time dominates the transport [6, 24] as compared with

the escape time. For details see reference [6, 24]. We

would like to emphasize that the dynamics of the par-

ticle in our present problem arises due to the complex

interplay between the potential, internal fluctuations,

frictional profile and external fluctuations. This is am-

ply reflected in the fact that both the effective potential

and space dependent diffusion constant change their

nature as we change the system parameters. Thus apri-

ori analysis or prediction of the behaviour of the sys-

tem in regard to transport coherence is a difficult task.

It may not be surprising that by choosing appropriate

asymmetric potential and frictional profile along with

other parameters one may obtain much higher trans-

port coherence as observed in [6].
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