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A method for constructing radial wave packets with application to
target distortion in electron-atom collisions
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Abstract. It has been shown that an analysis of radial stationary state wave functions
of a particle in terms of their loops'leads to such continuous, single-valued and finite
functions which represent a practically convenient form of the radial wave packets of
that particle at various positions. The radial wave packets have been used to investi-
gate target distortion in electron-atom collisions. The distortion of the target is defined
in terms of quantum-mechanical probabilities given by the wave packets. A closed
expression which depends upon the position of the colliding electron, is obtained for
the potential energy of the target in.the field of the colliding electron.

Keywords. Wave packets; scattering states; zeros of functmns loop ana1y515, target
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1. Introduction

In constructmg wave packets for a partxcle one uses the standard method of making
superposition of the stationary states of the particle (see, for example, Messiah 1966).
But, in general, the wave packet formalism of physical processes is of formal nature
[for a detailed description see, for example, Goldberger and Watson 1964]. The
difficulty one encounters in obtaining a practical form of wave packets lies in the fact
‘that one does not know the method of finding quantxtatlve dependence of the expan-
sion coefficients on the wave numbers (see § 2). Without the knowledge of such a
dependence we cannot put the resultant of the superposition of the stationary states,
-used in obtaining wave packets, in terms of such expressions which may lend them-
sélves to practical calculations. The object of the present paper is to present such a
technique which is useful for constructing radial wave packets. The technique
employed by us is an analysis of the radial wave functions in terms of their loops.
Essential points of this technique have been glven in § 2, where the wave packet
formalism has been developed.

~In § 3, as an apphcatmn of the wave packet constructlon, we 1nvest1gate the
distortion of a target in electron-atom collisions. The potent1a1 energy of the target
in the field of the colliding electron is calculated according to the quantum-mechanical
probabilities given by the radial wave packets. In the last section.(§ 4) we discuss
the importance of the wave packet formalism. =~~~ o

Atomic units have been used throughout
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2. Wave packet formalism

We shall describe our method of constructing wave packets with reference to a
colliding electron moving in a central potential, say U(r), of an atomic system. Here
r is the radial coordinate of the colliding electron. For r—oo, U(r) would behave, in
general, like —z/r, where z=Z—M. Zis the Coulomb charge of the atomic nucleus,
while M is the number of electrons in the atomic system. ‘ : o

Since U(r) is assumed to be central, scattering state wave-functions fof the ?0111d111g
electron may be expressed in terms of partial waves. The Ith partial radial wave
function, say F,(r), satisfies the following dlfferentlal equatlon

h Ey(r) = 1 k2 Fa(r) o 0
where b =— J@¥dr®) + [0+ D/2) + UE)- | @

In equation (1), k>0 is the energy of the partial wave Fu(r). The Fy(r) satisfies
the following boundary conditions:

Fulr) ~ r*, - ’ 3

o r—>0 ‘ ‘

Fu(r) ~ sin (kr — & br -+ zk™1 In 2kr + &) , @
¥ 0

“In (4); 9, is the phase shift due to the field- U(¥), it includes the Coulomb part
o = arg T'(/ + 1 —izk™).

Since the F,’s are eigenfunctions of / only for positive energy eigenvalues (k°/2),
they do not in general form a complete set. So we introduce eigenfunctions of A for
negative energy eigenvalues —1/2n%, where n is the principal quantum number less
quantum defect. Let Ry, (r), behaving at r=0 like r'*1, denote these elgenfunctlons
“We assume the R ‘and’ Fu to-be normahsed n accordance with.

| Ru(® Ryi(r) dr = - St f Fkl(r) Fo(r) dr = S(k — k) (3

where 3, and 8 (k— k') are respectively the ‘Kronecker delta symbol and the
Dirac delta function.  The bound radial functlons are orthogonal to the unbound
radial functions. That is,

