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Abstract Mitochondrial damage is one of the prominent

features of cell death in oxidative stress and related pathological

conditions. Alteration in membrane lipid composition may be

responsible for the mitochondrial damage. In this study, we have

shown that intestinal mitochondria contain an active phospholi-

pase D (PLD) which is activated by oxidants, Ca
2�

or

polyamines and this results in degradation of phosphatidyletha-

nolamine (PE) and formation of phosphatidic acid (PA). This

PLD activity is inhibited by nitric oxide (NO) which prevents the

lipid alteration in mitochondria when exposed to these agents.

This can be reversed by the NO scavenger, haemoglobin. This

suggests that alteration of mitochondrial membrane lipid

composition by activation of PLD in certain pathological

condition such as oxidative stress may be prevented by the

simultaneous presence of nitric oxide.
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1. Introduction

The free radical, nitric oxide has emerged as an important

signal and e¡ector molecule in mammalian physiology. It has

been implicated in various normal and pathological condi-

tions, including neurotransmission, vasodilation and in£am-

mation [1^3], but can also be cytotoxic, particularly at ele-

vated concentrations [4,5]. The major recognized target of

NO action is a heme protein, the soluble form of guanylate

cyclase, whose activity is increased by binding of NO to the

heme moiety of the enzyme [1^3]. Cellular targets include key

enzymes in respiration, glycolysis, regulation of iron metabo-

lism, and DNA repair [6^9].

With its radical nature, NO

c

can rapidly react with oxygen

and its derivatives to form other potentially toxic radicals. For

example, peroxynitrite (ONOO

c3

) is formed in aqueous solu-

tions by an interaction between superoxide anion (O
c3

2
) and

NO

c

. Peroxynitrite decays, once protonated, to the very reac-

tive hydroxyl radical (OH

c

) and nitrogen dioxide radical NO
c

2

[10]. Respiring cells endogenously produce oxygen radicals

such as O
c3

2
and H2O2 that can react with NO

c

inside the

cell. One of the sources of these intrinsic radicals is the mito-

chondrial electron transport chain in which 2^3% of the oxy-

gen consumed is leaked in the form of free radicals [11]. Re-

cently we have shown that intestinal mitochondria contain a

PLD activity which can be activated by oxidants [12], Ca

2�

[13] or polyamines [14] resulting in the formation of phospha-

tidic acid. This PLD preferentially hydrolyses endogenous

phosphatidylethanolamine and changes in the mitochondrial

lipid composition brought about by PLD activation may have

a role in Ca

2�
cycling that is seen during oxidative stress.

Since NO is known to have both protective and damaging

e¡ects on cell, the present study looks at the alteration in

mitochondrial lipids induced by oxidants, Ca

2�
or polyamines

and the e¡ect of nitric oxide on these lipid changes.

2. Materials and methods

2.1. Materials

Various lipid standards, £uorescamine, HEPES, BSA, spermine,

xanthine, xanthine oxidase, menadione, haemoglobin, glutathione

(GSH) and sodium nitroprusside were all obtained from Sigma Chem-

ical Co. All other chemicals used were of analytical grade. Mitochon-

dria were prepared from isolated enterocytes as described [15] and

suspended in a solution of 250 mM sucrose, 5 mM HEPES pH 7.4

at a protein concentration of 8^10 mg/ml and used within 2^3 hours.

2.2. Synthesis of S-nitrosoglutathione

S-Nitrosoglutathione was prepared according to the method of Ar-

nelle [16]. Brie£y, GSNO was synthesized by mixing an equimolar

concentration of glutathione (100 mM in 250 mM HCl), 0.1 mM

EDTA (sodium salt), and 100 mM NaNO2 in water at 25³C for

6 min. GSNO solution was prepared fresh daily, pH adjusted to

7.4, and the concentration was con¢rmed by absorption spectroscopy

as described [17]. This stock solution was diluted to a ¢nal concen-

tration of 1 mM in the reactions described below.

