Heterocalixarenes Part 3: Bis-oxo-bridged calix[1]cyclicurea[3]arene and calix[1]cyclicurea[1]pyridine[2]arenes. Synthesis, X-ray crystal structure and conformational analysis ${ }^{1}$

Subodh Kumar,* Dharam Paul, Geeta Hundal, Maninder Singh Hundal and Harjit Singh*

Department of Chemistry, Guru Nanak Dev University, Amritsar-143 005, India
Received (in Cambridge, UK) 24th August 1999, Accepted 19th January 2000

Abstract

The Friedel-Crafts aroylations of 2- and 4-methylanisole with isophthaloyl dichloride or pyridine-2,6-dicarbonyl dichloride provide respective diones, which on bromination with NBS provide corresponding bisbromomethyl derivatives that undergo simple cyclocondensations with embedded cyclicurea-containing heterocycles, viz. benzimidazol-2(1H)-one, 5-nitrobenzimidazol-2(1 H)-one, 5,6-dinitrobenzimidazol-2(1 H)-one, uracil and quinazoline-2,4(1H,3H)-dione to form 11 new bis-oxo-bridged heterocalix[4]arenes (11-19, 24, 25). The X-ray crystal structure of the $\mathbf{1 1}$-benzene complex, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectra and energy-minimization studies assign partial cone conformations to these heterocalix[4]arenes. The variation in the cyclicurea moiety controls the flexibility of these heterocalix[4]arenes.

The derivatizations on the upper and/or lower rims of conventional calix $[n]$ arenes ${ }^{2}$ and replacement of their phenylene units with heterocyclic moieties ${ }^{3}$ provide tremendous novel opportunities for generating receptors with unique inclusion/ complexation characteristics and related non-covalent hostguest interactions. Whereas extensive work has been done on the modification of hydroxy and para-alkyl groups, ${ }^{2}$ modifications on the methylene bridge(s) in the backbone of calixarenes have been only recently studied. ${ }^{4,5}$ The presence of alkyl and/or aryl group(s) on a methylene carbon creates new stereochemical centres and thus affects the geometries of the resulting calixarenes. ${ }^{4}$ The presence of two bridge(s) in calixarenes could further increase their versatility both due to possible participation of carbonyl group in binding and to their being a chemically reactive and prochiral centre. So far the synthesis of oxo-bridged calixarenes through oxidation of preformed calixarenes has not met with much success. ${ }^{5}$ The cyclizations of preformed oxo-bridged precursors have provided monooxobridged calix[4/5/6]arenes, ${ }^{4 d}$ which exhibit a strong intramolecular H -bonding between carbonyl oxygen and an adjacent phenolic OH group and result in greater conformational flexibility than the parent calixarenes.

In the present investigations, a simple, high yielding, threestep approach, involving Friedel-Crafts aroylation as a key step, has been used to synthesize eleven new heterocalix[4]arenes (11-19, 24, 25) possessing two carbonyl units in place of methylene spacers and one or two heterocyclic units in place of phenylene rings. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra and energy-minimization studies define partial cone conformations to these calixarenes, which has been confirmed in one case, i.e. the 11-benzene complex, by X-ray crystal-structure determination.

Results and discussion

Synthesis

Friedel-Crafts aroylation of 2-methylanisole 1a with isophthaloyl dichloride $\mathbf{2 a}$ (2:1) in chloroform in the presence of AlCl_{3} (anhydrous) provides 3a (65%), mp $136^{\circ} \mathrm{C}, \mathrm{M}^{+} 374$. The bromination of 3a with N -bromosuccinimide (NBS) provides dibromide $\mathbf{4 a}(80 \%), \mathrm{mp} 120^{\circ} \mathrm{C}, \mathrm{M}^{+} 530$, 532, 534 (1:2:1). The intermolecular cyclocondensation of $\mathbf{4 a}$ with benzimidazol-