I Radzal wave packets ‘

Let S t) denote, at time 2, the wave packet of the colhdlng partlcle (angular
momentum, I most probable value of energy in the energy distribution, 44%). - Then,

according to the usual method of constructmg wave packets from the statlonary states
(see for example, Messm.h 1966) we haVe

Y “C(k*n) exp Crrﬁnz) R,,l(r) + fDl(k kl) exp (A. it /c'%/z )

e (7)
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In: (7), the expansion coefficients Cy(k,n) and D(k,k’) are unknown ‘quantities. In
the theory of wave packets only qualitative behaviour of the values of these coefficients
with regard to various » and k' (k ﬁxed) 1s spec1ﬁed—-accord1ng to Wh1ch we must
have S e et

| D) | > | D) | (K £ R), ®
| Dkk) | > | Culkm) |, pe ©)
Dykk)>0 (fork'»co), . . (10)

That is to say, among the magnitudes of the various expansion coefficients the maxi-
mum value must correspond to D, (k, k), and the limiting coefficients (nless, k' large)
must approach zero. The quantitative values of the coefﬁcuents ‘must- be such that
they may be consistent with the uncertainty relation,

The qualitative behaviour of the expansion coefficients contained in equations (8)
to (10) may enable us to learn about some formal aspects of collision processes, but
does not help much in practical catculations, unless ways to find their quantitative
forms are known. With the motivation of searching a method which can provide us
a practlcal form of the radial wave packets Skz(r t) we define a function of time, say
Jf(2), such that in the transformation ¢ f(1), the transformed wave packet Skl (@, f )
and-the tr. ansformed ‘expansiofi coeffidients satisfy the followmg requlrements '

(1) If we define the centré'of the Wave packet by'the expectation value of r,denoted
by r, then r must remain invariant in the transformation ¢ f(t). That is to say, the
expectation value of r, calculated in terms of Sy, (r,t) must be equal to that calculated
in terms of the transformed form of Sy, (r,1), Sk (r,f). SRR

(11) Since the qualitative behaviour of the magnitudes of the expansion coefficients
of (7), for various 7 and k' (k fixed), is independent of ¢ (cf. (8)- -(10)), the transformed
expansion coefficients (in the transformation - f(t)) must :also behave for various
n.and k', qualltatlvely like (8) to (10) for a fixed k.’ -

" The advantage of the function f@®)is that the p1 oblem of ﬁndlng a pract1ca1 expres-
sion of the wave packet Sy, (r,7) reduces ‘to find an expressxon (i1 (r, f)) which satisfies
the above two requirements. If such an expression is found then we may use Sy, (r,f)
in place of Sy (r,t) with ¢ replaced everywhere by f(¢). ' From’ pxactlcal v1cwp01nt a
form of f(t) is that which increases monotonically with ¢ such that -

0 for ¢t=0 \
o for t=o5. ' Ly

fit) = { )

We shall use the distance of the colliding electron, given by r, as a choice for J(0).
It will be shown below that an analysm of the radial functions: Fu(#) in tefmis of
their loops provides us a convenient (analytic) form for the transformed wave
packet Sk, (r r)

2 2 Laop analyszs afF,,,(r) e “"’ TRt f -.f e 5 i

(r) denote & commuous, smgleovalued and ﬁm‘te functlon ofuN léops ‘We
deﬁne W,d (7) according. to ‘the following éonditions® Peeen L T
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v ~ - - (12)
r>0
Wkl(zl)""o (I<iKN—1; N> 1, (13)
wh(ry ~ r*Nexp (—Ar/N), A>0), (14)
r >Z.N—1
Zi ‘ _
{ 1wl@Fd=p, A<iSN—1; N> 1), (15)
i
fo o]
and [ [WAO dr=apy(e<D) (16)
IN-1

In equations (13) to (16) the z;’s, arranged in the order
30<21<22<..--<ZN__1 ‘ (17)

are the first AV zeros of Fu(r) with z;=0. The p;’s in (15) and (16) are the relative
probabilities given by Fk,(r) between its two consecutive zeros z;_, and z;. Thatis to
say, |

