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Some stochastic phenomena in a driven double-well system

Mangal C. Mahato∗ and A. M. Jayannavar†

Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India

Abstract

We study the overdamped motion of a Brownian particle in a driven double-

well system to understand various physical phenomena observed experimen-

tally. These phenomena include hysteresis, stochastic resonance, and net

unidirectional motion in a symmetric periodic system. We argue that the

area of the hysteresis loop so defined is a good measure of synchronization

(with respect to the applied field) of passages between the two wells. We

find that stochastic resonance may be relevant even in case of large amplitude

driving field due to a recently discovered phenomena of noise induced stability

of unstable states. We try to find relation between some of these apparently

different phenomena.
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I. INTRODUCTION

There are several phenomena in physics and chemistry which are simply seen as an event

of potential barrier crossing. The examples include the motion of point defects in crystalline

solids, transitions in bistable optical devices, and chemical reactions. The event of crossing

over the potential barrier is aided by fluctuating forces and the problem was formally dealt

with initially by Kramers [1]. The transition from one local equilibrium situation to the other

finds a simple theoretical description in the study of two-well potential systems. In these

nonlinear deterministically bistable systems the inclusion of noise gives rise to interesting

dynamical effects. The stochastic dynamics in a static two-well potential has been studied

extensively and is fairly well understood [2]. However, it is very difficult to find analytical

solutions when the system is driven by an external field. We study the driven two-well system

numerically as a simple model to understand various experimentally observed phenomena

such as hysteresis, stochastic resonance [3], and net unidirectional motion in a symmetric

periodic potential [4].

When the response of a system lags behind an externally applied field the system is

said to show hysteretic behaviour vis-a-vis the applied field. The most familiar example

of hysteresis being the variation of magnetization of a ferromagnetic system as an external

magnetic field is varied in time. The phenomenon, however, is quite general and any system

that shows metastability exhibits hysteresis. In the present work we treat it as a result of

competition between various rates [6] (time scales). In particular, in the two-well system

we have the rate of relaxation at the bottom of the wells, the mean rate at which passage

takes place between the two wells across the potential barrier and the rate at which the

system is being driven by the external field; the former two rates depending on the external

field. Depending on the situation the external field could be taken as varying monotonically

in time or varying periodically. In order to assign a single rate (or at most two rates) of

variation of the external field we either consider a linear sweep [7] (monotonic) or a saw-

tooth type of (periodic) field sweep [8]. In the case of periodic field sweep we show (section
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II) that hysteresis loop area shows maximum as a function of the strength of the fluctuating

forces. Moreover, we argue that the hysteresis loop area is a good measure of degree of

synchronization of passages from one well to the other. Thus, the more the passages get

synchronized with the applied field the larger is the hysteresis loop area. The same numerical

data, namely the distribution of field values (or time intervals) at which passages take place

from one well to the other, are used to understand the rest of the phenomena listed in the

previous paragraph.

In the recent past stochastic resonance has been studied extensively. Initially it was dis-

covered theoretically to understand the reccurrence of ice ages [9] at certain regular intervals

of time (≈ 105 years). Subsequently the phenomenon was observed experimentally [3] in

various systems such as electronic trigger circuits, two-mode ring lasers, and mammalian

neuronal networks. The optimization of the response of a system to an input signal as a

function of the input noise strength is termed as stochastic resonance. It is a nonlinear

effect. The response of the system is measured as the ratio of output signal (at the in-

put signal frequency) to (the output background) noise strength. This signal-to-noise ratio

(SNR) (obtained from the power spectrum of the output signal) shows a peak as a function

of input noise strength. For a simple understanding the nonlinear system can be modeled

as a two-well potential. The residence time distribution of a Brownian particle in one of

the two wells, as the system is driven by an input periodic signal, is then taken as the re-

sponse. The simple model system shows stochastic resonant behaviour (section III) given a

small amplitude periodic signal. This resonance is seen to occur as a result of synchronized

passages across the potential barrier in the low ”frequency” limit establishing a close rela-

tionship between these two phenomena. Stochastic resonance, however, can also be seen in

case of large amplitude (overcritical) input periodic signals.

