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Quantum beats from channeling relativistic electrons
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Abstract. Possibility has been explored of periodic time variation of intensity (quan-
tum beats) of radiation emitted from relativistic electrons channeling along the
{110) axis of a crystal of f.c.c. (diamond) lattice structure.
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1. Introduction

After the exploratlon of p0331b111ty of emission of a new radiation—the channeling
radlatlon——-from relativistic electrons and positrons moving along major crystal
axes or in between major crystal planes (Kumakhov 1976), much theoretical progress
has been made to understand the characteristics of this radiation. In particular
Kumakhov (1977), Kumakhov and Wedell (1977), Wedell (1978) and Pantell and
Alguard (1979) have contributed much towards the understanding of the channeling
radiation, But theoretical treatments of these (and other) authors are valid only for
zero-time resolution (infinite time uncertainty) which is not suitable to study the
coherent character of the channeling radiation. The purpose of the present paper
is to explore the possibility of coherent character of the channeling radiation when
relativistic electrons pass along the (110) axis of a f.c.c. (diamond) crystal.

2. Potential field around a (110) row

Projection of some (110) rows of a f.c.c. (diamond) crystal on the transverse (110)
crystal plane has been shown in figure 1. We take the z-axis of the cartesian coordi-
nate system (x, y, z) along the (110) rows so that the set (x, y) specifies the trans-
verse space. We take the origin (0, 0) of the transverse space (x, ) at the crystal row
R, and choose the y-axis along the (001) crystal direction (see figure 1). Let (x;, y;)
or equivalently (D;, ¢;), be the (transverse) coordinates of the ({110)) row R,
Here,

D=(x2+ y}), ¢, = tan~l(y;fx). ()

We treat the potential of a (110) row as a static continuum potential. In the
Lindhard’s continuum field appromma.tlon (Gemmell 1974), the potential of the row
R, say VR , at the point (7, ¢).is given by - o

Vot )= — QZetd) In (1 + 34/ 02, | ~ @)
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Figure 1. Projection of {110} rows of a f.c.c. (diamond) crystal on the (100) lattice
plane (RR,=D, RRs=+/3 D, RR;=3D) :

whete, & —1° 4 DI+ 2D, £, | | ©)
with fi($) = —(cos ¢; cos ¢ -+ sin ¢; sin ¢). (4)
In equation (2), Z is the a,tomlo number of the crystal atom, e is the electronic charge,
d is the lattice constant, and a is the screening radius. The polar coor, dinates r andq’)
11e 1elated with the cartes1an coordma.tes X, ¥ as follows o
x—-zcos¢ y:r‘smc/) L '   (5)
For & > V3 a, the 10gar1thnnc term in (7) may be expanded as a series, and for
- esDyrwge, o 0
1/¢2 may be approxiniaté& by SR ‘ |
1/ ~ [1/( + D}) — 2rD, fu($)/(* + DY)l , | (7
Tt may be seen that except the.row R = (0, 0), all rows satisfy the condition (6)

and £ > V3 a in the vicinity of .the row R (r small). - Therefore, for the row
R, # R, we may put (2) (for small r) in the form :

ey} Z Mlz (O B ) £ BT @O
where Q = Z&(d, Eyp = (p — D0 —m)}, | o
‘_. 3a~/(; gtp), - B.=2D; /(r-+D2) R ()
The crystal potemlal UR(; ¢>) 1ls vgwcn by (See Ge.mmell 1974) o

UR(}’ $) = z: =all rows VR (y9).— TII{HB’ | | (10)
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where Uf{i-’,’ is'the minimum value:.of Uy (r, ¢), .and specifies the choice of zero. of
Ug (r, ¢). [The subscript R serves to mean that the origin of (r, ¢).is at R].

Let us study the effects of the potentials VR of the (110) rows which contribute
to Uy (r, ¢). We first comsider the rows R; and R. We note that the separat1on D
of the rows R and R, (see figure 1) is much smaller than the interatomic distance d
along a (110} row. In fact d = 2\/ 2 D. [The second nearest neighbourer of R, Ry,

lies at a dlstance \/ 3 D]. Due'to this fact the crysta.l potentlal in a certain region
between two consecutive atoms of the row R is dominated by an atom of the row
Ry, namely that which is nearest to this region. This has been shown in figure 2a
for the central region of two atoms 4 and B of the row R. The triangular section
LMN is the central region in a (170) plane where the potential of the atom A, of
the row R, dominates over the potential of the rest of the crystal (considered in the
same plane). It is clear from the figure that in the atomic row R there are regions
where the potential of the atoms of this row do not dominate. A similar considera-
tion of the fields of the atoms of other rows (R,, R, etc., see figure 2b) shows that
around the row R (r small), the potential field of the atoms of other (than R,) rows
do not dominate. Thus we conclude that around the row R (for r small) the contri-
bution of the atoms of-the row. R, to the crystal potential is such that the dynamics
of the channeling electron is directly influenced. Therefore, in determining the con-
tinuum potential around the row R effect of the row.R; must essentially be taken into
account. Keeping this in mind, for small r values (» << D/2), we neglect in (10) con-
tributions of all but the Tows R and RJL This lea.ds to-the followmg a.pprox1mate form
of the crystal potenfial. - L

Up o 8) = UR) (o) = Vp+ Vg, (11)
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Figure 2. Regions where the potenuals of the atoms of ncarer ¢110) rows of R do-
minate in the channels of two rows (one R, other Ry, Ry). (a) Region of the dominating

. field (the triangle LMN) of an atom A, . of the nearest ¢110% row R, shown in the
(110) plane. (b) Region of the dominating field (the rectangle LMNP) of an atom A,
of the (110) row R, shown in the (112) plane.