2.3. Phospholipase D assay

Mitochondrial PLD was assayed using endogenous phospholipids

as substrate. Mitochondria (approximately 1 mg protein) in 250 mM

sucrose, 5 mM HEPES pH 7.4 in a total volume of 1 ml were incu-

bated with the following compounds separately at 37³C for 30 min.

PLD activity was stimulated by 100 WM Ca

2�
or 0.5 mM spermine or

1 mM xanthine+100 munits xanthine oxidase or 50 mM menadione

(all ¢nal concentration). To check the NO e¡ect, experiments were

started by exposing the mitochondria to sodium nitroprusside (1 mM)

or S-nitrosoglutathione (1 mM) as NO donor. In those experiments

where Ca

2�
or spermine were added, 0.3 mM haemoglobin was in-

cluded in the incubations as a scavenger of NO. At the end of incu-

bation, total lipids were extracted by Bligh and Dyer's method [18]

and PA content analyzed by TLC. Extracted lipids were spotted on

silica gel G plates impregnated with 0.5 M oxalic acid and separated

using the solvent system, chloroform:methanol:conc. HCl (85:13:0.5

v/v) [19]. PA corresponding to standard was identi¢ed by iodine ex-

posure, eluted and quantitated by phosphate estimation after acid

digestion [20]. Our earlier studies using intestinal mitochondrial

PLD have shown that this enzyme does not catalyze transphosphati-

dylation in the presence of alcohol [12^14] which is similar to a recent

report of a yeast PLD unable to catalyze transphosphatidylation [21].

2.4. Lipid analysis

Neutral lipids were separated on silica gel G plates using the solvent

system hexane:diethyl ether:acetic acid (80:20:1 v/v). Spots corre-

sponding to standard were identi¢ed by iodine exposure and eluted.

Cholesterol [22], diglycerides and triglycerides [23] were estimated as

described. Free fatty acids were methylated and quantitated by gas

chromatography after separation on 5% EGSS-X column. Heptade-

canoic acid was used as internal standard. Individual phospholipids
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were separated on silica gel H plates using the solvent system chlo-

roform:methanol:acetic acid:water (25:14:4:2 v/v) [24] and quanti-

tated by phosphate estimation after acid hydrolysis. Individual amino-

phospholipids were also quantitated after derivatization with

£uorescamine and separation on silica gel H plates impregnated

with 3% magnesium acetate using the solvent system

chloroform:methanol:NH4OH:water (60:40:5:2 v/v) [25]. Eluted in-

dividual spots were quantitated using Shimadzu SF 5000 spectro£uor-

ometer with excitation at 395 nm and emission at 468 nm.

2.5. Protein estimation

Protein was estimated by the method of Lowry et al. [26] using

bovine serum albumin as standard.

2.6. Statistical analysis

Three separate experiments were carried out and results are pre-

sented giving the meanþS.E.M. Mann Whitney U test was done to

compare the changes.

3. Results

Exposure of the intestinal mitochondria to oxidants, Ca
2�

or spermine induced alteration in the phospholipid composi-

tion and among the phospholipids only PE level was de-

creased (Fig. 1). There was no change in the level of other

phospholipids including lysophospholipids (data not shown).

This decrease in the PE level induced by these agents was

abolished by the simultaneous presence of NO donor, SNP

(Fig. 1). Phosphatidic acid, the product of PLD action on

phospholipids was measured after exposure to these agents.

As shown in Fig. 2, oxidants, Ca
2�

or spermine stimulated the

formation of PA which was completely inhibited by NO. So-

dium nitroprusside (SNP) which was used as a donor of NO

was tested at 1 or 5 mM and both concentrations showed

similar results and hence for all experiments, 1 mM SNP

was used. A nitroprusside molecule contains ¢ve cyanide

ions and one nitric oxide surrounding a central iron atom

[Fe(CN)5NO]
23

and to rule out the possibility of a cyanide

e¡ect on the response, mitochondria were pretreated with

haemoglobin before addition of SNP. This reversed the inhib-

itory e¡ect of SNP as shown in Fig. 3. To further con¢rm,

another NO donor, S-nitrosoglutathione was used in presence

and absence of NO scavenger haemoglobin and the e¡ect of

Ca
2�

and spermine on intestinal PLD activity was measured.

