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Abstract. Effect of interatomic electron correlation has been studied in narrow band

solids using one-particle Green function method. We follow Hubbard in drawfng. an
analogy with an alloy and find a self-consistent solution which predicts a finite lifetime
for pseudoparticles. A specific case of a (non-magnetic) model system with half-filled
parabolic band has been considered to calculate the pseudoparticle density of states
function. Unlike the result in the presence of intra-atomic correlations alone, we find

that this particular system is never an insulator, however large intra-atomic correlations
may be.
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1. Introduction

During the past decade there have been numerous studies of the electron correlation i
in narrow band solids (Hubbard 1963, 1964a, 1964b, Gutzwiller 1963, 1964, 1965,
Kanamori 1963, Kemeny 1965a, 1965b). The Hubbard model of the electron cor-

relation is based on the assumption that despite the band motion of d electrons, the

electrons at any site are strongly correlated with each other. The Hubbard model is

too simple to represent the real situation in the transition metals and their chalcogenides. &
For real systems one must consider the degeneracy of the d-band, the interatomic in-

teraction, and the presence of the s band (s~d hybridization) together with the intra-
atomic interaction. However, treatment of all these effects simultaneously is not a
practical proposition at the moment. The problem of degeneracy in d band has been
discussed by Hubbard (1964a), Chao (1971) and Seigel and Kemeny (1972). The
presence of the s band has been considered by Kishore and Joshi (1970a, 1970b, 1970c,
1971) by taking into account the effect of hybridization of s and d bands on the Hub-
bard Model.

The Hubbard model is characterized by the absence of intersite electron correlation. 1
‘The validity of this assumption of the Hubbard model is doubtful. There will be of

the order of 3Nz pairs of nearest neighbours in a system if z is the number of nearest
neighbours which a given site has.

Since interatomic interaction will be approxi-
mately one-sixth the intra-atomic interaction, it is clear that the interatomic term
can have an appreciable contribution. With this in mind the study of the contribution

of the interatomic interaction together with the intra-atomic interaction is necessary.
Caron and Pratt (1968) studied the effect of interato

- mic interaction on the magnetic
properutfs of the systern using a generalized self-consistent cluster treatment. Kemeny
(19652a) included this interaction and studied the metal-insulator transition in narrow
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band solids by finding out the conditions for an electron and a hole to form a bound
pair. But in the actual estimate of the binding energy of the pair, he took only intra-
atomic interaction into account. Therefore, the contribution of intersite interaction
could not be known. Later Kishore and Joshi (1969) studied the effect of intersite inter-
action using the Hubbard type decoupling method. It was found there that intra-
atomic and interatomic correlations working together split the original band into three
sub-bands. The middle band occurs only because of the consideration of the inter-
atomic interaction. The decoupling method used there creates an obvious difficulty
similar to that in the first paper of Hubbard (Hubbard 1963) i.e., however small the
interactions may be, the original band due to these interactions always splits into three
separate sub-bands. Physically this does not seem to be justified. Here we will try
to get rid of this difficulty by treating the electron-correlation problem in a self-
consistent way as Hubbard did in his third paper (Hubbard 1964b).

Following Hubbard we introduce an alloy analogy. Hubbard considered intrasite
correldtion only and his problem was analogous to that of the binary alloy. Since we
consider intersite correlation too, we have to draw an analogy with a ternary alloy.
We use the one electron Green function method and by truncating the hierarchy of
Green function equations, we arrive at a self-consistent formulation of the problem.
Firstly we decouple the equation of motion of the Green function in a very approximate
way where no account is taken of the fluctuation effects as well as motional-broaden-
ing-effects. These effects are then discussed and taken into account in sections 3 4 and
3 B. TFinally in section 4 we present results of the calculation of the perturbed density
of states for a model system with a half-filled parabolic band.

The requirement of the self-consistency, for the description of the electron correla-
tion in narrow bands, may be obtained via an alternative approach—the coherent

potential approximation (Velicky ef a/ 1968). We will discuss it for our problem in the
appendix.

2. Mathematical preliminaries and basic definitions

A. The Hamiltonian

The Hamiltonian of the system under consideration in the Wannier representation
and in second quantization form is (Hubbard 1963)

1 !

ﬂ:ZETyC}U 90+§Z Z<U‘;[ kL) c?oc}c,ololcko (1)
i o gkl oo’

We use the usual notation. The first term is the band theory Hamiltonian. This

term describes the individual motion of the electrons. The second term takes care of

the correlations. Here

* _p. %[ __D. ' .
Cij L b y=e f o* (=R p*'—R)ol'—R) ol =R 40 (5
’ =4
One can easily evaluate the terms given by (2) by using known atomic functions;

the approximate magnitude of various terms for d electrons in transition metals s
given by '

i |
(i

5y = 156V; (|2 |4y = 3eV
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where i, j and k are all nearest neighbours. Neglecting all correlation terms but

{ it ! [i) and (& f_l. | 4 ), the Hamiltonian becomes
r r

Ho3 3 Tyl 5ot T Sttt 3T Ky

io ' jo’
ij oo’

where I={ ii|; | 2 )