Zi

= [ |Ful) P o | a8)

2y

Accordmg to (15) and (16) in any loop i wherc 1<i <N— l both Wk,(r) and F,,(r)
provide the same probabilities. So the relative probabilities (pi §) do not only help

in completely spacifying the function Wk,(r) but also make it (Wi ) physically reason-
able. '

The parameter a in (16)is a p051t1ve number (less than or equal to one). To see its
importance we consider the expectation value of r in terms of the Wﬁ(r) functions.

r (N, ‘): m[ r l Wi‘\lr(r) ‘3 dr,‘_ e ) ws (19)
N~1 .

shere - D) -f [MORE =3 bty 20

Since NV is a discrete variable, for a fixed a (19) would provide values of 7 in a dlbbl’é“éé
manner. The parameter a serves to let us have all continuously variable values; of
the distance ; between r (N—1,1) and AN,1). The sense in which a does s0 is given
below:- In. order to have all: conhmmly variable_values of the. distance between

F(N—1,1) and 7(N,1), we must-vary a in (16) between s .. .(>0).and 1, where a,
mm
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satisfies 7(N—1,1)==p(N,a,,; ). That this equation would provide positive value of
@ in May be understood as follows: For a==1, W‘g'l extends beyond r=Z,_
while for a=0, W} extends only upto r=zy_j (cf. 16). Therefore, r (N—1,1)
contains contribution from r>>z,_ ;also, while #(N,0) is contributed only by r values
upto zy_y. In this sense r (N—1, 1) > 7 (¥, 0) implying a_;, > 0.

2.3 Hdentification of wi (r) functions

To settle the matter whether the W,ﬁr(r) functions represent the wave packet of the
colliding electron correspondingto Various distances 7(N,a), we need an analytic form
of these functions.. To progress we note that, by definition, W,Q’(r), satisfies (2N—1)

conditions, namely (13), (15) and (16). So it needs (2N—1) parameters for its
complete specification. One parameter A, has already been introduced. Let b,
and gy, i=1,2, ...., N—1, be the remaining (2N—2) parameters which we assume

all to be positive. Then we may choose the following form for Wg(r):

-
WRi) = r'* exp (—N/N) TI

f=1

1 .
[b; exp (—q;r) —r] for (N> 1) 2D

and Wi () =r+texp (—An.

Form (21) of Wé\zr(r) is obviously consistent with (12). 1Itis consistént with (13),

(15) and (16) through the (2N—1) parameters, b,, ¢, and \. To see its consistency
with (14) we note that when r > Zpn_1» the r-term in each factor of (21) dominates,

thereby making (21) to result in (14) to within a phase factor (—1)N—1.

* - r -
Having obtained an analytic form for the Wﬁ\z(r) functions, we may study its
expansion in terms of the complete set {R.., Fk,}- The expansion is:

We®) = 47 () Rule) + [ BV Funly) i, 22)

where the expansion coefficients A{V and va are transformed forms of the respective
expansion coefficients of (7), C; exp (it/2n?) and D, exp (—ik'2t/2). Explicit form
of the AY and BY are: ‘

AXEn) = [ Wilo) Ru(o) ar, -3
BY(kK)= | W) Fuulr) . 24

Qualitative behaviour of the magnitudes of the expansion coefficients 4Y and BN
has been studied in the appendix. Equations (41), (42) and (45) of the
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appendlx showthat the relative magnitudes of the expansion ‘coefficierits AN and BN
(for various n and k’) possess the same nature as is contained in:(8)to (10). Therefore

we identify the Wi (1) functlons as the radial wave packet of the colliding electron
corresponding to the distance 7. . The analytlc form (21) 1s a convenlent form from
the viewpoint of practlcal calculatlons - -

3. Target distortion

Let V; (rj) denote the central part of the potential energy. of.the Jth target electron in
the field of the colliding electron described by the wave: packet Wkl(r) Then, assum-
ing the forces among the electrons as two-body forces, the potential energy. of the
(whole) target V may be written as :