2(1 H)-one 6 under solid-liquid phase-transfer catalytic (PTC) conditions $\left[\mathrm{CH}_{3} \mathrm{CN}-\mathrm{K}_{2} \mathrm{CO}_{3}\right.$-tetrabutylammonium hydrogen sulfate $\left(\mathrm{TBAHSO}_{4}\right)$] provides bisoxocalix[1]benzimidazol$2(1 \mathrm{H})$-one[3]arene $11(70 \%), \quad \mathrm{mp} \quad 352-354^{\circ} \mathrm{C}, \quad \mathrm{M}^{+} 504$ (Scheme 1). Similarly, 4a reacts with 5 -nitrobenzimidazol$2(1 H)$-one (7), 5,6-dinitrobenzimidazol-2(1H)-one 8, uracil 9 and quinazoline-2,4($1 H, 3 H$)-dione 10 under PTC conditions to provide, respectively, heterocalix[4]arenes 13 (35%), mp $>355^{\circ} \mathrm{C}, \mathrm{M}^{+} 549 ; 14$ (45%), $\mathrm{mp}>355^{\circ} \mathrm{C}, \mathrm{M}^{+} 594$; $\mathbf{1 6}$ (60%), mp 333-335 ${ }^{\circ} \mathrm{C}, \mathrm{M}^{+} 482$ and $\mathbf{1 8}(65 \%), \mathrm{mp} 337-339^{\circ} \mathrm{C}, \mathrm{M}^{+} 532$. Similarly, the reaction of 2-methylanisole 1 a with pyridine-2,6dicarbonyl dichloride 2b provides 3b (60%), mp $155^{\circ} \mathrm{C}, \mathrm{M}^{+}$ 375. The bromination of $\mathbf{3 b}$ to $\mathbf{4 b}$ and subsequent cyclizations with heterocycles $\mathbf{6 , 9}$ and $\mathbf{1 0}$ provide, respectively, heterocalix[4]arenes $12(45 \%), \mathrm{mp} 299^{\circ} \mathrm{C}, \mathrm{M}^{+} 505$; $17(40 \%)$, mp $335^{\circ} \mathrm{C}$, $\mathrm{M}^{+} 483$ and $19(45 \%), \mathrm{mp} 320^{\circ} \mathrm{C}, \mathrm{M}^{+} 533$. Friedel-Crafts aroylation of $\mathbf{1 b}$ with $\mathbf{2 a}$, subsequent NBS bromination, and cyclization with $\mathbf{8}$ provides heterocalixarene $\mathbf{1 5}$ (12%), mp $319-320^{\circ} \mathrm{C}, \mathrm{M}^{+}+1791$.
Friedel-Crafts aroylation of 4-methylanisole 20 with isophthaloyl dichloride $\mathbf{2 a}$ (2:1) in chloroform in the presence of AlCl_{3} (anhydrous) provides 21 (17%), thick liquid, $\mathrm{M}^{+} 286$ and $22(28 \%), \mathrm{mp} 80^{\circ} \mathrm{C}, \mathrm{M}^{+} 374$. The bromination of 22 with NBS provides dibromide $23(79 \%), \mathrm{mp} 40^{\circ} \mathrm{C}, \mathrm{M}^{+} 530$, 532,534 ($1: 2: 1$). The intermolecular cyclocondensations of $\mathbf{2 3}$ with 6 and 9 provide heterocalix[4]arenes $24(33 \%)$, mp $240^{\circ} \mathrm{C}, \mathrm{M}^{+}$ 504 , and $25(10 \%), \mathrm{mp} 280^{\circ} \mathrm{C} ; \mathrm{M}^{+} 482$ (Scheme 2).

Conformational analysis

(A) Solid state - X-ray. Compound 11, on recrystallization from chloroform-benzene ($1: 1 \mathrm{v} / \mathrm{v}$ mixture), forms a 11 -benzene complex of $1: 1$ stoichiometry. The X-ray crystal structure (Fig. 1) of the 11-benzene complex reveals a typical calix inclusion complex, where $\mathbf{1 1}$ attains partial cone conformation with the isophthaloyl unit (ring A) placed in an opposite (anti) direction to the rest of the rings (Fig. 2). The torsion angles ${ }^{6} \varphi$ and χ around connecting methylene and carbonyl carbons $\mathrm{C}(8)$, $\mathrm{C}(16), \mathrm{C}(23)$ and $\mathrm{C}(31)$ change their signs as,,+-+-++ and -- , indicating a partial cone conformation ${ }^{2 d}$ (Table 1). These four connecting carbons deviate approximately $\pm 0.08 \AA$ from their best fitted mean plane. The interplanar angles between this plane and benzimidazol-2-(1 H)-one ring (C) and

For 11-15
$11 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{X}=\mathrm{CH}$
$12 R^{1}=M e, R^{2}, R^{3}=H, X=N$
$13 R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{NO}_{2}, X=\mathrm{CH}$
$14 R^{1}=\mathrm{Me}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{NO}_{2}, X=\mathrm{CH}$
$15 R^{1}=n$-Oct, $R^{2}, R^{3}=\mathrm{NO}_{2}, X=\mathrm{CH}$

For 3-5
(ii) $\quad 3 b R^{1}=M e, X=N, \quad Y=H \quad$ (ii)

4a $R^{1}=\mathrm{Me}, X=\mathrm{CH}, \quad Y=\mathrm{Br}$
4b $R^{1}=M e, X=N, \quad Y=B r$
$\begin{array}{ll}\text { 5a } \mathrm{R}^{1}=n \text {-Oct, }, X=\mathrm{CH}, & Y=H \\ \text { 5b } \quad \mathrm{R}^{1}=n \text {-Oct }, X=\mathrm{CH}, & Y=\mathrm{Br}\end{array}$ (ii) $^{\text {(}}$

Scheme 1 Reagents and conditions: (i) $\mathrm{AlCl}_{3}, \mathrm{CHCl}_{3}$, stirring, $40^{\circ} \mathrm{C}$; (ii) $\mathrm{NBS}, \mathrm{CCl}_{4}$, reflux; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{TBAHSO} 4$, reflux.

Scheme 2 Reagents and conditions: (i) $\mathrm{AlCl}_{3}, \mathrm{CHCl}_{3}$, stirring, $40^{\circ} \mathrm{C}$; (ii) $\mathrm{NBS}, \mathrm{CCl}_{4}$, reflux; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{TBAHSO}_{4}$, reflux.
isophthaloyl ring (A) are $57.7(1)^{\circ}$ and $53.7(1)^{\circ}$ whereas the two methoxy aryl rings B and B^{\prime} are making dihedral angles $42.8(1)^{\circ}$ and $48.5(1)^{\circ}$, respectively, The dihedral angle between rings B and B^{\prime}, and between A and C, are $91.3(2)^{\circ}$ and $4.1(1)^{\circ}$, respectively, showing that the two methoxy aryl rings are almost perpendicular whereas the benzimidazol-2-(1 H)-one
ring ' C ' and isophthaloyl unit ring ' A ' are parallel to each other (Fig. 2). The two rings in pairs A, C and B, B' are placed 7.4(1) \AA and $6.8(1) \AA$ apart, respectively giving rise to an almost square cavity. Both the methoxy groups are anti with respect to the aryl ring B and B^{\prime} (Table 1) and remain exocyclic to the cavity.