Ky =( i 1 }4j > = K, (if i and j are nearest neighbours)
r

= 0, otherwise (5)

B. The Green function
The double-time temperature dependent retarded (+) and advanced (—) Green
functions for the operators 4 and B are defined by (Zubarev 1960),

CAQ®); BE) Y = Fi0{ £ -} C[A@, BE)1 7)Y (6)
where ' (4, Bly = AB—nBA '

n = +1 (whichever is convenient)
A(t) = exp (:Ft) A(0) exp (—iTFHLi)

8(t) is the step function. Notation ¢....X) denotes the average of the operator X over

grand canonical ensemble at temperature 7. In our analysis we work with the opera-
tors A(t) =¢;q, B(2) =(:‘} -5 hence the Green function is

GF (E) = {65 G1oVE (p=—1) (7
The Fourier transformation gives
1 < ¢ (R —R:
G (E) =ﬁ2 ek (B —R) G° (k, E) (8)

. . . + .
The equation of motion of the Green function { ¢;; jo->E is

E(Gzo” f)o)E T a5 < [610’ 'a']+> + ( [cio-s S{‘]—5 6'}.0->>E (9)

From the knowledge of the Green function the density of states per atom of spin o,

p?{E) and the mean number of electrons per atom of spin o, ng(E) can be evaluated
from the usual relations.

3. An approximate self-consistent solution

The equation of motion (9) of the Green function Gg(E) with the Hamiltonian (4)
becomes

8
EGj (B) =52+ z Tim Goy (B)+I nivg tigs ¢, >

-+ z 2 Kim { o’ Cig; 5};) (10)
m o
The I’nghcr ordf:r Green functions { n;_g cio; 6}0 » and < npottic; 0JT0_> obey the
equations of motion
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(E—Tg) { ti—g 6ig3 o}, ) = v<nz_a>+<nl-a> > Tir bros 61)
r=t
+ I Mg Gigs 61, ) +§T,, { timo— (i Yores 1,

+2'Tir {< 5 o br~c Gios JO’> ( _g bi-a Cio5 ¢ _]O' >}

U
+22Kir<nra’ni—a Cigs 6:]'0') (11)
r o
and (E—T,) (nmo" Cigs GJTO'> U (o’ >+<nma ) Z < bros 6.;[‘7 ?

r7:i
. Lot
+ I Mg ime* Gigs Cj.,) +z T;, {nme’ — (Mo’ €105 € Jo- >

r
T Lot t ot
-+ z Tmr{ { tpo* Cro’ tios Cig Y —« € rg’ Smo’ bios ¢ i >}
r

+ 2 z K{, ( Mmoo’ Nro” Cios 4';0. > (12)
r O_II
1
where Ty=T; = .N (13)

Now neglecting the fourth and ﬁfth terms on the r1ght hand side of Eq. (11) and using
the approximation

T
{ nro i Cio; Cja> > {ye') £ Mo Cigs ‘f}a’ >

we get the approximate expression for { ni_g ¢ios c} Y (Kishore and Joshi 1969):

s 0ij T; G (E)}
Ni-o Cios -+ ir 14
{ i-o Gio Ja 2 (E To—I—Knz) { ,z;, (14)

Here we have written (n;_o>=n_g, which follows from the translational symmetry

of the problem. n=ng-+n_g. Similarly we may find out an approximate expression
for { mmo Gios f;g » from Eq. (12);
A — No’ { ij
Nma’ Cig) C) + T; G E } 15
Crnot i o], ) = s é 2 62 @ (15)
Now putting these approximate values from (14) and (15) in (10) we have

T,) G% (E 1 o fn
(E—Ty) U( ):{ + (E—T, I—an) (E—TO—In_a———an)E

{‘H—z:r G“(E)% - (16)

The Fourier transform of the Green function G?j (E) may be written as

1 1
17
% (hE) = 27 F9 (E)—(—T,) 7
1 In Knz
i _ o 18
where Fg ) {1 + (E—T,—I—Kunz) (E_T In_g—-an)% (E—Ty) (18)
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Expression for F¢ (E) may also be written as

PP g(l—n_g) In.o Knz
1 I+ Knz) (In-g+Knz) n (I+Knz) (In_g+ EKnz) (19)
F (E) (E—Ty) (E— T,—I—Knz) (E—To— In_g— Knz)

The propagation of ¢ spin electron is described by the electron propagator G? (k, E)
given by Eq. (17). Here the quantity (e,— T,) describes the propagation of electrons
between atoms and the function FOU (E) describes the resonant properties of the atoms.
The alloy analogy suggests the above treatment to be improved in two directions.
Firstly, let —o spin electrons be fixed. Then for the accurate description of ¢ spin
electron propagation in the resulting alloy, the damping of the electron wave resulting
from disorder scattering should be considered. And secondly, since the -——o spin
electrons are not really fixed, the effect of their motion should be considered. Cor-
rections corresponding to these effects are referred to as the °scattering correction ’

and ° motional broadening correction ® respectively (Hubbard 1964b). Both of these
corrections will be calculated below.