The two-well system can be represented by the usual Landau potential (Fig. 1). When

the strength of the external field h(t) becomes larger (Eqs. 2 and 3) than a critical value hc

one of the two wells disappears and one single well remains. Therefore a Brownian particle

with its instantaneous position at the now nonexistent well will roll down towards the single
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remaining well. When the large amplitude field is periodic each well in turn will disappear

and then reappear exactly once in a period. Therefore, if the field sweep is slow enough

a Brownian particle should pass from one well to the other exactly once in a period when

the noise strength is almost zero. The scenario, however, changes as the strength of the

noise is gradually increased. Instead of the average number of passages per cycle (ANPPC)

increasing from one it, in fact, decreases initially and then on increasing the noise strength

further it attains a minimum value and then begins to increase and ultimately becoming

larger than one corresponding to the case of noise dominated dynamics. Similar effects have

been predicted recently in other systems also [10]. This decrease of the ANPPC from 1 as

the noise strength is increased from zero (or the noise induced stability of an unstable state)

helps to obtain stochastic resonance in the case of large amplitude input signals (section

IV).

The phenomena discussed in the last two paragraphs were studied taking the external

periodic field sweep to be symmetric in time. The saw-tooth type periodic field sweep

can easily be taken as temporally asymmetric keeping the average force per cycle, due to

the external field, zero. We propose a physical model for a net preferrentially unidirectional

motion of a Brownian particle in a symmetric periodic potential when the system is subjected

to such a temporally asymmetric periodic field. The fluctuating forces (noise) necessary to

achieve such a motion need not be colored. A symmetric Gaussian white noise will be

sufficient. We provide numerical support to this model by studying the two-well system

and calculating the net accumulation of particles in each of the two wells when subjected

to temporally asymmetric saw-tooth type periodic fields (section V). We further show that

such a physical model can be made more efficient by suitably choosing the strength of

the fluctuating forces. The motivation for the proposition of such a model comes from

an experimentally observed phenomenon of net (statistically) preferrentially unidirectional

motion of protein motor (kinesin) molecules along microtubules [4]. And the idea [5] of using

two time scales for the field sweep comes from the two flagellar strokes (power and reverse)

executed by sperm cells for their propulsion. This subject is being persued intensively in
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recent years under the title of correlation ratchets, thermal ratchets or the Maxwell’s demon-

type information engines.

II. HYSTERESIS

We calculate hysteresis from the first-passage-time (FPT) distribution of a Brownian

particle in the double-well potential under the influence of an external field. We also calculate

it from the residence time distributions in each of the two wells. The motion of the particle

is studied by solving, numerically, the overdamped Langevin equation

ṁ = −
∂Φ

∂m
+ f̂(t), (1)

where m is the order parameter (in this case position of the particle) and the dot over it

denotes derivative with respect to time.

Φ(m, t) = U(m) − mh(t), (2)

(Fig. 1) where, U(m) is the Landau two-well symmetric potential

U(m) = −
a

2
m2 +

b

4
m4 (3)

and h(t) is the external time dependent field sweep. f̂(t) are randomly fluctuating forces

and are taken to be Gaussian with statistics

< f̂(t) >= 0, (4)

and

< f̂(t)f̂(t′) >= 2Dδ(t − t′). (5)

Here < ... > represents an ensemble average over all realizations of the random forces.
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A. The first-passage times

In the beginning (at time t = 0) we take the Brownian particle at the bottom of one of

the two wells and then monitor its motion as time progresses. As soon as the particle reaches

the bottom of the other well we record the time t = τ and stop the process. We begin the

process all over again from the bottom of the first well and repeat the earlier procedure. By

repeating the process for a large number of times (for meaningful averages) we obtain the

density distribution ρ(τ) of the FPT’s, τ . ρ(τ) depends on how the field h(t) is swept and

the strength of the fluctuating forces D.