Fig. 1 Prospective view of 11-benzene complex, showing the atomlabelling scheme.

Fig. 2 The side view of the 11-benzene complex, showing partial cone conformation of $\mathbf{1 1}$ and placement of benzene with respect to benzimidazol-2($1 H$)-one of $\mathbf{1 1}$.

Table 1 Important torsion angles $\left({ }^{\circ}\right)$ for complex 11-benzene

$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{N}(1)$	$74.6(7)$
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{N}(1)-\mathrm{C}(1)$	$-86.6(6)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$90.4(6)$
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$-71.1(6)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(17)$	$21.3(8)$
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(22)$	$52.9(7)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{C}(24)$	$-39.7(8)$
$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$-35.0(8)$
$\mathrm{C}(15)-\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$166.8(5)$
$\mathrm{C}(30)-\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(26)$	$-179.2(5)$

The solvent benzene molecule deviates significantly from planarity, having a maximum rms deviation of $0.09 \AA$ from a least-square plane. This may be due to slight disorder in the ring. The benzene molecule exhibits a face-to-face $\pi-\pi$ interaction with the benzimidazol-2 $(1 \mathrm{H})$-one unit at a distance of 4.08 (1) \AA (Fig. 3). The dihedral angle between the mean plane of these two rings is $19.7(2)^{\circ}$. The benzimidazol- $2(1 \mathrm{H})$-one ring also shows an intermolecular face-to-face $\pi-\pi$ interaction with the isophthaloyl ring of the symmetry-related molecule (x, $y+1, z$), at $3.67(1) \mathrm{A}$. Therefore, the benzimidazol-2(1 H$)$-one ring is sandwiched between a benzene molecule on one side and

Fig. 3 Packing diagram of 11-benzene complex showing H-bonding and $\pi-\pi$ interactions.

When $X=N, H^{a}$ proton label is ommited.
Fig. 4 When $\mathrm{X}=\mathrm{N}, \mathrm{H}^{\mathrm{a}}$ proton label is omitted.
Table 2 H-bonding interactions (distance in \AA and angle in ${ }^{\circ}$) for complex 11-benzene

	$\mathrm{X} \cdots \mathrm{O}$	$\mathrm{H} \cdots \mathrm{O}$	$\angle \mathrm{X} \cdots \mathrm{H} \cdots \mathrm{O}$
$\mathrm{C}(11) \cdots \mathrm{O}(1)$ (i)	3.42	2.54	158.8
$\mathrm{C}(15) \cdots \mathrm{O}(1)$ (i)	3.37	2.50	151.5
$\mathrm{C}(8) \cdots \mathrm{O}(3)$ (ii)	3.36	2.51	146.0
$\mathrm{C}(31) \cdots \mathrm{O}(4)$ (ii)	3.39	2.62	146.4
(i) $x,-y, z+1 / 2$; (ii) $x, y+1, z$			

an isophthaloyl ring on other side. This gives a stacking of molecules down the ' b ' axis (Fig. 3).

Apart from these $\pi-\pi$ interactions, different molecules are held together by weak $\mathrm{C} \cdots \mathrm{O}$ intermolecular H -bonds (Fig. 3). Imide carbonyl oxygen $\mathrm{O}(1)$ is H -bonded to carbon $\mathrm{C}(15)$ of the methoxy group and aromatic carbon $\mathrm{C}(11)$ of aryl unit B , whereas the oxygens of the bridging carbonyl groups, $\mathrm{O}(3)$ and $\mathrm{O}(4)$, are H -bonded to the bridging methylene carbons $\mathrm{C}(8)$ and $C(31)$, respectively (Table 2).
(B) Solution phase - ${ }^{1} \mathbf{H}$ NMR. The rationalization of multiplicities and chemical shifts of various proton signals in the ${ }^{1} \mathrm{H}$ NMR spectra and a comparison with their acyclic counterparts provides a useful tool for assigning the geometries of calixarenes. Assignments of the chemical shifts of various protons have been carried out by decoupling experiments and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra. For presentation of these data, as far as possible a uniform labelling pattern (Fig. 4) has been adopted. In the case of pyridine-containing calixarenes, as one CH has been replaced by $=\mathrm{N}$-, the H^{a} label has been omitted.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$ in CDCl_{3} shows one singlet due to $2 \times$ OMe protons, one broad singlet at $\delta 5.10$ due to two NCH_{2} units and signals for ArH . In the aromatic region, irradiation of the triplet ($\delta .54$), which is obviously due to the H^{c} proton, converts the multiplet at $\delta 7.75-7.81$ into a distorted singlet. So, the signals of H^{b} protons are embedded in this multiplet. Similarly, irradiation of the double doublet at $\delta 8.03$ changes the pattern of the multiplet ($\delta 7.02-7.13$), and thus the signals of H^{f} protons are embedded into this multiplet. In the ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 1}$, the triplet (H^{c}) shows one cross-peak at $\delta 7.79$ (H^{b}, doublet). This doublet ($\delta 7.79$) has one

Table 3 Nature of NCH_{2} signals and change in the chemical shift of the protons H^{a} and H^{d} in heterocalixarenes 11-19, 24 and 25 with respect to acyclic precursors

