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Abstract: We study a periodically driven (symmetric as well as

asymmetric)double-well potential system at finite temperature. We show that mean

heat loss by the system to the environment (bath) per period of the applied field

is a good quantifier of stochastic resonance. It is found that the heat fluctuations

over a single period are always larger than the work fluctuations. The observed

distributions of work and heat exhibit pronounced asymmetry near resonance. The

heat losses over a large number of periods satisfies the conventional steady-state

fluctuation theorem, though different relation exists for this quantity.
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I. INTRODUCTION

Stochastic Resonance (SR) was discovered barely about two and half decades ago,

yet it has proved to be very useful in explaining many phenomena in natural sciences[1-

3]. SR refers to an enhanced response of a nonlinear system to a subthreshold periodic

input signal in the presence of noise of optimum strength. Here, noise plays a con-

structive role of pumping power in a particular mode, that is in consonance with the

applied field, at the cost of the entire spectrum of modes present in it. SR, so defined,

leaves a lot of liberty as to what is the physical quantity that is to be observed which

should show a maximum as a function of noise strength[4-23]. In other words, no

unique quantifier of SR is specified. Also, in order that SR be a bonafide resonance

the quantifier must show maximum as a function of frequency of the applied field as

well. For instance, in a double-well system, hysteresis loop area, input energy or work

done on the system in a period of the driving field and area under the first peak in

the residence time (in a well) distribution are used to characterize SR as a bonafide

resonance[4-17,19-22].

In the present work, motivated by recently discovered fluctuation theorems, we

show that in an overdamped bistable system input energy per period as well as the

energy absorbed per period by the system from the bath, i.e, the heat, can be used

as quantifiers to study SR. Also, it is found that the relative variance of both the

quantities exhibit minimum at resonance; that is, whenever input energy and heat show

maximum as a function of noise strength (as also frequency), their respective relative

fluctuations show minimum. This shows that at SR the system response exhibits

greater degree of coherence. These fluctuations, however, are very large and often

the physical quantities in question become non-self-averaging. We study some of these

aspects in the light of the fluctuation theorems in the following sections. The fluctuation

theorems are of fundamental importance to nonequilibrium statistical mechanics[24-

46]. The fluctuation theorems describe rigorous relations for properties of distribution

functions of physical variables such as work, heat, entropy production, etc., for systems
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far from equilibrium regimes where Einstein and Onsagar relations no longer hold.

These theorems are expected to play an important role in determining thermodynamic

constraints that can be imposed on the efficient operation of machines at nano scales.

Some of these theorems have been verified experimentally[47-53].

II. THE MODEL

We consider the motion of a particle in a double-well potential V (x) = −ax2

2
+ bx4

4

under the action of a weak external field h(t) = A sin(ωt). The motion is described by

the overdamped Langevin equation[44]

γ
dx

dt
= −∂U(x)

∂x
+ ξ(t), (1)

where U(x) = V (x) − h(t)x. The random forces satisfy 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 =

2γkBTδ(t − t
′

), where γ is the coefficient of friction, T is the absolute temperature

and kB is the Boltzmann constant. In the following we use a dimensionless form of

equation(1), namely,
dx

dt
= −∂U(x)

∂x
+ ξ(t), (2)

where U(x) = −x2

2
+ x4

4
− xh(t), and the external field h(t) = A sin(ωt). Now, ξ(t)

satisfies 〈ξ(t)ξ(t′)〉 = Dδ(t − t
′

), where D = 2kBT . All the parameters are given in

dimensionless units (in terms of γ, a and b). We consider A ≪ 0.25, so that the forcing

amplitude is much smaller than the barrier height between the two wells.

Following the stochastic energetic formalism developed by Sekimoto[55], the work

done by the external drive h(t) on the system or the input energy per period (of time

τω) is defined as[21]

Wp =
∫ t0+τω

0

∂U

∂t
dt

= −
∫ t0+τω

0
x(t)

dh(t)

dt
dt, (3)

where h(t) is the drive field which completes its period in time τω. The completion

of one period of h(t), however, does not guarantee the system coming back to the
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same state as the starting one. In other words, x(t + τω) need not be equal to x(t) or

U(x, t + τω) may differ from U(x, t). The work done over a period Wp equals change

in the internal energy ∆U = U(x, t0 + τω) − U(x, t0) and heat Q absorbed over a

period (first law of thermodynamics), i.e, Wp = ∆Up + Qp. Since x(t) is stochastic,

Wp, ∆Up and Qp are not the same for different cycles(or periods) of h(t). The averages

are evaluated from a single long trajectory x(t) (eqn(3)). From the same calculations

one can also obtain the probability distribution P (W ) and various moments of W .

