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Abstract. We propose a method which explicitly takes into account the strength of on-site
Coulomb interactions to calculate the effective mass of carrier fermions in the intermetallics )
of f and non-f atoms. Calculations of a number of heavy-fermion systems show a satisfactory
- % trend of variation of effective carrier fermion mass. |
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1. Introduction

The states of the electrons in a solid are described by two limiting pictures. The usual
band scheme, which is well applicable to most normal metals and semiconductors,
starts with the picture of electrons moving in the periodic field of the lattice. The
corresponding states (Bloch waves) are delocalized; the interaction between the electrons
is usually included in the Hartree-Fock approximation. In this approximation the
electrons are treated as being independent of each other and the idea of a self-consistent

PR field is introduced. The latter is the interaction field an electron experiences when we

take a spatial average over the positions of all the other electrons. On the other hand,
in the case of many systems like insulating oxides of transition metals, it is more
appropriate to describe the electrons in the language of localized states. This approach
is applicable when there are strong inter-electronic correlations.

Nevertheless, there exist many systems (in particular, partially filled d and f states
in the transition and rare earth metals and in the actinides and their compounds)
that exhibit properties intermediate between the above two situations. There is general
consent today that in several classes of transition metals or rare earth heavy-electron
systems the d or f electrons are delocalized; it is also clear that correlations among
them are not weak. Thus, a number of atomic features — like Hund’s rule coupling -
persist despite delocalization. Correlations are particularly strong in some of the
transition metal oxides. Oxides like CoO and La,CuQO, are not metallic because the
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strong electron correlations suppress the charge fluctuations required for metallic
conduction. For such systems independent electron approximation proves to be an
inappropriate starting point. The competition between the localized and delocalized
descriptions has been the subject of countless discussions. Whether an improved
calculation should start from a wave function of the Heitler-London (strong-
correlation limit) or the Hartree-Fock form (limit of independent electrons) depends
on how strong electron correlations are in a given solid.

An important step to study the regime of correlated electrons was taken by Hubbard
and others (Hubbard 1963, 1964) who formulated a model (the so-called one-band
Hubbard model) that depends on one parameter U/W, the ratio of the short-range
on-site part of the Coulomb repulsion energy U for two electrons with opposite spins,
to the bandwidth W of the single-particle states. The ratio U/W, permits one to
compare the effectiveness of electron interactions (U) that favour the localized state
with delocalization effects favoured by a sizable band (kinetic) energy (W). As long
as the electron correlations are weak, the residual interactions, i.e., those interactions
which are not described by the self-consistent field, are small and may be treated by
expansion or variational methods. The unperturbed Hamiltonian H, is then of a
single particle form. When the correlations are strong, the unperturbed Hamiltonian
H, must incorporate the dominant parts of the electron interactions, and it loses
single-particle form. The main difference between a single particle Hamiltonian H,
and one which is not of a single particle form is that the Feynman diagram technique
may be applied in the first but not in the second case. This is because the, operators
which diagonalise H, must satisfy simple bosonic or fermionic commutation relations
for Wick’s théorem to hold. When H, contains the strong electron interactions, the
operators which diagonalize H, do not satisfy the usual bosonic and fermionic
commutation rules. Then the usual diagrammatic rules are not applicable. For this
reason, weakly and strongly correlated electrons are treated by very different methods.
We have argued elsewhere (Lamba and Joshi 1994) that it is possible to treat all
possible strengths of the electron correlation by a single approach. A summary of
this new variational approach applied to the Anderson lattice model is given in §2.

Here, we describe the application of this new variational approach to calculate the ’

effective carrier fermion mass for a number- of heavy-fermion systems (Grewe and
Steglich 1991; Hewson 1993). Heavy-fermion systems are strongly correlated systems
and are attracting interest owing to their remarkable properties. The heavy-fermion
systems are metallic compounds containing f-atoms which have partially filled f
orbitals (Ce, U, Np and Yb) while the other metallic constituent(s) is(are) made of
non-f atoms. Characteristic examples are: CeCu, Si,, CeAl;, CeCu,q, CeRu, Si,, CeBg,
CePb,, UBe, 5, UPt;, UAuPt,, UPd,Al;, UNi,Al;, UPdSn, UCus, Ug.o7Th.g3Beys,
UCd,,, YbAl;, NpBe,; and YbCu,Si,. These materials are usually described as a
new class of materials; the newness is most easily characterized by a value of specific
heat at low temperature, which is two to three orders of magnitude larger than values
for normal metals or alloys. An increasing number of people have applied their minds
to some aspect or the other of this vast and growing field. Of course, in as much as
the basic problem is one of correlated electrons, it is not a new concern to condensed
matter physicists.