		Change in chemical shift of H^{a} and H^{d}	
	Nature of NCH_{2} protons	H^{a}	H^{d}
$\mathbf{1 1}$	Broad singlet	-0.8	-0.1
$\mathbf{1 6}$	Broad AB quartet	-0.6	-0.5
$\mathbf{1 8}$	AB quartet	-0.6	-0.9
$\mathbf{1 3}$	Sharp singlet	-0.6	<-0.1
$\mathbf{1 4}$	Sharp singlet	-0.6	-0 ± 0.1
$\mathbf{1 5}$	Sharp singlet	-0.6	<-0.1
$\mathbf{1 2}$	AB quartet		-0.7 ± 0.1
$\mathbf{1 7}$	AB quartet		-0.8 ± 0.1
$\mathbf{1 9}$	AB quartet	Sharp singlet	-0.7
$\mathbf{2 4}$	Sharp singlet	-0.7	-1.3 ± 0.1
$\mathbf{2 5}$	Shen	-0.1	

cross-peak at $\delta 7.29\left(\mathrm{H}^{\text {a }}\right.$, singlet). The double doublet ($\left.\delta 8.03\right)$, which is obviously due to the H^{e} proton, has two cross-peaks $\delta 7.75\left(\mathrm{H}^{\mathrm{d}}\right.$, singlet) and $\delta 7.03\left(\mathrm{H}^{\mathrm{f}}\right.$, doublet). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$ in $\mathrm{CDCl}_{3}+$ TFA shows an AB quartet (5.03, $5.43, J 17 \mathrm{~Hz}$) due to the NCH_{2} protons.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in CDCl_{3} shows one singlet at $\delta 4.05$ due to OMe protons, one AB quartet at $\delta 4.95,5.27$ due to two NCH_{2} groups, one singlet at $\delta 6.96$ due to four benzimidazolone aromatic H^{s}, three doublets at $\delta 7.05,7.41$ and 7.53 due to $\mathrm{H}^{\mathrm{f}}, \mathrm{H}^{\mathrm{d}}$ and H^{b}, respectively, one triplet at $\delta 7.87$ due to H^{c} and one double doublet at $\delta 8.11$ due to $2 \times \mathrm{H}^{\mathrm{e}}$ protons. The well defined ${ }^{1} \mathrm{H}$ NMR spectrum and presence of one AB quartet due to the NCH_{2} groups point toward a rigid conformation in solution phase. Correlation in various proton signals has been determined by decoupling experiments.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 16 in $\mathrm{CDCl}_{3}+$ TFA exhibits two singlets $(\delta 3.98,4.01)$ for OMe , three broad singlets $(\delta 4.52,5.05$, 5.42) for two NCH_{2} groups, two doublets $(\delta 7.09,7.13)$ for two aromatic H^{f}, one multiplet ($\delta 8.01-8.10$) for four aromatic H^{e}, $\mathrm{H}^{\mathrm{e}^{\prime}}, \mathrm{H}^{\mathrm{b}}$ and $\mathrm{H}^{\mathrm{b}^{\prime}}$, one singlet $(\delta 7.46)$ for H^{a}, one triplet $(\delta 7.78)$ for H^{c}, one broad singlet ($\delta 7.41$) for H^{d} and $\mathrm{H}^{\mathrm{d}^{\prime}}$, and two doublets $(\delta 6.15,7.59)$ for uracil H . Thus the non-equivalence of $\mathrm{N}-1$ and $\mathrm{N}-3$ positions of the uracil creates a dissymmetry in the calixarene.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}$, two OMe groups appear as two singlets at $\delta 4.05$ and 4.09 , two NCH_{2} group constitute two AB quartets, and remaining protons appear in a well defined pattern in the aromatic region. In the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 8}$, two triplets $(\delta 7.40,7.74)$ have cross-peaks against each other. Obviously, these triplets are due to H^{h} and H^{i}. Also, both of these triplets have cross-peaks at $\delta 7.15$ and 8.15. These two peaks are, obviously, due to H^{g} and H^{j}. Because of H^{g} being ortho to the carbonyl group, the downfield signal ($\delta 8.15$) could be assigned to H^{g}. Accordingly, the doublet at $\delta 7.15$ is due to H^{j}, the triplet at $\delta 7.74$ due to H^{h} and the triplet at $\delta 7.40$ due to H^{i}. Now the triplet at $\delta 7.58\left(\mathrm{H}^{\mathrm{c}}\right)$ has one cross-peak at $\delta 7.85\left(\mathrm{~m}, \mathrm{H}^{\mathrm{b}}\right.$ and $\left.\mathrm{H}^{\mathrm{b}^{\prime}}\right)$ and it has one more cross-peak at $\delta 7.49$ $\left(\mathrm{s}, \mathrm{H}^{\mathrm{a}}\right)$. Similarly, the two multiplets $\delta 7.12-7.22$ and 8.11-8.24 have a correlation and the second multiplet has two cross-peaks at $\delta 6.93$ and 7.01 , which are obviously due to H^{d} and $\mathrm{H}^{\mathrm{d}^{\prime}}$. The well defined nature of the spectrum and the appearance of two NCH_{2} groups as two AB quartets show that the conformation is rigid and the non-equivalence of two cyclic urea nitrogens creates a dissymmetry in the molecule. The heterocalixarenes 17 and 19 show similar patterns in their ${ }^{1} \mathrm{H}$ NMR spectra, which reveal that the conformations are similar.