When the field h(t) is swept linearly,

h(t) = h0 + ḣt, (6)

where ḣ is a fixed constant. By taking, for example, h0 ≫ hc (the critical field = 2(a/3)3/2

for b = 1; we take a = 2 in our numerical calculation throughout) and ḣ < 0 and start

from the bottom of the right side well one can obtain ρ(τ) and get a sensible hysteresis loop

M(h).

M(h)

hc

= 1 − 2
∫ h0

h
ρ(h′)dh′, (7)

where ρ(h) is the distribution of field values at τ ’s. Equation (7) gives the upper half of the

hysteresis loop. The other half is obtained by symmetry [7]. The linear sweep of the field

has physical analogues in, for example, sweeping the temperature T (as a function of time)

from above the freezing temperature of a melt to down below that temperature, where M(T )

would then correspond to the degree of nucleation of crystallites in the melt. However, D

would now depend on T . By suitably modelling D(T ) one can obtain the qualitative features

of the usual (T-T-T) curves [11]. Also it should be noted that by taking ḣ small one can

check whether the hysteresis loop area so obtained follows any power-law behaviour [12] in

terms of ḣ. In an earlier work we, however, do not find any universal power law behaviour

[7].
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When the field h(t) is varied periodically (in our case as a saw-tooth) in time the dis-

tribution ρ(τ) shows (Fig. 2) gradually diminishing peaks occurring periodically [8]. The

periodicity roughly matches the periodicity of h(t). Since the field oscillates between h0

and −h0, we can again find the distribution ρ(h) of passage fields h(τ) and the hysteresis

loop M(h). We have shown earlier that the hysteresis loop area acquires a maximum as a

function of ḣ as well as D [8]. The area of the hysteresis loop as defined in the present work

(see below) is a good measure of the degree of synchronization of passages (from one well to

the other) with respect to the external field sweep h(t).

For periodic h(t) with amplitude h0 < |hc|, a Brownian particle on the right well (Eq.

2) will encounter the least barrier of passage to the left well when h = −h0. Therefore, the

probability of passage from the right well to the left well will be the largest when h(t) = −h0.

If we consider passage to take place only at h(t) = −h0 from the right well to the left and

only at h(t) = h0 from the left well to the right, we have the case of perfect synchronization

of passages with respect to the variation of the field. This will, however, correspond to

ρ(τ) having sharp peaks occurring periodically at t : h(t) = −h0 if we begin from the right

well. And the corresponding ρ(h) will have a single sharp peak at h = −h0. Therefore,

from Eq. 7 we will have a rectangular hysteresis loop and hence with the largest possible

loop area. On the other hand if the passages are completely random (the case of least

synchronization) we will have a uniform ρ(h) from h0 to −h0 and the hysteresis loop will

consequently have the smallest area (zero). From the discussions of these two extreme cases

we arrive at the conclusion that hysteresis loop area, indeed, provides a good measure of

degree of synchronization of passages from one well to the other as the field is periodically

swept. Therefore the earlier result [8] shows that the passages become most synchronized

at optimum values of noise strength D and field sweep rate ḣ. Similar results are obtained

when hysteresis is calculated from the residence time distribution (see below).
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B. Residence time distributions

Instead of studying a large number of identical replicas of a system one can study the

same system for a long time and observe the passages a Brownian particle executes in the

course of time. This way one can find the residence times and their distributions ρ1(τ) and

ρ2(τ), in each of the two (left and right) wells, respectively, (Fig. 3). Also one can find the

passage field distributions ρ12(h) and ρ21(h) for passages from the left well to the right well

and from right well to the left well, respectively. However, the first-passage field distribution