2, 1Vf(r;) o | ey

Note that Vj , OF more genetally V is the contribution of the / th partial wave of
the colliding electron. . ‘

3.1 Definition of the VI(r))

We now obtainexplicitexpressionforthe V7 (;) which is defined as the value, averaged
over all the directions of 1,, of the two-electron classical interaction 1/ jr—r;| calculated
according to-the quantum-mechanical probability distribution of the / th partial wave
packet of the colliding electron. (Here r and r; are respectively the position. vectors
of the colliding electron and the j th target electron). Thxs deﬁmtlon may be put iii
the following mathematical form: . . .

S )

where r., is either r or r; whichever is greater. The right side of (26) depends upon
N and a which we have earlier related with the position of the colliding electron
(cf. 19). Thus, in this sense, VjT (r;) depends upon the posmon of the colliding
electron. t _

In the 1imit F—>00 (formally N -> oo) both the numerato1 and the denommator of .
(26) would tend to infinity. But if the Jth electron is a bound electron, for F—>o0, r>
may be taken as r¥, and therefore the order of the infinity of the’ numérator would be-
Iess by one than that of the denominator of (26) In thls way

i

VJT r;) —> 0, (jth electron is 2 bound electron)
P> - -

a result that was expected.

“*In the classical interaction 1/ { A mmd rJI serve for radial dlstances (of the colhdlng el :::tton
and the:jth electron respectively) ds well ag for.mean values ¥ and ;. - f
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3 2 A4 closed expresswn for V; (r,)

To obtain (26) ina closed form, we put (21) in (26), and after a lengthy but elementary
calculation obtain

j(j) h_-—D(n a) r; z z =1y B,N’Bf’Y

pp JYIN

Xyl §1 [1 — exp (—Sr) z ( )(S"i)v] SRR Y

v - o

WhercA y=p+p +2-+2 and S=2q'—'l—f_QN" Qp,,y “ (28)
with g = MNand N' = N—1. | (29)

In (27), p and p’ run independently from 1 to (N—1), and the Jf,\", Bf,v "and Q,],V ’
have the following meanings: J ;,V " denotes collectively (N'—p) summation variablés,
P1s P2> - - - Pyr—ps Which are all distinct and each of which runs from 1 to N’ such
that Jf,” varies N"/[p' (N'—p)!] times. The B’\‘ denotes a product of (N’—-p)
b;’s, and the Q,, denotes a sum of (N'—p) g;’s such that : ‘

NI . . N’ .
B =b, b, ..b,  with By, =1, (30)
and oY =g, + 45 + ... + .. Vith oy =0. (31)

Bxpression (27) which gives the potential energy of the jth target electron caused
by the /th partial wave of the colliding electron, contains two parts—a long-range
repulsive part 1/r; which is independent of the position of the colliding electron,
and a short-range attractive part (due to the second term of square bracket of 27)
which depends upon the position of the colliding electron (through N).

Furthermore, (27) is suitable for practical purposes. This is because D(N, a),
b;’s and ¢,’s which are contained in this expression may be practlcallv obtained using
(20) for D (N a), while (21), (15), (16) and

z; = b; exp (—¢: z,)
(cf. 13) for the b,’s and theé g¢,’s. In finding these values-an-analytic form of the
F; (r) functions is not necessary.
4. Conclusions -

Analysmg the pa1 tla.l radlal functlons ofa colhdlng electron in terms of their loops
we have obtained such continuous, single-valued and finite functions which represent
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a practically convenient form of the wave packet of ;the colliding electron (see @L).
Although the calculation of the wave packets Wﬂ (r) requires an extra labour of cal-
culating zeros and relative probabilities of the radial functions Fy; (r), there is a main
advantage of the knowledge of the W,{‘;r (r)’s. In cases where position-dependent
effects of the particle dominate (for example, in low energy electron-atom collisions),
only the wave packets TW,J,\{ () may be used. to learn the posigio'n—dépendent effects,
since the position of the particle given by ‘the F, () functions is infinitely uncertain
[cf. § 3, in particular equation (26)].