The change in chemical shifts of H^{a} and H^{d} in these calixarenes as compared with those H in their precursors is given in Table 3. It may be seen that in all heterocalix[4]arenes 11-19, $\mathbf{2 4}, \mathbf{2 5}, \mathrm{H}^{\mathrm{a}}$ are shifted upfield by the same order $(\Delta \delta-0.7 \pm 0.1)$, which points toward a similar placement of the isophthaloyl

Fig. 5 Energy-minimized partial cone structure of calix[4]arene 11.
unit in these calix[4]arenes. The upfield shift of the protons H^{a} $(\Delta \delta-0.7)$ as compared with the acyclic precursors revealed that the isophthaloyl ring is perpendicular to the anisole units and thus H^{a} faces the π-electron ring currents of these adjacent anisole units. Even in 24 and 25 the change in position of the OMe group does not affect their conformations. In the ${ }^{1} \mathrm{H}$ NMR spectra, the NCH_{2} signals of benzimidazol-2($1 H$)one and its nitro derivatives heterocalix[4]arenes (11-15 and 24), appear as singlets (except for 12), but in the case of uracil-based heterocalix[4]arenes (16, 17 and 25), NCH_{2} appears as two broad singlets or as two AB quartets, and in case of quinazoline-2,4(1H,3H)-dione-based heterocalix[4]arenes (18 and 19) NCH_{2} appears as two AB quartets. Apparently, while moving from benzimidazol- $2(1 \mathrm{H})$-one \longrightarrow uracil \longrightarrow quinazoline-2,4($1 H, 3 H$)-dione moieties, the rigidity in conformations of the respective calixarenes increases. As a result, the anisole rings undergo slow rotation (NMR time scale) and H^{d}, which faces the π-cloud of the opposite ring, is shifted upfield by $\delta 0.5-1.3$. Therefore, these heterocalix[4]arenes possess variable flexibility depending on the nature of the heterocyclic moiety(ies).

MMX energy-minimization studies ${ }^{7}$ on these heterocalix[4]arenes reveal that all of them have by-and-large similar conformations. In these conformations the isophthaloyl ring is placed perpendicular to the adjacent phenylene rings, as shown in their X-ray and ${ }^{1} \mathrm{H}$ NMR spectra. The energy-minimized conformation of the representative case of the heterocalix[4]arenes $\mathbf{1 1}$ is shown in Fig. 5.

Therefore, Friedel-Crafts aroylation of 2- or 4-methylanisole or 2-methylphenyl octyl ether with isophthaloyl dichloride or pyridinedicarbonyl dichloride constitutes a key step of the three-step methodology developed for the synthesis of bis-oxobridged heterocalix[4]arenes. The X-ray crystal structure of the 11-benzene complex, as well as ${ }^{1} \mathrm{H}$ NMR and energyminimization studies, define an inward flattened partial cone conformation to these calixarenes. The flexibility in these heterocalixarenes is affected by the nature of the cyclic urea moiety present.

Experimental

General

For general experimental details see ref. 8. In ${ }^{13} \mathrm{C}$ NMR spectral data, the + ve and $-v e$ signals correspond to a DEPT-135 spectrum, and 'ab' corresponds to quaternary carbon signals, which are absent in DEPT-135 but appear in a normal ${ }^{13} \mathrm{C}$ NMR spectrum. 5-Nitrobenzimidazol-2($1 H$)-one and 5,6-dinitrobenzimidazol-2 $(1 H)$-one were prepared according to the reported procedures. ${ }^{9}$

Synthesis of the diones 3a,b, 5a and 22. General procedure

A solution of isophthaloyl dichloride $2 \mathrm{a}(10.0 \mathrm{~g}, 0.05 \mathrm{~mol})$ in chloroform (200 ml) containing suspended AlCl_{3} (anhyd.)
($13.5 \mathrm{~g}, 0.11 \mathrm{~mol}$) was stirred for 2 h . The solution of 2 methylanisole $\mathbf{1 a}(18.3 \mathrm{~g}, 0.15 \mathrm{~mol}$) in chloroform (20 ml) was added dropwise during 30 min . The mixture was stirred for 48 h and then refluxed for 15 min to ensure the completion of the reaction. After cooling in an ice-bath, the reaction mixture was quenched with methanol $(30 \mathrm{ml})$ and washed with water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhyd.). The chloroform layer was distilled and the residue was crystallized from methanol-dichloromethane mixture to give the pure dione $\mathbf{3 a}$. Similarly, the reaction of the pyridinedicarbonyl dichloride $\mathbf{2 b}$ with 2-methylanisole 1a gave the dione 3b. Similar reactions of 4-methylanisole 20 and 2-methylphenyl octyl ether $\mathbf{1 b}$ with isophthaloyl dichloride provided a mixture of mono ketone 21 and dione 22, and 5a, respectively, which were purified by column chromatography.

3a: (65%)) mp $136^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{MeOH}\right) ; ~ m / z ~ 374\left(\mathrm{M}^{+}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 2.26\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.91\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 6.87$ $(2 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.57-7.70(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.96(2 \mathrm{H}, \mathrm{d}$, $J 8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.06(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)($ normal/DEPT135) $16.26\left(+\mathrm{ve}, \mathrm{CH}_{3}\right), 55.49\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 109.04(+\mathrm{ve}, \mathrm{ArCH})$, 126.92 (ab, ArC), 128.26 ($+\mathrm{ve}, \mathrm{ArCH}$), 129.18 (ab, ArC), 130.67 ($+\mathrm{ve}, \mathrm{ArCH}$), 132.60 ($+\mathrm{ve}, \mathrm{ArCH}$), 138.47 ($\mathrm{ab}, \mathrm{ArC)}$, $161.74(\mathrm{ab}, \mathrm{ArC}), 194.90(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1600$, $(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$ (Found: C, 77.2; H, 6.4. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C, $77.01 ; \mathrm{H}, 5.88 \%$).