Many problems in theoretical physics are investigated by considering mathematical
models which are crude simplifications of the real situations. Such an approach can
be very illuminating if the model incorporates the most important physical mechanisms
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of the real problem. An excellent example of such a situation is the periodic Anderson
model to study heavy-fermion systems. This model consists of a conduction band,
correlated f-electron states localized at lattice sites and a hybridization (V) between
f and conduction-band electron states. In the simplest form of the model, only the
spin degeneracy is taken into account. '

The plan of the paper is as follows: A summary of a new variaticnal approach
applied to the Anderson lattice model (Lamba and Joshi 1994) is given in § 2. Section 3
describes our method of calculation of effective hybridization and on-site Coulomb
interactions. The last section (§4) highlights the simplifications used to calculate the
effective carrier fermion mass for a number of heavy-fermion systems. Results and
discussions are also given in the last section.

2. A new variational approach

e The Hamiltonian for the orbitally non-degenerate periodic Anderson lattice model
' can be written as

~

H= ch ckU+ZEf fio T VZ(C fm-+-hc)~1—UZﬁmﬁfll (1)

The first two terms describe the broad conduction band and the non-dispersive f-level.
The third term describes the hybridization between f and conduction electrons, where
V denotes the hybridization matrix element which we have taken here to be a constant.
The last term refers to the Coulomb interaction U between f-electrons on the same
site.

The variational method essentially consists of three steps: a suitable trial state has
to be devised, the expectation value of the Hamlltonlan {H) must be evaluated and

) finally {H» must be optimised.
o The choice of the starting wavefunction depends on the structure of the ground

state. In the non-magnetic case the starting wavefunction was taken to be the ground
state wavefunction for H(U = 0).

For U=0 the "Hamiltonian can be easily diagonalized by the canonical
transformation

Bka} —_ [ﬂ;m Oc;ca' :| I:u;ca ]ﬁ (2)
ko a;w - ﬁ;ca l;co'
to get the two hybridized bands

f”'l=%(8k+Ef)i-%[(ak;E P4V (3)

where ¢, and E are the nonhybridized and uncorrelated conduction band and f-level
energy respectlvely When the total number of electrons per site is taken as 1 <n <2,
the ground state wavefunction in the absence of Coulomb interaction can be written as

Womod =TT L,10> | o @
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For the finite U case we construct the trial ground state vector around the uncor-
related wavefunction by taking into account the decrease in doubly occupied sites
due to the Coulomb term by introducing a projection operator P;.

ldjc>=nplll//uc> (5)
Here
W) = 11 Guel =Bt 1I0). ®)

I,.> is the same as [, _,> but with o} and B,, replaced by o, and B,,. For the
correlated problem, o, and B, are to be determined variationally.
We choose the projection operator of the form

Pi=1+4Y s A, — [(1 —d)+2 So]ﬁfiTﬁfil @

where parameter s, is introduced so that the average total density of electrons per
site is conserved and d is a variational parameter which is the probability for double
occupancy of a site. P; projects out the doubly occupied sites to an extent which we
determine variationally.

The ground state energy functional for the periodic Anderson model is

I ®
R22Y

where H and \.) are given by (1) and (5). Various matrix elements appearing in E,
were evaluated by assuming single site approximation (SSA) (Bernasconi 1972; Oguchi
1987) and the translational invariance.

With the assumption n. =n, =n /2 minimization of the ground state energy
functional by imposing the constraint o} + Bk = 1 through a Lagrange multiplier 4,
yields o, B, and 4., b, and 4, obtalned in this manner were substituted in (8) to
obtain the ground state energy which can be written as

= —kzk Ll + Ef) —[(e— Ef)z + 4172]1/2] + ung
<ks
Udzn}(l ——nf)
@Q—n,)?—d*n¥

©)

where V= VR is the effective hybridization energy and R is the renormalization

factor which depends on the average occupation n in the correlated orbital and the
weight factor for doubly occupied sites is given by

C2(l—n)A+9)[2—n(1—d)]
Al -n)+(-dm

(10)

E = E,— uis the renormalized f-level energy. 1 can be written as

>
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OR(n;,d) 1 14
on, NSy [(e— E;)? + 472112
2 2(1 —
_Ud 6[( ny(l—ny) } (1

ong LQ2—ngy —d*n}

u=4v

Our method of construction of the ground state energy functional is similar in spirit
to that used by various authors (Rice and Ueda 1985, 1986; Vulovic and Abrahams
1987; Rice 1988).