A. The scattering correction

While finding out the expression for Gg. (E), the fourth and fifth terms on the right

hand sides of Egs. (11) and (12) were neglected. These two terms lead to the
‘ scattering correction * as well as ‘- motional broadening correction > respectively. We
first consider the © scattering correction * and therefore neglect the fifth term in beth
the Egs. (11) and (12). Firstly we consider Eq. (11) and proceed to find out an

approximate expression for the Green function ¢ (% ¢—7_g) 6ro; o_': o 2. The Green

function { ;¢ ¢rq; c}a Y obeys the equation of motion

S::
E{ ni—g 63 f;fc Y =Hno+l {ngnqgtro; GJTO_ by

27
-+ z Trm (ni—o Cmos "}TO- >
m

+ z sz{ ( CE—CT Gm_o. Cros 6_‘;-0' > - < cpT — fi—o Cros 6_‘]TO‘>}
m

+ z z Kmr ( Ri—g g’ Crars 5}0. > (20)

m a

The cquafxon of motion of the Green function. appearing in the second term of the
above equation may be written as;

. .- ot —_ 8y . ¥
E{ nig g ro; (':ia> == 2—:’ ( Ticg 74 Y HI L niig o bro; 5}0- >

+ Z Tom Mo 1o e} c}a>

m
-+ z z Koy {nti g 1y Mmo’ Cros ch0'> (21)
m o

This ¢quation may be simplified by introducing the approximations




I
|
|
!

o

Interatomic and intra-atomic electron correlation in narrow band solids 217

(ficg Nyeg) = (i y{My—gr)

and (i~ Nr—0 o’ Cra; 5}0.> > (Mg’ ) {Ni-g M- bro; 5},,}
Thus we get
Neg 3
<nl~0‘ g Cros ((‘]0‘> (.E T —J— an) g lig + Z TTm <711_0- Cmo s 60>>}
mzkr

(22)
Similarly we may get the expression for the Green function ¢n;_g 1,0 Crors 5 ) appear-
ing in the last term of (20),
720"

- (E—Ty—In, —Knz)

(ri-g Mo’ bra; ;0.

{—— neg + Z n {Micg Gngs Gl Y } (23)
n¥r

Neglecting the fourth term of (20) and substituting the values of Green functions

T . .
{ Ni—g Mg Cro; c}c Y and { nj_g nye’ cm; cj(,) from (22) and (23) in that equation, we get

€ Mg 6103 ‘Jo )= FU(E) { . g F Z Tym Cttimo omo 5 >>} (24)

msy

Where F:’ (E) is given by Eq. (18).
Now from Eqgs (24) and (16) we get

"' .
( (Mieg—P—g) brg; o )= Tri< ("i—a—‘”—a) Cigs Ujrcr p)

77 (E)

1

F__G—(E)- % Trm< (hieg—1-g) tmo; C_]TU ) (25)
0 mz=r, 2

It was shown by Hubbard (1964b) that Eq. (25) may be solved for

{(Miag— Mgy Cror; 0]0) (2#7) in terms of { (njg—r_g) 60} C}a- )
in the following way.

{ (Mg —1_g) g} GJO' )= z rm, i ) T (Mg —1n_g) ¢ig; j0'>> (26)

where WS, (E) =2 %gm @) — i) 8 E) g @7)
g5 (E)
o | exp ik * (R;—R;)
and ) =g, ZFU(E) (T )

If this approximate solution is substituted into the right hand side of Eq. (11) and the
fifth term in that equation (which gives rise to the motional broadening correction)
is dropped, we obtain

[E— Ty—I—Knz—2o(E)] { Mivg Sic3 G

8;i .
=030+ T Tidoi dod | —n-odol®) L sigs ) (29)
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£ :(E) &5,(E)
where Ao(E)=2m > T g% (B)—ri L oim g (30)
r,m g5(E)

It may easily be seen that Eq. (29) is very similar to Eq. (14). Merely the substituti.on
[To+I+Knz+A(E)] for (Ty+I+EKnz) and [Tij—8;A6(E)] for Ty would bring
Eq. (14) in the form of Eq. (29).

We now consider Eq. (12) and proceed to find out an expression for { (o’ — o)
Cras ofo Y. The Green function { nyg’ ¢rg; e:JT,,) obeys the equation of motion

E("mc’ Cros _]0') = no- +I{ Mmg’ Nr—g Cros cJO' ?