ρ(h) from right well to the left well, for example, is not expected to be exactly the same

as ρ21(h). This is because for FPT calculation one starts from the same initial condition

h(t = 0), whereas for ρ21(h) ρ12(h) acts as the distribution of initial field values, etc. Also,

in the previous (FPT based) work ρ(h) was obtained for variation from h0 to −h0. However,

the proper book-keeping of the field values of passages from one well to the other throughout

the cycle of h(t), namely from h0 to −h0 and then back to h0, is required. Taking all these

aspects into account we calculate the probability of the Brownian particle being in the right

well (m2(h)) when the field value is h:

m2(h) = m2(h − ∆h) − m2(h − ∆h)ρ21(h)∆h + m1(h − ∆h)ρ12(h)∆h, (8)

and similarly for m1(h). The difference m(h) = m2(h)−m1(h) is analogous to magnetisation

in magnetic systems. The stationary (closed) hysteresis loop m(h) is obtained by iteration.

Note that there is a qualitative difference in the hysteresis loops calculated using the two

methods. In the earlier case (FPT based) the hysteresis loop was always saturated by

construction. In the present case the hysteresis loop need not be saturated and indeed one

obtains saturation only for h0 > |hc| together with small ḣ and large D cases (Fig. 4). The

area of hysteresis loop so obtained shows a maximum [13] as a function of D and also as a

function of ḣ (Fig. 5). As in case of hysteresis loop area from first-passage field distribution

(Eq. 7) one can argue that in this case too the hysteresis loop area is a good measure of

degree of synchronization of passages. Thus the passages, again, become most synchronized

at an optimum value of the noise strength D and also at an optimum value of ḣ.
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III. STOCHASTIC RESONANCE

We use the residence time distributions ρ1(τ) or ρ2(τ) to study stochastic resonance.

As mentioned in the introduction the signal-to-noise ratio (SNR) in the power spectrum

of these distributions is used to study it. We adopt the following procedure to obtain the

power spectrum [14]. We calculate the histogram of ,say, ρ2(τ) (Since the periodic drive

is symmetric the two distributions are identical.) dividing the period T of h(t) into 10

equal parts. We assign the mid-point of each time interval ∆ = T/10 the value equal to

the height of the histogram at the interval. Usually the number of such data points is not

large. We augment the data points obtained from the histogram by zeroes at similar equal

intervals so that the maximum number of paded data points, unless mentioned otherwise,

is 16384 (= 214). We then calculate the Fourier transform of this data using the Fast-

Fourier-Transform (FFT) routines. The number of (doctored) data points is taken to be

large in order to obtain Fourier trasforms at close intervals of frequency. Square the suitably

normalized Fourier transformed data to give the power spectrum of ρ(τ). The normalization

is done correctly such that the spectral density is one for zero frequency. We obtain sharp

peaks at frequencies equal to 2πn
T/2

for n = 1, 2, . . .. We measure the first peak height and

the background value of the spectrum at the same frequency. The background value of the

spectrum is usually small and the possibility of commiting error in assigning a value to it is

correspondingly large. The background value of spectrum is termed as noise and the peak

height as the signal. We thus calculate the SNR for each value of (ḣ, D). The SNR shows

maximum as a function of D as well as ḣ (Fig. 6). It should be noted that the measurement

of SNR is not very accurate (large errors) but their variation as a function of D or ḣ is so

large that the trend of their variation as a function of D or ḣ is not affected. (Note that our

conclusions pertain mostly to the trends of variation rather than to the actual values.)

The maximum of SNR as a function of D indicates stochastic resonance. We find the

value of D = Dm
SNR at which the maximum occurs for various values of (h0, ḣ). Similarly, we

note the value D = Dm
a at which the hysteresis loop area becomes maximum for the same
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set of values (h0, ḣ). The plots of Dm
a as well as Dm

SNR as a function of ḣ for fixed values

of h0 is shown in Fig. 7. It is noteworthy that eventhough Dm
a and Dm

SNR differ widely

for large ḣ, as ḣ is decreased towards zero Dm
a and Dm

SNR become closer and closer [13].