Similarly, appealing to the first law of thermodynamics as stated above we can obtain

P (Qp) and P (∆Up) and their moments, where the subscript p indicates evaluation of

the physical quantities over one period of the field. Numerical simulation of our model

was carried out by using Huen’s method[56]. To calculate Wp and Qp we first evolve

the system and neglect initial transients. To get better statistics we calculate Wp, Qp

for 106 cycles. In some cases we evaluate W , ∆U and Q over many periods, n, and

calculate their averages, again, for 106 such entities.

III. RESULTS AND DISCUSSIONS

The internal energy being a state variable, average change in its value over a period

∆Up is identically equal to zero. Thus, in the time periodic asymptotic state averaged

work done over the period 〈Wp〉 is dissipated in to heat 〈Qp〉 by the system to the

bath. Thus, 〈Qp〉 can also be identified as hysteresis loop area. As has been reported

earlier[19-22], 〈Wp〉, the input energy per period, shows a maximum as a function of

D. Fig(1) shows that 〈Wp〉 and 〈Qp〉 coincide, thus both the physical quantities show

SR. Hence, in this case input energy per period, the heat per period or the hysteresis

loop area can equally well quantify stochastic resonance. However, in this work we

focus mostly on the fluctuation properties of these quantities.

The relative variances RW and RQ of both Wp and Qp respectively show minimum

(fig(2)) as a function of D. It may be noted that even though 〈Wp〉 and 〈Qp〉 are
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identical, fluctuations in Wp differ from the fluctuations in Qp. The relative variance

of Qp is always larger than that of Wp for all D. It is also noteworthy that the minimum

value of the relative variance is larger than one. However, the minimum becomes less

than one if the averages are taken not over a single period of the field but over a

larger(integral) number, n > 1, of periods. Therefore, in order to obtain meaningful

averages of these physical quantities in such driven systems one needs to study over

time scales much larger than one period so that the averages are significantly larger

than the deviations about them. Also, as n becomes large, the differences between the

relative variances of W and Q become insignificant(see inset of fig(2)). Importantly,

in the system under study, this situation (mean > dispersion) can be achieved by

increasing the duration of averaging time(or the number of periods, n) more easily

around the value of D where SR occurs. The minimum of relative variance occurs

just because the mean value is largest there and not because dispersions are smallest.

However, as the number of periods n is increased the mean value of heat dissipated over

the n periods 〈Qnp〉 ∼ n for all n, whereas the dispersion ∼ √
n for large n so that the

relative variance decreases with n as 1√
n

and one gets a range of D where the averages

become meaningful. We have observed numerically that Qnp behaves as an independent

variable only when evaluated over a larger number of cycles n as compared to in case of

Wnp. For our present parameters approximately Qnp is uncorrelated beyond 10 periods,

whereas Wnp is uncorrelated beyond 5 periods.

In fig(3), we have plotted average heat dissipated 〈Qp〉(= 〈Wp〉) over a single period

as a function of frequency. The values of physical parameters are given in the figure

caption. The figure shows maximum as shown in earlier literature[21]. Thus 〈Qp〉 acts

as a quantifier of bonafide stochastic resonance. In the inset we give the corresponding

relative variance of heat and work as a function of frequency. We observe that heat

fluctuations are larger than work fluctuations at all frequencies. Near the resonance the

relative variance shows a minimum. It may be noted that minimum relative variance

of both quantities Wp and Qp are larger than one(fig(2) and fig(3)).
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In fig(4), we plot the probability distribution of Wp and Qp for various values of

D. For low values of D (e.g., D = 0.02) P (Wp) is Gaussian whereas P (Qp) has a long

exponential tail as in case of a system driven in a harmonic well and with almost no

chance of a particle going over to the other well of the double-well potential. As D is

gradually increased rare passages to the other well becomes a possibility and a very

small peak appears at a finite positive value of Wp(or Qp) (e.g., at D = 0.04). As D is

increased further, P (Wp) and P (Qp) become multipeaked and the averages 〈Wp〉, 〈Qp〉
shifts to their positive values. The distributions become most asymmetric at around

D = 0.12 (where SR occurs) and the asymmetry reduces again at larger D, fig(4).