+§: 1,, { "mo’ tnos cja' >
n
) ol
+z Tmn{ < ‘:nc’ tno’ bros (’:]TO'> — £ ¢no’ tmo’ bras Sjo ) }
n

+ZKm< mo’ Mng”’ Cros IZ]?O' > (31)

The equation of motion of the Green function appearing in the second term of the above
equation may be written as;

8,
E("ma’ n,_oto; Ja'> = §— <nmo-’ nr_cr>+1< Rmg’ Nr—o Cros Jcr >

+ Z T,, Mg’ My—o Cno's 5j0>
n

+ 2 Km(""ﬂ)" ny_o Nnog” Cros GT;'O'> (32)

We may simplify this equation by introducing the approximations
(g’ 1y_g ) = {Pmg*) {My_g) and

Th g Ny g Mng” Cpo 5 5Tja> = (”nc"> <7lma’ Ry g Cyos 53‘0>>
us we get

n_g

8,
(E—To—I—Knz) { g+ sz<nma tno s 5JG>%

(33)

Similarly we may get the expression for the Green function {une’ Mo €ros ;1:7>
appearing in the last term of (31);

{rmg’ 2o bros C}o) =

{ g’ nu = Ro” 1 Gyl
o 493 God = E T a R Lo+ 2 Trsmor %503 o
-0

(34)
Now substituting these two expressions in Eq. (81) and neglecting its fourth term
we get

’ . -T 1 8

2 T4 nmo’ o JU>} (35)
re n¢r
With the help of (35) and (16) we have
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. 1
€ (Mmo'—n6’) 603 51_]‘0 D = Fg(E) T, (o’ —n0")¢i03 5Tjo>
i
: t
o Z Ty, (Mo’ —ng")ongs € np (36)
Fo(E) nin i e
As before, we may write the solution of this equation in the following way
; ;
£ (o' —n0)6r03 Gjo>> = Z W:L’ : (E) T i (o' —10") 6105 era> (37)
n

Substituting this approximate solution into the right hand side of (12) and dropping
the fifth term, we have '

[E—Ty—In_g—Knz—As(E)] (me’ tics ¢f,Y

S <
=g § U S Toi oo ) b —nordo () oo o}y (38)
rs&i

Putting the values of {n_s¢;0; (f‘]T0'>> and {Mme’ Cig; c}ra)) from (29) and (38) in (10)
we find the expression for G (k, E);

GOk, E) — L~ . - ! (39)
e F (E)— (e~ To)
where
14 In_g 4 Knz
1 [E—~Ty—I—Knz—Ag(E)] [E—Ty—In-o—Knz—2As(E)]
FZ(E) (E—T,)+ In_g - Ag(E) 4 Knz. Ag(E)
[E—T,—I—Knz—Ag(E)]  [E— To—Ing—EKnz—Ag(E)]
(40)
Aq(E), defined by the relation (30) may be cast into the form
1
No(E)=FO(E) — ——— (41)
2mg;; (E)
1 1 1
1 9(E)= — T(E) = (42
where ‘gu (£) N%gk (E) QWN;FOC’(E) —(ep—Ty) )

The propagator Go(k, E), described by (39) and (40), has a branch cut along the
real axis for those values of E for which Pg (E) (the density of states corresponding to
the propagator given by (17)) is positive. Thus this propagator describes pseudo-
particles with finite lifetimes. As we are interested in the self-consistent solution, we
replace Ay (E) everywhere by the function

GrH(E) G&(E)% 43)

Qg (E)=2m z T, chm (E)— GI(E)

where the actual propagator Gg(E) has been put for gg(E). With this replacement
Egs. (40), (4]1) and (42) take the form,
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14 I, o n Knz
1 (E—To—I—Knz—SQ g (E)] | [E—To— In_g— Knz—Qg(E)]
Fo(E) In_g . Q4 (E) Knz B
’ (E—To) + [E— TO—I—I{'nz—QG(E)]+ [E— Ty—In_g—Knz—Qq(E)]
(44)
Q,(E) =F5(E) — m (45)
147
1
and GHE) =5 > Gk, E) (46)
k

B. Motional broadening correction

We have found out the expression for the °scattering correction’ in the previous
sub-section. Till now we have assumed —o spin electrons to be fixed while studying
the motion of o spin electron. However, now we proceed to take into acco]}lnt the
effect of the motion of —o spin electron. The Green functions {¢]__ 6i—g Cig3 ¢ and
<€§—o’ Cr—o €ig; aJTa) appearing in the fifth term of Eq. (11) respectively contain the

information about the events in which —o spin electron reaches and departs from

the ith site at the time when o spin electron comes on the ith site. Thus the
: . . - out

complete expression {{c} ¢, ¢ cig; t,}To_)——(c’T_ o Ci—o Gigs 6};)} of eq. (11) tells us ab

the effect of motion of —o electron through the ith site and thereby gives the
motional or resonance correction. The Green functions ((::o, Crmg” €ig s CJTU> and
(c;‘;w, Cro’ Cig c}’a> appearing in the fifth term of eq. (20) respectively give the
information about the events in which ¢’ (¢ or — &) spin electron reaches and departs from
the mth site (which is the nearest neighbour to the ith site) at the time when o electron
comes on the ith site. Thus the complete expression {{cf . 6o Cio; ‘f;'rg>
—Lé} s eme’ Cis o}TG)} of (12) tells about the effect of the motion of ¢’ electron through
the mth site and thereby shares the resonance correction.