As mentioned earlier hysteresis loop area is a good measure of degree of synchronization of

passages from one well to the other. Therefore, at small ḣ stochastic resonance occurs when

the synchronization is close to its largest value. This result indicates that there is a close

relationship between synchronization and stochastic resonance. This aspect of stochastic

resonance had not been explored so far.

SNR also peaks [13] as a function of ḣ as does the hysteresis loop area. It indicates

that there is a time scale of maximum response of the system depending on the values of

h0 and D. The occurrence of this maximum as a function of frequency is closer to the

conventional resonance phenomena. There has been some controversy in literature about

whether the stochastic resonance is a bonafied resonance [15] at all. In Ref. [15] an effort

has been made to resolve the controversy by measuring the strength of the first peak of the

distribution ρ12(τ) and noting their variation. Here our treatment takes account of all the

peaks of ρ12(τ) in order to calculate the hysteresis loop area which is used to measure the

degree of synchronisation of passages. The maximum of SNR as a function of frequency

(equivalent to ḣ in our case) has been found [16] only recently (analytically) to occur in a

double (square)-well potential system.

IV. NOISE-INDUCED STABILITY OF UNSTABLE STATES

In the previous section we studied the response of the two-well system to a small ampli-

tude (subcritical) input signal in order to obtain stochastic resonance. We now study the

response of the same system to a large amplitude (overcritical) input periodic signal. In

particular, we take h0 = 1.4hc. As can be seen from Eq. 2 the left well disappears and gives

way to a steep potential line for h(t) > hc and only the deepened right well remains (Fig. 1).

The reverse situation results when h(t) < −hc. We find that when D = 0 and ḣ less than a
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threshold value ḣth (in our case ≈ 0.384hc per unit time) a particle rolls down alternately to

both the wells exactly once in a period of h(t). Therefore, the average number of passages

per cycle (ANPPC) equals 1. However, as ḣ is taken larger than ḣth the ANPPC goes to

zero very sharply (Fig. 8). However, the situation changes as D is gradually increased from

zero.

Figure 9 shows the variation of ANPPC as a function of D for various values of ḣ. For

any ḣ < ḣth increasing D from zero initially decreases ANPPC. It attains a minimum value

and then begins increasing ultimately becoming larger than 1 for large D. For all ḣ > ḣth

ANPPC monotonically increases from a small value (zero) as D is increased from zero (Fig.

9). Therefore, the range 0 < ḣ < ḣth provides an interesting interval within which the

passage of the Brownian particle from an unstable situation is slowed down because of the

presence of fluctuating forces. We, therefore, see the gradual emergence of more than one

peaks of ρ1(2)(τ) as D is increased from zero (Fig. 10) which on further increament of D get

broadened. Interestingly, on calculating the power spectrum of ρ2(τ) we find corresponding

evolution of broad peaks (centred at the periodic field frequency and at its harmonics) as D

is increased from zero. (No peaks for D = 0.) However, on increasing D further the peaks

gradually disappear (Fig. 11). This is clearly a signature of stochastic resonance in this case

of large amplitude forcings. Thus, the slowing down of the passage of the Brownian particle

in a two-well system makes it meaningful to study SR as a response to large amplitude input

signal.

The role of noise in the two cases of small and large amplitude forcings are quite the

opposite. In the large amplitude case the observance of stochastic resonance is because

the presence of noise slows down the decay of the unstable states whereas in the small

amplitude cases the noise helps to overcome the potential barrier for passage. In the case

of large amplitude forcings the passages take place mostly when the intervening potential

barrier is missing. The passages are not noise induced, rather they are noise controlled.

Correspondingly the hysteresis will have a different nature. For analogy, the process in this
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case will be more akin to large amplitude temperature cycling across the freezing point of a

liquid than field cycling well within the ferromagnetic regime. The calculated hysteresis loop

area does not show maximum at the same frequencies or noise strengths where SR appears.