The average occupation of f-electrons n, is given by

TN =N L+ = b 12
ki N k<zkf, ﬂk N k;;:‘f, [ {(gk..Ef)Z + 4V2}1/2 (12)

B, is obtained through energy minimization.

ng, u and d are obtained by solving the self-consistent equations (11), (12) and
0E,/0d = 0. Detailed discussion of results for a wide range of parameters can be found
in Lamba and Joshi (1994). In our model there is an enhancement of effective mass
of electrons, which is given by

m* = 1/VRZ. (13)

As can be seen from (10)—(13) the effective mass depends on hybridization and
Coulomb interaction in a crucial manner. A knowledge of these interactions is essential
to calculate effective mass of the carrier fermions.

However, there is no reliable method to calculate the hybridization interaction
and on-site Coulomb interaction in heavy-fermion systems. The main problem in the
calculation of hybridization interaction is due to the fact that V' (Rice and Ueda 1985,
1986; Varma et al 1986; Oguchi 1987; Vulovic and Abrahams 1987; Rice 1988; Lamba
and Joshi 1994) depends on the intra-site Coulomb interaction between f-electrons.
Therefore the first principle calculations do not yield good results even for simpler
systems like UTe (Sheng and Cooper 1991). A method similar to that developed by
Sheng and Cooper (1991) cannot be considered as a reliable method for heavy-fermion
systems.

3. Method to calculate effective interactions

Instead of going to the complex problem of determination of absolute value of hy-
bridization interaction and Coulomb interaction, we consider the calculation of
relative hybridization interaction (Lal et al 1993) and Coulomb interaction. We
incorporate the effect of non-f elements through a dielectric function. So that the
effective hybridization interaction V. and effective Coulomb interaction U, may
be written as

v, = f Y@ jedo / J dqdo, | (14)

€(q, w)

U, = j V9 4040 / J dgdo. (15)

€(q, w)
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Here q and o are the electron momentum and energy respectively.
We assume that V(q)= V, and U(q)= U,.
The dielectric function (g, ») may be defined as (Mahan 1990)

__ 9 gPqw). 16
o, v(g)P(q, ») (16)

Here v(q) is the Coulomb interaction, v, is the electron—electron interaction due to
phonons, and P(g, w) is the polarization due to v(q) and v,,. Explicitly

v(q) = 4me?/Qq?, (17)
16m2e?h?
U= 32 .2 2_ 2y (18)
3Q%¢* M, (0 coph)
and
P , @
Plq.0) = {g) (19)

1 —(v(q) +,,(9, ) P (q, )

Here P'V(q, o) is the polarization operator in the random-phase approximation
(Mahan 1990) e is the charge of an electron, Q is the unit cell volume, w,, is the
phonon frequency and M, = (M, +vM, /(v + 1) is the average ionic mass in the unit
cell. Here M, and M, are the masses of f-atom and non-f atom respectively, and
v is the number of non-f atoms per f atom in the system.

4. Results and discussion

To calculate effective interactions we have made the following simplifications:

(1) The conduction electron bandwidth and fermi energy do not depend on the nature
of non-f atoms.

(2) We have neglected the details of the crystal structure by treating all the systems
as having cubic structure.

(3) The nature and occupancy of the partially filled orbitals of the non-f atoms is
completely ignored.

(4) We have approximated P(q,w) in the random-phase approximation (Mahan
1990). -

(5) The value of w,, is assumed to behave like A/M_ Q for all the systems. Here
A is a constant which is obtained from the data of UBe, , (Renker et al 1985)
(@,, = 60meV), and is assumed to be- the same for all the systems.

(6) We have taken the following values of various parameters: half band-width
b=4eV, V,=01eV, flevel energy E,= —1-5¢V, total density of electrons
n=16, U,=6¢eV for Ce systems and U, =4¢€V for U systems.

We solve the self-consistent equations (11), (12) and JE,/0d = 0 using the values
of V... and U, calculated by the above mentioned approach to obtain n;, d and u
for various heavy-electron systems. We substitute the calculated n,, d and p in (11)
and (13) to obtain the effective mass. Results of our calculations are plotted in figure 1
for a number of systems. The figure clearly shows that the trend of variation of m*
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Figure 1. Calculated effective masses of the carrier fermion are compared with the
experimental estimates of Fisher et al (1987). Squares denote the experimental estimates and
circles the calculated values.

from system to system as given by present calculations does agree with that given
in Fischer et al (1987).

-In conclusion, our variational method combined with our simplified method of
calculation of the effective hybridization interaction and the Coulomb interaction
gives a satisfactory trend of variation of m* in heavy-fermion systems.
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