1. Motional broadening correction due to the motion of —a electron through the ith site.

Firstly we consider the departure of —o electron from the ith site together

with the arrival of o electrons on the ith site i.e. we consider the Green function
.y . . - . . .
G i—o ¢r-o Cig; f}a), which satisfies the equation of motion

T 1 i} T
Eleio tro Sigs Cjgp = o, <52"—-cr€r—a> +Z Tim (53——0- Cr—o °mas ‘f]'cr}
m

t t t
"" Z Tim {m-a (- Cig 5 ‘fjo-)'l" Z T,-m (C}—a tm—o Cio; ’f]‘c)
m m

: t Ty eis ol
T L Nya Cimg 6rg Cig; Ga) + Z Eim £ ‘zT—-o- Mo’ Cr-o Sias Cio ) (£7)
m, o’
This equation may be simplified by introducing some approximations; the first term

on the right hand side involving correlation function is neglected; in the second
and third terms the following approximations are introduced.

t 1
{bio tr-0 tmos; Go) 2 Oy (c}_a br-o Cio; 6:]1;7)
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t T
and {oin-o Cr-o Cics Cja) =2 Oy n_g {Cio; cJ-To.)

With these approximations eq. (47) may be written as;
T
(E—T,) {¢i-0 -0 Cig; G}cr>> = Tir {(Ni-o—"-0)6io; "'}o)

1 .
+ z T,y bi~o Cm-c Gigs Cjop
mzi

+ I{nyy Cz—cr Cr-a Cio» CJU> + 2 im <‘1—a Mmo’ Cr-o Cios C]G> (48)

mag’
Putting the approximate values of the Green functions {n,, c:-r_a Cr—o Gio; é-r0> and

1 + .
{6i-¢ Mg’ 60 bics Giop in (48) we have

+ —
o v icrs CJU>> FO_(-E— { r {(Mi-o—n—g) Cio; Cjcr>+ z <C;j:—o' bm-o Cig; c}a>%
mzi

(49)
This equation may be solved as follows:

T I SR -
<0i—a br-o Cios 6J0> = z Wrn?,i (E) Tmi ‘((ni—-o—n—o) ios ‘}0> (50)
—~ A

Now we consider the arrival of —o electron at the ith site together with the arrival
of o electron, i.e. we consider the propagator <G;I’.-—0' bi—o Cig; aJTO,). With the approxima-

tions used above, the equation of motion of this Green function may be written as

(E—To—1I) 6]y bimo tias €]y )=—Tj; {(rio—1-0) tig; ¢f,)

T T
z rm <Cm—a P, {‘w- JU> I< ro' r—~0‘ CJ—O‘ 610 JO’>
ms&t

-FZ im <Cr—o Mo’ Ci-o Cios 5j0> (51)

Putting the approximate values of the Green functions {nq !y Gi-a Cios clyy and

< r-c "mo’ bi-o Cio J0'> in (51) we have

1
(o] Cicor Gios Ol = ) { ir {(i-o — n-0) Gig3 61D
1.
zT,m@m_a Gimo Cios J,,>§ ~ (52)
mzEt
where —,———I'-— _ _“__1__ {l— Ing i Knz }
F-o(E) (E—T,—I) (E—T,—I) [E—T,—I(1—ns)—Knz]
- (53)
This equation has the solution
(! o 6o Cias oy =—2 W (B) Tid(tive —1o)éis 6l (59
m
, g9 (E) ¢2(E
where woe ,(E)=277{ g C(E)— " (, )g’ ( )z (55)
rm, 1 rm g2e ( E)

i
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and G( ) = exp {ik (R; R)} (56)
~F 7 (E)—(g—To)

Substituting (50) and (54) into the fifth term of (11) and neglecting the fourth

term in that equation (as we are considering now only the resonance correction), we
get after some rearrangements:

[E—To—I—A_o(E)— A o(E)— Enz] {ni—g tics ¢1,)
=10 320+ P Tiloos 0} - o Deo(B) + A o(B)]
) r7&t

X i3 61,) (57)

We observe that when interatomic correlations are absent (i.e. K'=0), the contri-
bution towards the motional broadening correction due to the —o electron arriving
at the ith site is equal to the contribution due to the —o electron departing from the
ith site. But in the present case (K finite) the contribution /\,_O_(E) due to the —o elec~
tron arriving at the ith site is somewhat different from the contribution A_g (E) due
to the —o electron departing from the ith site. To a first approximation we suppose
AN _g(E) to be equal to A_4(E). With this approximation (57) may be written as:

[E—Ty—I—2 Ao(E)—Knz] (i tias ¢,

8;;
g 0+ S Ty Coos )} —2n0A-o () Ceics o) (58)
r#£t
2. Motional broadening corretion due to the motion of o' (o or —ao) electron through the mih stte.