V. TWO-WELL SYSTEM SUBJECTED TO TEMPORALLY ASYMMETRIC

PERIODIC FORCING

It is quite contrary to common sense perception to observe asymmetric motion of a

particle in a symmetric periodic potential without any obvious external bias. Several physical

models [17] were proposed to obtain asymmetric motion in a periodic potential. In most

cases the periodic potential is taken to have ratchetlike asymmetry within a period and

some correlated fluctuating forces are applied. We propose that asymmetric motion can be

obtained even in a symmetric (nonratchetlike) periodic potential by subjecting the particle

to a Gaussian white noise of zero mean. This is made possible by the application of a

temporally asymmetric (within a period) periodic forcing. We consider a saw-tooth type

periodic field h(t) but having the magnitude of the two slopes different. We consider the

external field h(t) to be such as to exert a zero mean force on an otherwise free particle

implying thereby that the particle motion is not biased on the average by the external field.

We take the amplitude h0 of the external field h(t) to be small (h0 < hc) and monitor

the motion of a particle [18] on the two-well potential subjected to white noise (fluctuating

forces). We then find the mean values (τ 1 and τ 2) of residence times in each of the two wells.

We find that when h(t) is asymmetric (defined by the asymmetry parameter ∆ = T1−T0/2
T0/2

,

where T1 is the time the field takes to decrease from h0 to −h0 and T0 is the period of

h(t))) the two mean values τ 1 and τ 2 (corresponding to left and right wells, respectively)

are not equal. This simply implies that the particle spends unequal time in each of the

two wells. Moreover, τ 1 + τ 2 > T0. If τ 1 + τ 2 were equal to T0 we would conclude that

eventhough τ 1 6= τ 2 the particle makes on the average equal number (=1) of passages from

left to right and from right to left in a cycle of h(t). However, the inequality implies that
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the average number of passages from the left well to the right is not equal to the average

number of passages from the right well to the left per cycle of h(t). This observation helps

us to make the important inference that in a periodic potential system a similar asymmetry

in passages will ensue between the two adjacent valleys resulting in a net current across

the periodic system. It is noteworthy that the passages considered here are in a symmetric

(nonratchetlike) potential unlike in the work of Magnasco [17] who considers ratchetlike

asymmetric potential. Also here the passages are due to periodic forcings of amplitude

smaller than the critical amplitude hc necessitating the presence of noise unlike in the work

of Ajdari, et al where large amplitude forcings are used without the noise [19].

Figure 12 shows how m = τ 2 − τ 1 vary as a function of ∆. The monotonic rise is quite

evident. Moreover, from Fig. 13 we see that given an asymmetry parameter ∆, m acquires a

maximum as a function of D. This shows that the net asymmetric current can be optimized

by suitably choosing the noise strength D. Again, the area of the hysteresis loops becomes

maximum (Fig. 14) as a function of D for a given ∆. But the position of this maximum

does not coincide with the position of the maximum of m as a function of D. We can also

see how the hysteresis loop area vary as ∆ is changed.

VI. CONCLUSION

In this work we have tried to understand the phenomena of hysteresis, stochastic res-

onance, synchronization and asymmetric passages in a model symmetric bistable system.

We find that stochastic resonance, at least at low signal frequencies, could be a result of

synchronised response of the system to the input periodic signal. The degree of synchro-

nization itself being optimized by the noise strength as well as the signal ”frequency”. Also,

we obtain stochastic resonance in the response to a large amplitude periodic forcing as a

result of noise induced slowing down of a Brownian particle rolling down an inclined poten-

tial surface. By studying the processes in the bistable system we could also come to the

conclusion that a net unidirectional current can be obtained even in a symmetric (nonratch-
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etlike) periodic system subjected to Gaussian white noise when acted upon by a temporally

asymmetric but zero averaged periodic forcing. The unidirectional current is also optimized

by the noise strength. It is noteworthy that our model Landau (two-well) potential system

is a very simple nonlinear system yet its study provides valuable understanding of all the

above mentioned experimentally observed phenomena.
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FIGURES

FIG. 1. Plots of (a) Φ(m) as a function of m for h(t) = 0.6hc, and (b) mxtrm, the extrema

points of Φ(m) as a function of h, for a = 2.0, and b = 1.0.