As shown in Fig. 4, GSNO inhibited the PA formation which

was reversed by haemoglobin. Incubation of mitochondria

with oxidants, Ca
2�

or spermine did not alter the composition

of neutral lipids (Table 1).

4. Discussion

Oxidative stress is associated with mitochondrial damage

and altered cellular Ca
2�

homeostasis. This process may be

a consequence of impairment of Ca
2�

sequestration by the

endoplasmic reticulum (ER) and mitochondria which results

in inability of the cell to maintain its cytosolic free Ca
2�

con-

centration within the physiological range [27]. During oxida-

tive stress, Ca
2�

overload may result in alteration of cell func-

tion and ultimately in cell death. Oxidative stress is associated

with non-speci¢c opening of a membrane pore in mitochon-

dria which leads to leakage of many compounds including

Ca
2�
. This results in mitochondrial swelling, altered energy

production, damage to mitochondria and ¢nally cell death.

During ischemia, mitochondria tries to augment the forma-

tion of ATP by increased Ca
2�

uptake [28].

Supporting data are available in the literature for both a

protective and a cytotoxic role for NO in biological systems.

Nitric oxide has been shown to inhibit mitochondrial function

of activated macrophages [29,30]. Mitochondria respiration
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Fig. 2. E¡ect of NO on intestinal mitochondrial PLD activity in-

duced by oxidants, spermine and Ca
2�

as assessed by phosphatidic

acid formation. Experimental conditions are described in the text.

Each value represents meanþS.E.M. of three separate estimations.

*p6 0.05 in treated samples compared to control. p, 0.05 in treated

samples compared to NO incubated samples.

Fig. 1. E¡ect of NO on intestinal mitochondrial PLD activity in-

duced by oxidants, spermine and Ca
2�

as judged by phosphatidyle-

thanolamine degradation. Experimental conditions are described in

the text. Each value represents meanþS.E.M. of three separate esti-

mations. *p6 0.05 in treated samples compared to control. p, 0.05

in treated samples compared to NO incubated samples.
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was inhibited by NO resulting in reduced ATP synthesis in a

concentration dependent manner without a¡ecting the activity

of energy transducing enzymes and the inhibition was signi¢-

cantly stronger at physiologically low intracellular oxygen ten-

sion [31]. NO has been shown to inhibit SH- and iron-con-

taining proteins, and electron transport system [32,33].

Peroxynitrite which is formed by the reaction of NO with

O
3

2
may produce oxidant injury itself or through the forma-

tion of a hydroxyl-like radical [34]. Examples of ONOO-in-

duced cell injury include oxidation of cellular thiols, thus de-

pleting cellular GSH and cysteine and exposing cellular

macromolecules to damage from reactive oxygen species

[35], inactivation of MnSOD [36] and inactivation of succinate

dehydrogenase and fumarate reductase in Trypanosoma cruzi,

thus producing cytotoxicity [37]. NO also increases cytosolic

concentration of free calcium ion by denergizing mitochondria

and kills freshly isolated hepatocytes [38,39]. Mitochondrially

located NO synthase might be involved in the regulation of

oxidative phosphorylation, because of the ability of NO to

bind to cytochrome oxidase and inhibit electron transport

[40].

NO appears to be capable of both producing and prevent-

ing oxidant injury in di¡erent in vitro and in vivo systems.

The overall outcome of these two e¡ects in any system may

depend upon the relative concentrations of individual reactive

oxygen species [41]. In response to neutrophil mediated injury,

endothelial cells have been shown to release NO in addition to

other mediators [42]. Released NO reacts with superoxide to

form peroxynitrite, thus acting as a free radical scavenger and

blunting oxidant injury [34,35]. In a feline model of myocar-

dial injury NO has been shown to interfere with neutrophil

adherence to coronary endothelium and attenuate neutrophil

superoxide production [43]. The protective e¡ects of NO in

ischemia and reperfusion injury have also been demonstrated

in other systems [44,45]. NO has also been shown to inhibit

neutrophil ROS production via a direct e¡ect on NADPH

oxidase [42] and to function as an antioxidant through the

formation of NO-iron adducts, thus reducing the availability

of ferrous iron and thereby ROS production [46].