As in the preceding situation, firstly we consider the departure of o’ electron from the
mth site together with the arrival of ¢ electron on the ith site, i.e. we consider the Green
function {emg’ ¢roio; 6JT0>. With approximations similar to those used in writing (48),
the equation of motion of this Green function may be written as

+ T
(E—T0) ey Cro Sicrs Ja> Ty L(yr =100 ) €155 Gigd

Jjo
T t
+Z <ma ng’ Cigs © >+I< zaczc’jc>
nEm
+ > Ky Lo o7 Mngr Gics3 Sl (59)
ng”

Putting the approximate values of (cT

in this equation, we have

1 -
(61];10’ by’ Cigs 0_]1';7) =F°’ (E) % <(n "o ) io? JU> + z < mo’ “no’ %io> J0>§

n#Em

. of ..o T
bro’ Mg Cig? Gja> and <Gma’ b6’ ng” Cios elcr>

(60)
which may be solved in the form
t ot T
<cma’ Cro Cigs Cjo):z (E) m<(n mo’ c’)cicr" fjo-> (61)
n

Now we consider the arrival of ¢’ electron on the mth site together with the arrival

of o ele ith site, i ; t
o electron on the ith site, i.e. we consider the propagator {¢, +¢po’ o' Ja>> Proceed -

?J
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ing ¢xactly in the same way as we did in obtaining the expression (61) we get an
(0:0, Cmo’ Cio s 5;0> =“Z W;, m(E) Tyl (ting'—n0") 603 éro> (62)

n
g the solutions (61) and (62) in the fifth term of eq. (12) and neglecting the
M in that equation (as we are considering here only the resonance correction),

Substitutin
fourth ter
we get

[E— TO —In_g—Knz—2 /\g] <nma' bios c;o->>

8 .
=1 . ) Ty e ) -t da ity ()

™ 7751
Putting the values of {ni-g tig; ch) and {fpo’ Gig; 0}0> from egs. (58) and (63)

in (10) we find that when only the resonance correction is considered, the expression
for the Green function Go (k, E) is given by

1 1
Go (k, E) =~ - 64
o F (B)—(g—Ty) 9

where
In_g Enz
1 _ L+ [E—— TO—I-—KHZ—-QQ_O-] t [E"“‘ To_-[n—a"_an_QQO’] (65)
Fe o
r(E) (E__ TO) + 2In._..0- . Q—a' + 2an . Qg‘

[E—Ty—I—Knz—20 4]  [E—T,—Ing—Knz—20,]

As mentioned earlier, in order to get self consistent solution Q(E) has been written
in place of Ay (E) in Eq. (65). The Green function (64) also has a branch cut along
the real axis for those values of E for which po(E)>0, where po(E) is the density
of pscudo-particle states calculated from eq. (64).

"T'ill now, the cases of ‘ scattering correction > and  motional broadening correction ’
have been considered separtealy. However both of the corrections may be considered
simultaneously. From egs. (26), (50) and (54), eq. (11) becomes

[E— Ty~ I—Knz—Qq —205] (ni-g tio3 olp)
5.
=g §o0 4+ 2 Titoi ] s (0120 )i el) (66
2 i Ja J
Similarly from eqs. (37), (61) and (62), eq. (12) becomes
LE—To—Ino—Knz—3Qq] {tmosio; 5]T0>>

8..
=100 43 Tiaic 3} oo ) (67)
r#i

With the help of the relations (66) and (67) we get an expression for GO(k, E) from
eq. (10) containing both the corrections simultaneously:
1. ]

2m FO(E)—(e—1T,)

G (k, E) = (68)
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}t‘ . "' l&’l::
[ o t
O 11 In_g n Knz
L 1 [E—T,—I—Knz—Q,—2Q0_4)]  [E—T,—Ing—Knz—3Qq)
RN Fo(E) In—o(Qo+20-0) 3knz - Qo
Loy, ' E_T +
H ( o)+ [E—T,—I—Knz—Qy—2Q_5] [E—T,—In-g—Knz—3Q¢]

(69)
o 1 4. A special (nonmagnetic) case
i

o Our main purpose is to find out the value of the pseudoparticle spectrum given by the
! poles of the Green’s function Go(k, E) given by (68). Calculation of G®(k, E) means
o the solution of the three equations (68), (69) and (43) simultaneously. For the purpose
JRE of a numerical calculation we consider the simple special case in which the solution
L is readily obtainable. This special case has the features; (i) z=1 i.e., the number
of electrons present is one per atom; (ii) ng=ns=}% i.e., we assume the system to be
nonferromagnetic; (iii) The density of state function

P(E) = 3]\.[ S S(E—<) (70)
k

corresponding to the unperturbed band structure e, has the following parabolic form
centered on T, with a band width A;

_ 4 E-To\* | E—T. |< A2 (71)
P(E) wA,\/l—(———A/Q") if | o|<./

= 0, otherwise

From the assumption (ii) it follows that Q4 (E) =Q_g (E). Now choosing the origin
of energy such that Ty+1/2=0, equation (69) becomes

I1/2 Kz
1 + [E—I]2—Kz—3Q,] + [E—Kz—3Q,]
Fo(E) ™~ ENT0) 3Kz Q) (72)
Paiad g
EHR) + i k30, T E—ke—30,]
where Qo(E)=Fo(E)— ! (73)
272G, (E)
o 1 ' 1 1
d G.(E)==> o - (74)
an 11( ) -N;G (k,-E) _QW.N;FO(E)“(ek_"TO)
Combining (74) and (70) we can write
o 1 P(E"\dE’
G.(E) = — 75
i) QTTJFG(E)—(E’—TO) o
Putting the form of P(E) from (71) and integrating, we obtain
o 4 ‘
Gii (B) = — Fo(B)~V{F(E) P—{Al2}) (76)
From (73) and (76) following relation emerges.
Q o(E) =3[Fo(E)— V{Fo(E)}~{a[2}?] (77)