When D becomes large (e.g., D = 0.5) the distribution becomes completely symmetric

and at such high D values the presence of potential hump becomes ineffective to split

the distribution into two or more peaks. At very small and very large D values P (Wp)

is close to Gaussian and so does P (Qp) but with a slow decaying exponential tail.

In all the graphs, the distribution of P (Qp) (P (Wp)) extend to negative values of Qp

(Wp). Finite value for distribution in the negative side is necessary to satisfy certain

fluctuation theorems. Moreover, P (Qp) has higher weightage for large negative Qp

than that of work Wp.

It is worth reemphasizing that W and Q behave as additive (or extrinsic) physical

quantities with respect to the number of periods n and hence 〈Wnp〉 and 〈Qnp〉 increase

in proportion to n whereas ∆U , in this case, is an intrinsic physical quantity and

∆U
n

→ 0 as n → ∞. This indicates that the distributions P (Wnp) and P (Qnp) both have

identical characteristics as n → ∞. Therefore, the difference between (

√
〈W 2

np〉−〈Wnp〉2
〈Wnp〉 )

and (

√
〈Q2

np〉−〈Qnp〉2
〈Qnp〉 ) vanishes as n → ∞. In the recent literature it is shown that the

distribution P (Wnp) over a large number of periods approaches a Gaussian. Also, if

one considers Wp over a single period by increasing the noise strength, P (Wp) ap-

proaches Gaussian and satisfies the steady state fluctuation theorem (SSFT). SSFT

implies[26,34-36,44-46,51-53] the probability of physical quantity x to satisfy the rela-

tion P (x)/P (−x) = exp(βx), where β is the inverse temperature and x may be work,



7

heat, etc. In fig(5), the evolution of P (Qnp) is shown as n is increased . As n increases

the contribution of negative Q to the distribution decreases; besides, the distribution

gradually becomes closer and closer to Gaussian. There is a contribution to P (Qnp)

due to change in the internal energy ∆U which is supposed to dominate at very large

Q making the distribution exponential in the asymptotic regime[34,35,53]. However, it

is not possible to detect this exponential tail in our simulations. For large n, P (Qnp)

approaches Gaussian(inset of fig(5)). The Gaussian fit of the graph almost overlaps

and the calculated ratio,
〈Q2

np〉−〈Qnp〉2
2

β
〈Qnp〉 equals 0.99 for n = 25. This ratio is closer to

one, a requirement for SSFT to hold where P (Q) is Gaussian[22,44,45]. Fig(6) shows

the plot of ln( P (Qnp)
P (−Qnp)

) as a function of βQnp for various values of n. One can readily

see that slope of ln( P (Qnp)
P (−Qnp)

) approaches 1 for Q ≪ 〈Qnp〉 for large n. This is a state-

ment of conventional steady state fluctuation theorem. As the number of periods n,

over which Qnp is calculated, is increased, the conventional SSFT is satisfied for Qnp

less than 〈Qnp〉 (e.g., for n = 25, SSFT is valid for Qnp less than 0.4, for D = 0.16).

There exists an alternative relation for heat fluctuation, namely, the extended heat

fluctuation theorem[34,35]. Here, the distribution function obeys a different symmetry

property for Q ≫ 〈Qnp〉 for finite n. As n → ∞, 〈Qnp〉 → ∞ in this limit, and hence

conventional SSFT holds which has been clarified earlier in linear systems[53].

It is further interesting to investigate effects associated with SR in an asymmetric

double-well potential involving two hopping time scales instead of one as in the symmet-

ric case. We therefore, consider a scaled asymmetric potential V (x) = −x2

2
+ x4

4
− cx

driven by the external field h(t). Fig(7) shows the average input energy 〈Wp〉 and

average heat 〈Qp〉 over a single period as a function of D for various values of the

asymmetric parameter c. From this figure we find that the peak becomes broader

and lower as c is increased. The peak shifts to larger values of noise intensities for

higher c. In other words, the phenomenon of SR is not as pronounced[2] as in case of

c = 0(fig(2)). It is because the synchronization between signal and particle hopping

between the two well becomes weak because for c 6= 0, the mean time of passage for
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well 1 to well 2 is different from the mean time of passage from well 2 to well 1. As a

consequence the relative variances RW and RQ become larger as compared to in case

of c = 0(fig(2)) as shown in the inset of fig(7).