3b: $(60 \%) ; \mathrm{mp} 155^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}\right) ; m / z 375\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.16\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.89\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 6.79(2 \mathrm{H}, \mathrm{d}, J 8.4$ $\mathrm{Hz}, \mathrm{ArH}), 8.02-8.21(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)($ normal/DEPT135) $16.17\left(+\mathrm{ve}, \mathrm{CH}_{3}\right), 55.51\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 108.96(+\mathrm{ve}, \mathrm{CH})$, 126.32 ($+\mathrm{ve}, \mathrm{CH}$), 128.34 (ab, C), 131.93 ($+\mathrm{ve}, \mathrm{CH}$), 133.73 $(+\mathrm{ve}, \mathrm{CH}), 138.00(+\mathrm{ve}, \mathrm{CH}), 154.59(\mathrm{ab}, \mathrm{C}), 161.97(\mathrm{ab}, \mathrm{C})$, $191.30(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{O})$, 1599 (C=O) (Found: C, 73.7; H, 5.4; N, 3.9. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.60 ; \mathrm{H}, 5.60 ; \mathrm{N}, 3.73 \%)$.

5a: (70\%); mp $58{ }^{\circ} \mathrm{C}$ (from EtOH); m/z $570\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.88\left(6 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.16-1.47\left(20 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{2}\right)$, $1.83\left(4 \mathrm{H}, \mathrm{q}, J 6.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 2.25\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 4.02(4 \mathrm{H}$, $\left.\mathrm{t}, J 6.4 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 6.81(2 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.54-$ $7.67(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 7.93(2 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 8.03$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (normal/DEPT-135) 14.03 (+ve, CH_{3}), $16.22\left(+\mathrm{ve}, \mathrm{CH}_{3}\right), 22.58$ ($-\mathrm{ve}, \mathrm{CH}_{2}$), $26.04\left(-\mathrm{ve}, \mathrm{CH}_{2}\right)$, $29.16\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 29.25\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 31.73\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 68.06$ $\left(-\mathrm{ve}, \mathrm{OCH}_{2}\right), 109.88(+\mathrm{ve}, \mathrm{ArCH}), 126.81(+\mathrm{ve}, \mathrm{ArCH})$, 128.04 (ab, C), 128.94 (ab, C), 130.49 ($+\mathrm{ve}, \mathrm{ArCH}$), 132.36 (ab, C), 132.55 (ab, C), 138.48 (ab, C), 161.15 (ab, C), 194.27 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1605(\mathrm{C}=\mathrm{O}), 1652(\mathrm{C}=\mathrm{O}), 1676$ ($\mathrm{C}=\mathrm{O}$).

21: (17\%); thick liquid; $m / z 286\left(\mathrm{M}^{+}, 100 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.34$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 6.87$ $(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.27(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$, $\mathrm{ArH}), 7.50(1 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.98(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH})$, $8.20(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.40$ $\left(+\mathrm{ve}, \mathrm{CH}_{3}\right), 52.16\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 55.55\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 111.54$ $(+\mathrm{ve}, \mathrm{ArCH}), 118.45(+\mathrm{ve}, \mathrm{ArCH}), 127.65(\mathrm{ab}, \mathrm{ArC}), 128.24$ ($+\mathrm{ve}, \mathrm{ArCH}), 130.19$ (+ve, ArCh), 130.29 (+ve, ArCh), 132.45 (+ve, ArCH), 133.56 (ab, ArC), 137.49 (+ve, ArCH), 137.62 (ab, ArC), 155.48 (ab, ArC), 161.48 (ab, ArC), 166.23 (ab, $\mathrm{C}=\mathrm{O}$), 195.27 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1640$, ($\mathrm{C}=\mathrm{O}$), 1670 (C=O).

22: (28%); mp $80^{\circ} \mathrm{C}$ (from ethyl acetate); m/z $374\left(\mathrm{M}^{+}\right.$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.33\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.65\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 6.84$ $(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.17(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}$, $\mathrm{ArH}), 7.47(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.94(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{ArH})$, $8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (normal/DEPT-135) 20.42 (+ve, Me), 55.60 ($+\mathrm{ve}, \mathrm{OMe}$), 111.62 ($+\mathrm{ve}, \mathrm{ArH}$), 127.99 (+ve , ArCH), 128.35 ($\mathrm{ab}, \mathrm{ArC}$), 130.04 ($\mathrm{ab}, \mathrm{ArC}$), 130.19 (+ve , $\mathrm{ArCH}), 130.90(+\mathrm{ve}, \mathrm{ArCH}), 132.68$ (+ve, ArCH), 133.48 $(+\mathrm{ve}, \mathrm{ArCH}), 138.24(\mathrm{ab}, \mathrm{ArC}), 155.45(\mathrm{ab}, \mathrm{ArC}), 195.39(\mathrm{ab}$, $\mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O}), 1672(\mathrm{C}=\mathrm{O})$ (Found: C, $77.5 ; \mathrm{H}, 5.5 . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 77.01 ; \mathrm{H}, 5.88 \%\right)$.