Substituting this value of Q,(E) into (72) we get
F+AF*+BF+C=+/F2_p2j3 [F24AF+ D) (78)
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where A=%}(4Kz--5E) )
2
:é(E————~Kz ) (5E+__—3K) é(E——Kz) (3E+I)—_A§_
2 79
A (E—Kz) -—g(E-——-Kz) ( £) (E—i{———ffz) r (79)
8 9 2
p=l (E—_I_——I{'z) (E—l— I ——Kz) +ZE—K2)
3 2 2 3 J

Squaring'Eq (78) we get the q_uartic equation for F9 (E)
2
{23 2D+ % +F3 {26’-{—2AB—2AD+£‘_2A_} L {32-—D2+2AG

o 5 2 2
I A4A2 AQD} _I_F{QBC-}—%Az% {('2—1- Al }=0 (80)

Thus the solution of the self-consistent equations has been reduced to the solution of

a quartic.
Tt may easily been seen that if we put K'=0 in (80) it reduces to the cquation

7 I 5 2\ 3
E E? 2)2 2 ~E(E2——_) °FE 2}1?
P8 — {3 + = (A/) 4} +{3 Z +2 (A/2)

~{i(=- %2) +2 52 a2} =0 (81)

which is the samc as Hubbard’s eq. (70) (Hubbard 1946b). Thus we get exactly the
results of Hubbard in the absence of intersite correlations.

For any fixed values of I, K and E eq. (80) may have either four complex roots, or
two complex and two real roots or four real roots. Let one of the roots be

F=a-+if (82)
then VF:—(A[2)2=A-iB (83)
where A= V [a*—B*—(A[2)*]+-V/ [P (AT + o 84)
and B= —[aZ—-BZ——(A/zm+«/2[a2—ﬁ2—-(A/2>2-1-4a2/82 (85)

Now from eq. (76)
4 .
Z 2@[(‘1"‘14) —i(B—4)] (86)

since the pseudo-particle density of states is given in terms of the negative imaginary
part of the Green function Gg, the numerical value of (B—f8) is required for the de-
termination of the density of states function. For this purpose eq. (80) has been
solved for FO(E). A particular case of the simple cubic system (z=6) with band
width =40 eV has been considered. For a particular set of I and K, the appropriate
root of F7(E) (i.e. the root which gives the quantity (B—J) to be positive) is chosen

" from which we get the density of states function po(E) for this particular set. Various

sets of values of I and K have been taken. Kecping K fixed the density-spectrum has
been calculated for various values of 7 (from 1 eV to 8 eV by the step of 1eV). Thus

0



226 18 Tyagi and S K Foshi

E{eV) —mem

Figure 1. Pseudoparticle density of states Figure 2. Pseudoparticle density of states
function for a number of values of intra- function for a number of values of intra-
atomic correlation I, with a fixed value atomic correlation I, with a fixed value

K=0.1 eV. Line 4B meets the energy axis K=02eV.
at the centre of the unperturbed band
(ie., at E=T).

1 1=8eV
10 12
EleV) =~
Figure 3. Pseudoparticle density of states Figure 4. Pseudoparticle density of states
function for a number of values of intra- function for a number of values of intra-
atomic correlation I, with a fixed value atomic correlation I, with a fixed value
K=04eV, K=1.0eV.

we get a set of density-spectra which shows the effect of the variation of 7. Four sets
with £=0.1, 0.2, 0.4 and 1.0 eV have been obtained and shown graphically in figures
1, 2, 3 and 4 respectively.

5. Discussion

The above calculation shows that when we take intersite correlations K into account
together with the intrasite correlations I, the unperturbed band splits into three bands.
For large values of I and K these three bands are all separated from each other. As
the values of I and K are decreased, bands come nearer and below certain crtical
values these merge into one band. There are innumerable sets of the critical values
of I'and K, because a new choice of X will lead to a change in the value of I at which
the merger gets in.

The effect of the variation of the parameter I alone has been seen by keeping K
fixed and calculating pseudoparticle density of states function for various values of I.

s %‘Y‘
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, . ‘\\ Figure 5. Atomic arrangement in a lattice,

ith site N\ The ith atom may be resonant at any one of

/
s
O (\Q o> 0 the 2(2z+41) energy values depending upon the
\\ p; electron occupancy of the sites inside the
N
@) O

// Celectron cluster.
O 0
N s
AV

O o O O O

We see thatif I i§ il:lCI‘CaSCd in small steps, the band first splits into two at some value
I,(K). When Iis increased further we get three separate sub-bands at some higher
value 7,(K). Effect of the variation of the parameter K is observed by calculating
density of states at different values of K. It is seen that I,(K) decreases with the in-
crease of K. I,(K) does not appear to depend much on K. Unlike the result in the
presence of intra-atomic correlations alone, we find that a nonmagnetic system, with a
half-filled band, is never an insulator however large the intra-atomic correlations may
be (i.e., even in the split-band-region it is not an insulator).