In fig(8(a)) and fig(8(b) we have plotted probability distribution P (Wp) and P (Qp)

over a single period for different values of asymmetry parameter c for a fixed value of

D = 0.12, A = 0.1 and ω = 0.1. As asymmetry increases the probability for particle

to remain in the lowest well enhances. Hence particle performs simple oscillation

around most stable minima over a longer time before making transitions to the other

well. Hence Gaussian like peak near W ≈ 0 or Q ≈ 0 increases as c increases. The

weight of P (Wp) for larger values of work(positive as well as negative ) decreases with

increase in c. However, for P (Qp), its magnitude at large positive and negative values

of Qp increases as we increase asymmetry parameter. This contrasting behavior can

be attributed to the larger fluctuations of internal energy ∆Up as one increases c. This

we have verified separately. Due to this contribution of ∆Up for Qp, nature of P (Wp)

and P (Qp) are qualitatively different. In all cases for fixed asymmetry c fluctuation in

heat are larger than fluctuation in work.

In fig(9) and (10) evolution for P (Wnp) and P (Qnp) respectively are plotted for

various values of number of periods n. We clearly observe that as n increases both

the distributions tend to become Gaussian distributions with the fluctuation ratio

V

( 2

β
〈M〉) = 1, between their variance V and mean 〈M〉 as required to satisfy SSFT as

mentioned earlier. To satisfy SSFT for heat we have to take larger number of periods

as compared for work. Only in the large n limit contribution to heat from internal

energy becomes negligible. In the insets of fig(9) and fig(10) we have shown a Gaussian

fit(with fluctuation ratio equal to one), which agrees perfectly well with our numerical

data. Conclusions regarding validity of SSFT for asymmetric case for larger periods

remain the same as for the symmetric case.

In summary, we find that SR shown by a particle moving in a double-

well(symmetric) potential and driven by a weak periodic field can be characterized
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well by the heat 〈Qp〉 dissipated to the bath or the hysteresis loop area. It can

equally well be characterized by the relative dispersion of 〈Wp〉 and 〈Qp〉. At reso-

nance relative dispersion shows a minimum as a function of both D and ω. We also

show that minimum relative variance can be made less than one by taking long time

protocols of the applied field. For long time protocols distribution P (Qnp) satisfies

conventional SSFT for P (Qnp) at Qnp ≪ 〈Qnp〉 for finite n[53]. We have also shown

that SR gets weakened in the presence of asymmetric potential and as a consequence

fluctuation in heat and work become larger. SSFT too is satisfied for both work and

heat, when they are calculated over large number of periods.
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V. FIGURE CAPTIONS

Fig.1: The average input energy 〈Wp〉 and 〈Qp〉 as a function of D for ω = 0.1 and

A = 0.1.

Fig.2: The relative variance RW and RQ over one period are plotted as a function

of D. In the inset the relative variance RW and RQ over 25 periods are presented. The

other parameters are same as in fig(1).

Fig.3: The mean heat energy 〈Qp〉 is plotted as a function of ω for D = 0.15 and

A = 0.1. In the inset RW and RQ over one period are presented.

Fig.4: The distribution P (WP ) and P (QP ) over a single period for various values

of D: 0.02(a), 0.04(b), 0.06(c), 0.08(d), 0.10(e), 0.12(f), 0.16(g) and 0.5(h).

Fig.5: The evolution of P (Qnp) over different periods is presented. In the

inset P (Qnp) over 25 periods is plotted together with its Gaussian fit f(Q). Here

D = 0.12, A = 0.1 and ω = 0.1.

Fig.6: The plot of ln(P (Qnp)/P (−Qnp)) with temperature βQnp for different

periods. Only the range of Qnp is presented for which the curves are nearly linear. The

parameters are same as that in fig(5) except that here D = 0.16.

Fig.7: The plot of 〈W 〉 with temperature for various values of the asymmetry

parameter, c. Inset shows RW and RQ for c = 0.1 .

Fig.8: The distribution of P (WP ) and P (QP ) over a single period for c = 0.0,

c = 0.05, c = 0.1 and c = 0.15. Here D = 0.12,A = 0.1 and ω = 0.1.
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Fig.9: The evolution of P (Wnp) over different periods for c = 0.1.In the inset

P (Wnp) over 25 periods is plotted together with its Gaussian fit f(W ). Other

parameters are same as fig(8).

Fig.10: The evolution of P (Qnp) over different periods for c = 0.1. In the

inset P (Qnp) over 25 periods is plotted together with its Gaussian fit f(Q). Other

parameters are same as fig(8).
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