)
)

i
B
1
Co
t

i




324 R Lal and S K Joshi

where V', is obtained from (2) ontaking D;=0, and V', is obtained from (8) by taking
(Dts ‘ISi)—* (D, 3’”/2) : :

3. Quantum beats

In order to study the states of the electron moving in the transverse potential U(l'),

we separate the circular (functlon of r only) and non-clrcular (functlon of rand ¢)
parts of U(l) Fo1 this purpose, we wute U(l) as

Ug);‘Wc(r)-'rWNc'(r,dJ),': - | | L

where we define W, (r) by

(opwred]
—_— U\ dp =V — | V., dé.
2 R ¢ ,R+27r R ¢

13
In (12), subséripts C and NC refer to circular and non-circular respectiifely.
| .From (12),'(13), and (8) we obtain _
o 1
Wae= —1)p+m B AP B™ e
NC Q;_,p OZm~( ) AB{ squ
“'"('“1)"1/2 2 [(m/ 2) !] - 8m, evenS“ ’ ‘ (‘14)

Here Sm’ even—0 or 1 depending upon whether m is an odd or an even (including

zero) integer. Note that, for =0, the quantity in square bracket of (14) vanishes.
Then at least, the m=0 term of (8) is absorbed in W (equation (13)).

Since, in (14), the minimum value of m is 1, according to (9), for r=0, Wy~ would

be zero, while for small r values (» € D), m = 1 term of (14) would dominate over
other m terms, so that

[ 20D\ ..
= mm) ot (13)

Equation (15) implies that Wy, may be regarded, at least for low r values, as a

perturbation against the circular potential energy W. It is therefore reasonable to
describe the electronic transverse states (for which the electron is closer to the row R)
in terms of the statistical mixture of the states of W, The states of W, are completely

specified by » and L, where n is the quantum number of the transverse hamilto-

nian; and L is the quantum number of the transverse angular momentum. There-

fore, the density matrix describing the statistical mixture of the electronic transverse
.states for low n, is given by (Fano 1957)

WNC

‘P"2fnL)(nLlPlnL’)(nL’f T 16
LL = R
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‘Since the density matrix (16) is obtained for those electronic states in. which the
electron moves (in bound states) closer to the row R (rsmall, or equivalently, » small),
it would be useful for low # states only. . In this sense in the. following we shall con-
fine our interest to low n.values only. o S

The time evolution of the density matrix p(f) is governed by

d , . ;
b= = —ilH; +Wyc ol =T, (17
where H, = —(\7%[2ym)--W, with ym as relativistic mass of the electron, is the
transverse hamiltonian © | o - x '

o . 32 a2 )

2= 4 2}
(V ox* + oy

and I is the rate of spontaneous decay. 24 is the Plank’s constant.

Equation (17) has the following solution for matrix elements of p(t) between two
angular momentum states (say L and L).

(nL | p(t) |nL’) = (nL | p(0) | nL’) exp (=W p — T 141, (18)
where Wapr, mp, = (L | H, + Wyo) | nLy — (nl' | H, + W ne | nL) (19)

is the difference of first order (perturbation) energies of the states |nL) and | nL’).
In eq. (18) L-states other than L and L' have been assumed uncoupled,

Channeling radiation is emitted when the electron makes a transition from higher
energy states to lower energy states of the transverse space. The selection rule for an
allowed nL—n'L’ transition in the dipole approximationis L' ==L 4= 1. [Here, by “allo-
wed’ we mean those transitions which are allowed in the dipole approximation.] Thus
transitions from all the mixture L-states (described by p; see (16)) of a higher energy
(higher 7) to some final L-state of a low » cannot occur. For example, for an n =2—»
n=1 transition, only | 21) - | 10) transition is allowed; the | 20)~ | 10) transition being
forbidden. But according to (18) the density matrix of the higher » state contains
an oscillatory factor which causes the electron to move in the (mixture) L-states of
the n. But since all these L-states cannot decay to one final L-state, the intensity of
the radiation would vary periodically in time. And therefore there will be occurrence
of quantum beats [see, for example Berry 1977 and Macek 1969 and 1970].

For experimental observation of the quantum beats, whose possibility is explored
above, the incident electron beam must be made coherent either by applying electric
field or by applying magnetic field. A discussion of such techniques is given in
Berry (1977). In particular, the suggestion of Eck (1973) for observing quantum
beats from mixed parity states (see also Gaupp et a/ 1974 and Sellin et al 1973) will
facilitate the experimental task. [The parity of the | nl) is state(—1)L].

The experimental observation of quantum beats would depend upon the time
resolution A7 of the measuring apparatus.  The time resolution must be such that
At ~ k/wppr, ny wWhich depends, through Wnrs nz» Upon the energy of the incident
¢lectron. The dependence is such that At varies inversely with y, where y is the
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ratio of the relativistic mass to thé rest mass of the electron. Thus the higher the
energy of the incident electron, the higher time resolution will be required for the
observation of the quantum beats.. This fact, from the experimental viewpoint, sets
up an upper limit on the incident electron energy for observation of quantum beats.

4. Conclusions

We have seen that under certain circumstances (§ 2) there may be an occurrence of
-quantum beats in the channeling of relativistic electrons in crystals. While the study
has been made here for a particular case (<110> rows of a f.c.c. (diamond) crystal)
it may be extended for other crystal structures and for other axes and planes also.

The only requirement is that there must be a presence of a perturbation whose effect
is to couple the various angular momentum (or spin) states.
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