Furthermore, the expression (27) of the potential field of a colliding electron may
be-used directly for practical purposes. This expression is ‘applicable to excitation
as well as to (single or multiple) jonisation processes. In calculating ionisation
processes one would need a sister equation of (27), namely that which gives the poten-
tial energy of the colliding electron in the field of the ejected electron. To get such
an expression one need only exchange the roles of k and k; in (27), and replace r;
by r.
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Appendix

For a fixed N, when k' = k, the way Wﬁr (r) is constructed makes it of the same sign
as F,, (r) for 0 < r < z) and thereby makes the integrand of (24) positive in this
range. But according to (14) and (16), r values after r = z)y cannot contribute to
(24) significantly. -So BY (k, k) would be positive. On the other hand if k' # k,
the integrand of ‘(.‘24) would assume positive as well as negative values before r = zy
also, implying that (for & # &) BY (k, k') would be less than BY (k, k). However,
under special circumstances it may happen that BN (k; k'), for k' # k, becomes
negative, but its magnitude would be less than B',V (k, k), since the integrand of (24)
assumes an essential positive value from r = Oto r ==z, where z_ is z; or z3 which-
ever is less (prime over z; serves to let z; denote the zeros of F,,, without changing
the order (17)).
The foregoing arguments lead us to the conclusion that

BNl > | BY (k)| & #K) @y

We further note that for large k', F,, (r) approaches a sinusoidal form. Thus
if we. put the analytic fF’_H}l 21) of Wﬁr (r) in (24), the integral (24) may be
evaluated analytically, providing.a dependenceof BY (k; k') on large k' (k = finite).
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We obtain
Cik' -3 for I even
B (k, k) ~ (A2)
k' =0 C,k'—1-2 for I odd

where C, and C, are some finite constants (independent of k).

The manner in which we defined the W;?{ (r) functions (see (12) to (16)) implies
that, from the viewpoint of » dependence, Wﬁ (r) represents Fy, (r) approximately
upto 7 =z, provided N > 1 and @ = 1. When a < 1, this approximate represen-
tation is correct upto some r between z,, | and z,, say ZN, 4 for specificity. In this
sense (23) may be written as

:N,a
AV Unyn [ Fa@) Ru@)dr. V> 1) (A3)
J ,

Since R,; (r) is a bound state (radial) function, it has a finite extension. (By
‘extension’ we mean the value of r after which R,; (r) is negligibly small.) The
extension of R,; may be less or greater than ZN, depending upon the relative values

of N and n. If it is less than z, , the upper limit of the integral in (A3) may be
extended to oo, whence (6) would cause this integral to vanish. Therefore, in this
case, A‘;V would be approximately zero:

A{V (k, 1)~ 0 (when extension of R,; < Z,, 2 (A4)

When R, extends slightly beyond r = z,; , due to the reason mentioned above

Afv cannot be much different from zero. But when R,; extends considerably beyond

r =z . further consideration is required to settle the matter. In this case we use

the fact that the loops of a bound state radial function contribute to the probability
(given by the radial function) in such a way that the contribution of a loop (of the
radial function) increases monotonically from a minimum value corresponding to
the innermost loop to a maximum value corresponding to the outermost loop, (see,
for example, Pauling and Wilson 1935). That is, in contributing to the probability,
outer loops dominate over the inner loops. But when R,; extends beyond r = IN, as

outer loops (which lie beyond r = z;, ;) fail to contribute to (A3). Consequently,
(A3) finds itself much small.
Upon the basis of the above two paragraphs we conclude

{4Y (k,n)| < BY (k, k)  (except when N = n = 1) (AS5)

References

Goldberger M L and Watson K M 1964 Collision theory (New York: Wiley)

Messiah A 1966 Quantum mechanics (New York; Wiley) Vol. I

Pauling1 }:2 and Wilson E B 1935 Introduction to quantum mechanics (New York: McGraw Hill)
P ,