Synthesis of dibromides $\mathbf{4 a}, \mathbf{b}, \mathbf{5 b}$ and 23. General procedure

A solution of dione $3 \mathrm{a}(4.0 \mathrm{~g}, 0.011 \mathrm{~mol})$ in $\mathrm{CCl}_{4}(200 \mathrm{ml})$ containing suspended NBS ($4.09 \mathrm{~g}, 0.023 \mathrm{~mol}$) and benzoyl peroxide (50 mg) was refluxed for 2 h . The solid that separated was filtered off, the filtrate was distilled under vacuum, and the residue was crystallized from methanol to give pure dibromide 4a. Similarly, bromination of diones $\mathbf{3 b}, \mathbf{5 a}$ and $\mathbf{2 2}$ provided the dibromides $\mathbf{4 b}, \mathbf{5 b}$ and 23 .
4a: (80%); mp $120^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z} 530,532,534\left(\mathrm{M}^{+}, 1: 2: 1\right), 451$, 453, $455\left(\mathrm{M}^{+}-\mathrm{Br}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.98\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.51$ $\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f}}\right), 7.62(1 \mathrm{H}, \mathrm{t}, J 7.6$ $\left.\mathrm{Hz}, \mathrm{H}^{\mathrm{c}}\right), 7.78\left(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{e}}\right), 7.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{d}}\right), 7.94(2 \mathrm{H}$, d, $\left.J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{B}}\right), 8.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{a}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)($ normal/DEPT135) $27.62\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 55.43\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 109.72(+\mathrm{ve}$, $\mathrm{ArCH}), 125.33(\mathrm{ab}, \mathrm{C}), 126.08(+\mathrm{ve}, \mathrm{CH}), 127.99(\mathrm{ab}, \mathrm{C})$, 133.55 ($+\mathrm{ve}, \mathrm{CH}$), 133.81 ($+\mathrm{ve}, \mathrm{CH}$), 137.88 ($+\mathrm{ve}, \mathrm{CH}$), 153.29 (ab, C), $160.74(\mathrm{ab}, \mathrm{C}), 189.54(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1602$ (C=O), $1647(\mathrm{C}=\mathrm{O})$ (Found: C, 53.8; H, 4.1. $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 54.13 ; \mathrm{H}, 3.76 \%)$.
4b: (60%); $\mathrm{mp} 141^{\circ} \mathrm{C}$ (from CHCl_{3}); $\mathrm{m} / \mathrm{z} \mathrm{M}^{+}$(absent), 454, $452\left(\mathrm{M}^{+}-\mathrm{Br}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.98\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.40(4 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{2}\right), 6.91\left(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f}}\right), 8.10-8.30(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}\right)\left(\right.$ normal/DEPT-135) $27.62\left(-\mathrm{ve}, \mathrm{CH}_{2}\right)$, $55.43\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 109.72(+\mathrm{ve}, \mathrm{ArCH}), 125.33(\mathrm{ab}, \mathrm{ArC})$, 126.08 ($+\mathrm{ve}, \mathrm{ArCH}$), 127.99 ($\mathrm{ab}, \mathrm{ArC}$), 133.55 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.81 ($+\mathrm{ve}, \mathrm{ArCH}$), 137.88 ($+\mathrm{ve}, \mathrm{ArCH}$), 153.29 (ab, ArC), 160.73 (abt, C), $189.54(\mathrm{ab}, \mathrm{C}=\mathrm{O})$) $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1601(\mathrm{C}=\mathrm{O})$, 1650 (C=O) (Found; C, 51.9; H, 3.9; N, 2.9. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}_{4}$ requires $\mathrm{C}, 51.78 ; \mathrm{H}, 3.56 ; \mathrm{N}, 2.62 \%$).
5b: (50%); mp $60{ }^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z} 647,649\left(\mathrm{M}^{+}-\mathrm{Br}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.90\left(6 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.17-1.54\left(20 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{2}\right)$, $1.89\left(4 \mathrm{H}, \mathrm{p}, J 6.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 4.09(4 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}$, $\left.2 \times \mathrm{OCH}_{2}\right), 4.54\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{BrCH}_{2}\right), 6.92(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, $\left.2 \times \mathrm{H}^{\mathrm{f}}\right), 7.60\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 7.78(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, $\left.2 \times \mathrm{H}^{\mathrm{e}}\right), 7.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{d}}\right), 7.95\left(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 2 \times \mathrm{H}^{\mathrm{b}}\right), 8.06$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{c}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)\left(\right.$ normal/DEPT-135) $14.03\left(+\mathrm{ve}, \mathrm{CH}_{3}\right)$, $22.62\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 26.12\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 26.22\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 29.18$ (-ve, CH_{2}), $29.32\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 31.76\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 68.02(-\mathrm{ve}$, OCH_{2}), 109.93 ($+\mathrm{ve}, \mathrm{ArCH}$), 126.79 ($+\mathrm{ve}, \mathrm{ArCH}$), 128.14 (ab, C), 128.88 (ab, C), 130.52 ($+\mathrm{ve}, \mathrm{ArCH}$), 132.46 (ab, C), 132.56 (ab, C), 138.48 (ab, C), $161.22(\mathrm{ab}, \mathrm{C}), 193.67(\mathrm{ab}, \mathrm{C}=\mathrm{O})$; $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1603(\mathrm{C}=\mathrm{O}), 1676(\mathrm{C}=\mathrm{O})$.
23: (79%); mp $40{ }^{\circ} \mathrm{C}$ (from methanol); $\mathrm{m} / \mathrm{z} 530,532,534$ $(1: 2: 1) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) ; 4.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.54(4 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{2}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f}}\right), 7.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{d}}\right), 7.51(2 \mathrm{H}$, d, $\left.J 8.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{e}}\right), 7.53\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 8.00(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}$, $\left.\mathrm{H}^{\mathrm{b}}\right), 8.14\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{a}}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)($ normal/DEPT-135) 32.64 $\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 55.63$ ($+\mathrm{ve}, \mathrm{OMe}$), 111.80 ($+\mathrm{ve}, \mathrm{ArCH}$), 127.89 (ab, ArC), 128.27 ($+\mathrm{ve}, \mathrm{ArCH}$), 130.03 ($+\mathrm{ve}, \mathrm{ArCH}$), 130.77 (ab, ArC), 131.02 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.05 ($+\mathrm{ve}, \mathrm{ArCH}$), 134.59 $(+\mathrm{ve}, \mathrm{ArCH}), 137.63$ (ab, ArC), 157.18 (ab, ArC), 194.59 (ab, $\mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1601(\mathrm{C}=\mathrm{O}), 1707$ (CO) (Found: C, 53.8; $\mathrm{H}, 3.5 . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 54.13 ; \mathrm{H}, 3.76 \%\right)$.