We have not investigated the magnetic properties of the system in detail. But we
can easily see the effect of intersite correlations on the magnetic behaviour of the
system, at least for a zero bandwidth (i.e., atomic limit) case. In this limit T;; =T, S,j

1
and hence ¢, =T, for all k. Then from eq. (74) we have Gg (E)=G° (k,E)= SmF (B &)

which when put in eq. (73) gives Q o(E)=0 and we may write FO(E) =F¢(E) in eq.
(68) where F¢ (E) is given by eq. (19). For this particular case it may be shown
(Kishore and Joshi 1969) that the energy of the ferromagnetic state is lower than
that of the paramagnetic state. While in the Hubbard model one finds that for n=1
and in the atomic limit the energies of both the paramagnetic and ferromagnetic
states are the same.

It is to be noted that several approximations have been made during the course of
the treatment. Without these approximations the mathematics of the problem becomes
quite complicated and it is extremely difficult to arrive at a solution. But keeping the
mathematical derivations aside, we can see by a simple physical reasoning that the
unperturbed single band should split exactly into 2(2z-+1) sub-bands. In figure 5
we schematically show the atoms in a lattice. It can be easily seen from the figure
that (as far as the arrival of a ¢ spin electron is concerned) ith atom may be resonant
at any one of the energies: T, T,+K, Ty+2K...... , To+2z2K;5 Ty+1, To+I1+K,
To+I+2K, ... , Ty+I+2zK, depending upon the electron occupancy of the sites
inside the cluster. This shows that in the atomic limit, for the Hamiltonian (4), an
atomic level located at T, (in the absence of electronic correlations) will be split into
2(2z+41) levels. Thus the two bands of Hubbard model should increase ifl number to
2(2z-+1) bands when we take into account the interatomic correlations with z nearest
neighbours alone. The approximations used during the course of the treatment h.ave
reduced the number of perturbed bands from 2(2z-+1) to three. So our predictions
regarding the metallic (or nonmetallic and magnetic behaviours are not exact results
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for the Hamiltonian (4), but are artifacts of the approximation scheme we have to
resort to in order to arrive at a solution. Nevertheless, it may be concluded that

while studying the electrical or magnetic properties of the narrow energy band systems,
one should not overlook the role of the intersite correlations.
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Appendix

We consider a ternary alloy described in the tight binding approximation. A single

atomic orbital |n) is associated with each site n. The one-particle Hamiltonian in the
Wannier representation is

F= ) h(n|+ Y | 2) & (n| =W+D (14)

msEn n

~where W is the kinetic energy part and D is the sum of contributions from all sites

of the crystal having random potentials. The single particle Hamiltonian refers to a
particular configuration and in order to study the macroscopic properties of the sys-
tem, an averaging over all configurations is to be performed. We define the Green
function G(z2) corresponding to the Hamiltonian J£ by
G(2) =(2—TF£)7 (24)
All the macroscopic quantities of interest may be determined by the configurationally
averaged Green function (G(2)), which has the full symmetry of the empty lattice.
The effective Hamiltonian which has full crystal symmetry is defined by
(6(2)y= (2=t p) (34)
where Sfeff S W-f-Z(Z) (4A)

Here X(2) is the average atomic potential (i.e., the self-energy) associated with each
site, an unknown of the problem.

With the help of multiple scattering theory we can determine the self energy 2(z),
choosing the self-consistent condition*

(T,)=0 (5A)
where T, in the case of a ternary alloy may be written,
aule—2(2)] saler—2(2)] sle—2(@] _ g 6a)

1-[e=2()]f(2) 1-[e=2()]f(z) 1—[e—2(2)]f(2)
where x,, %, x5 are the concentrations of the three components and ¢, €, and e; are
the atomic potentials of the components. Eq. (6A) may be cast into the form

Z(2)=¢ +f(z) [E(Z){€1+ €+ €3— e}—{ € 6+ €x€3+ 5153}]
[14+2(2)f(2)]
+f(Z> [*reaestrser 256 65+ € 565 f(2)]
[14+2(z) f(2)1

(7A)

*A detailed description of the method of evaluating the self-energy 2(z) using the self-consistent condi-
tion (5A) is given by Velicky et al (1968). The expression for T;, is given in eq. (4.8) of that paper. Our
J(2) here stands for the F(z) of that paper which is defined in eq. (3.16).
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here &==X; €;+Xp€3+ ¥3€3 is the mean atomic energy.

Now if we regard the down spin electron as fixed to randomly distributed sites, then -
< sece that the motion of the up spin electron is identical to the motion of electrons o
* an alloy. With the replacement given below in going over from alloy problem to
1€ present problem, it is very easy to show that eq. (44) is identical to the eq. (7A).

Gi(E) —> f(?)
FJ(E) —> [2—f(2)]

Ty —> 9 ' v
(To+Ing+EKnz) —» e o
(Ty+I+Knz)  —> e )

IPr_g(l—n_g) R

—> X ,

(I4-Knz) (I ng+ Knz) * ;

Knz s x :

(I n_g+ Knz) 2 .

_fro —>  x l
(I+Knz)
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