FIG. 2. Shows (a) the time variation of the external field h(t), (b) the first-passage-time dis-

tribution ρ(τ), (c) the passage field distribution ρ(h), and (d) the corresponding hysteresis loop

calculated from ρ(h), for h0 = 0.7hc, D = 0.3, and the period of h(t), T0 = 28.0.

FIG. 3. Shows (a) the residence time distribution ρ1(τ) in the well 1, and (b) the passage field

distribution ρ21(h) for passage from the right well 2 to the left well 1, for h0 = 0.9hc, D = 0.2, and

period of h(t), T0 = 36.0.

FIG. 4. Hysteresis loops calculated from ρi(τ) and ρij(h), i, j = 1, 2, for various values of

h0 = 1.4hc (outer), 0.9hc(middle) and 0.7hc for ḣ = 0.05hc and D = 0.2.

FIG. 5. Plots of hysteresis loop area A (a) as a function of D for ḣ = 0.05hc(◦), 0.1hc(2),

0.2hc(⋄), 0.4hc(△), and 0.6hc(▽), and (b) as a function of field sweep rate ḣ for D = 0.1(◦),

0.15(2), 0.2(⋄), and 0.3(△) for h0 = 0.9hc. In this and in the rest of the figures the lines joining

the points are only to guide the eye.

FIG. 6. Plots of signal-to-noise ratio (SNR) for h0 = 0.9hc (a) as a function of D, for

ḣ/hc = 0.05(◦), 0.1(2), 0.2(⋄), 0.4(△), 0.5(⊳), 0.6(▽), and 0.72(⊲), and (b) as a function of ḣ

for various values of D = 0.1(◦), 0.15(2), and 0.2(⋄).

FIG. 7. Plots the peak positions of the plots of hysteresis loop area A versus D(◦) and those

of SNR versus D(2), for h0 = 0.7hc (empty symbols, solid joining lines) and for h0 = 0.9hc (filled

symbols, dashed joining lines).

FIG. 8. Average number of passages per cycle (ANPPC) is plotted as a function of ḣ for

D = 0.00001. Averaging is done over 5000 cycles. The line is drawn to guide the eye.
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FIG. 9. Shows ANPPC as a function of D for various ḣ values:(a) 0.05hc(◦), (b) 0.2hc(2), (c)

0.28hc(⋄), (d) 0.35hc(△), and (e) 0.4hc(⊳). For ḣ>̃0.392hc the curves, for example the curve for

ḣ = .4hc, show monotonic behaviour starting from ANPPC=0. The lines are drawn to guide the

eye.

FIG. 10. Shows ρ(τ) for h0 = 1.4hc, ḣ = 0.028hc and D = 0.001 (bottom), D = 0.1 (middle;

shifted up by 0.25) and D = 0.4 (shifted up by 0.5).

FIG. 11. Shows power spectral density (psd) for three values of D: (a) D = .001 (dotted), (b)

D = .1(solid line), and (c) D = .4 (dash-dotted), at ḣ = .028hc. We have taken, for each curve,

256 (augmented with zeroes) data points at a time interval of 2.0.

FIG. 12. Shows the variation of accumulation M in a well as a function of ∆ for (a)

D = 0.15(2), (b) D = 0.2(⋄), (c) D = 0.5(△), and (d) D = 0.7(▽).

FIG. 13. Plot of M versus D for (a) ∆ = 0.5(◦), and (b) ∆ = 13
14 (2).

FIG. 14. Plot of hysteresis area as a function of D for (a) ∆ = 0.5(◦), and (b) ∆ = 13
14(2).
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