The nitrite production may be a useful index of acute and

chronic experimental intestinal injury and nitric oxide may

contribute to the functional repair of the epithelial barrier

[47]. With respect to intestinal ischemia-reperfusion injury,

most of the alterations elicited by this process can be induced

by inhibition of NO synthase in normal rats [48,49]. It has

also been shown that administration of NO donors provide

signi¢cant protection against dysfunction associated with is-

chemia-reperfusion injury [50].

We have recently shown that intestinal mitochondria con-

tain a PLD which can be activated by oxygen free radicals,

Ca

2�
or by polyamines [12^14] and this PLD when stimulated

by these agents, speci¢cally hydrolyse endogenous PE result-

ing in the generation of PA. The present study has shown that

the lipid alteration induced by PLD activation by these agents

can be prevented by the simultaneous presence of NO which

was reversed by haemoglobin as NO scavenger. To our
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Fig. 4. E¡ect of S-nitrosoglutathione (GSNO) on enterocyte mito-

chondrial phospholipase D activity and the reversibility of GSNO

mediated PLD inhibition by haemoglobin. Mitochondria were incu-

bated with 1 mM GSNO in absence and presence of 0.3 mM hae-

moglobin. Each value represents meanþS.E.M. of three separate es-

timations. *p6 0.05 in Hb treated samples as compared to GSNO

incubated sample alone.

Fig. 3. E¡ect of haemoglobin (Hb) on sodium nitroprusside (SNP)

mediated PLD inhibition. Mitochondria were incubated with 100 WM

Ca
2�

or 0.5 mM spermine (SPM) with 1 mM SNP in absence and

presence of 0.3 mM haemoglobin. After 30 min incubation, PA was

analyzed. Each value represents meanþS.E.M. of three separate es-

timations. *p6 0.05 in Hb treated samples as compared to SNP in-

cubated sample alone.

Table 1

E¡ect of NO on the intestinal mitochondrial neutral lipids

(nmol/mg protein)

Control X^XO SPM Ca
2�

(+) (3) (+) (3) (+) (3) (+) (3)

Total cholesterol 139þ 11.00 136þ 10.00 134þ 10.00 132þ 10.40 131þ 9.40 129þ 9.00 133þ 8.70 130þ 7.90

Triglyceride 90þ 6.00 87þ 4.50 88þ 7.80 84þ 4.70 87þ 7.40 84þ 4.90 86þ 5.00 84þ 5.80

Diglyceride 56þ 4.50 57þ 4.00 57þ 4.70 55þ 6.00 54þ 6.00 58þ 5.00 55þ 4.70 57þ 6.00

Free fatty acid 101þ 11.00 103þ 9.30 109þ 9.00 102þ 9.40 107þ 8.70 104þ 8.50 111þ 8.70 102þ 9.50

Xanthine (X) 1 mM and xanthine oxidase (XO) 100 munits, spermine (SPM) 0.5 mM and Ca
2�

100 WM were used as ¢nal concentration. (+) with

1 mM SNP, (3) without SNP. Each value represents meanþS.E.M. of three separate estimations.
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knowledge, there is no data available on the e¡ect of NO on

PLD activity. The e¡ect of NO observed here is not due to

scavenging of free radicals since PLD activation by Ca
2�

or

polyamine activated PLD was also inhibited by NO. Lipid

alteration of the mitochondrial membrane is likely to alter

their function and decrease in PE and increase in PA in mi-

tochondria may have some physiological signi¢cance during

oxidative stress and on Ca
2�

loading and these e¡ects may be

prevented by NO. This observation supports a possible pro-

tective role for NO in enterocyte mitochondrial damage dur-

ing certain pathological conditions.
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