Synthesis of heterocalix[4]arenes 11-19, 24, 25. General procedure

A suspension of $\mathbf{4 a}(2.66 \mathrm{~g}, 0.005 \mathrm{~mol})$ in acetonitrile $(800 \mathrm{ml})$ containing benzimidazol- $2(1 \mathrm{H}$)-one ($0.67 \mathrm{~g}, 0.005 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ $(10 \mathrm{~g})$ and $\mathrm{TBAHSO}_{4}(50 \mathrm{mg})$ was heated to reflux and progress of reaction was monitored by TLC. After completion of reaction, $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and washed with acetonitrile. The filtrate and washings were combined, the solvent was distilled off, and the residue was subjected to column chromatography by using ethyl acetate-chloroform ($20: 80$) as eluent to isolate product $\mathbf{1 1}$. Similarly, reactions of $\mathbf{4 a}$ with 5 -nitrobenzimidazol$2(1 H)$-one 7, 5,6-dinitrobenzimidazol-2(1 H)-one 8, uracil 9 and quinazole-2, $4(1 \mathrm{H}, 3 \mathrm{H})$-dione $\mathbf{1 0}$ provided the respective heterocalix[4]arenes 13, 14, 16 and 18, respectively. The reactions of $\mathbf{4 b}$ with heterocycles $\mathbf{6}, \mathbf{9}$ and $\mathbf{1 0}$ provided heterocalix-
arenes 12, 17 and 19; 5a with $\mathbf{8}$ gave 15; and $\mathbf{2 3}$ with $\mathbf{6}$ and 9 gave 24 and 25 , respectively.

11: (70%) (30 h); mp $352-354^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$); m / z $504\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 5.10(4 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2 \times \mathrm{NCH}_{2}\right), \quad 7.02-7.08\left(6 \mathrm{H}, \mathrm{m}, \quad 2 \times \mathrm{H}^{\mathrm{f}}, \quad 2 \times \mathrm{H}^{\mathrm{g}}, \quad 2 \times \mathrm{H}^{\mathrm{h}}\right)$, $7.29\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{\mathrm{a}}\right), 7.54\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 7.75(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2 \times \mathrm{H}^{\mathrm{d}}\right), 7.77\left(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}\right), 8.03\left(2 \mathrm{H}, \mathrm{dd}, J_{1} 8.6, J_{2} 2.0\right.$ $\left.\mathrm{Hz}, \quad 2 \times \mathrm{H}^{\mathrm{e}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (normal/DEPT-135) 37.28 (-ve , NCH_{2}), $55.98\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 108.22(+\mathrm{ve}, \mathrm{ArCH}), 111.36$ ($+\mathrm{ve}, \mathrm{ArCH}$), 121.44 ($+\mathrm{ve}, \mathrm{ArCH}$), 124.89 (ab, ArC), 125.27 ($+\mathrm{ve}, \quad \mathrm{ArCH}), 128.91$ (ab, ArC), 129.56 (ab, ArC), 130.41 ($+\mathrm{ve}, \mathrm{ArCH}$), 131.17 ($+\mathrm{ve}, \mathrm{ArCH}$), 131.77 ($+\mathrm{ve}, \mathrm{ArCH}$), 132.73 ($+\mathrm{ve}, \mathrm{ArCH}$), 139.21 (ab, ArC), 160.54 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), 195.78 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1699(\mathrm{C}=\mathrm{O}), 1648(\mathrm{C}=\mathrm{O})$ (Found: $\mathrm{C}, 73.8 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.7 \% . \mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 73.81$; H, 4.76; N, 5.56\%).

12: $(45 \%)(30 \mathrm{~h}) ; \mathrm{mp} 299^{\circ} \mathrm{C}$ (from CHCl_{3}); m/z $505\left(\mathrm{M}^{+}\right.$, $10 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.95$ and $5.27(4 \mathrm{H}$, AB quartet, $J 16.0 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2}$), $6.96\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{H}^{\mathrm{s}}, 2 \times \mathrm{H}^{\mathrm{h}}\right)$, $7.05\left(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, 2 \times \mathrm{H}^{\mathrm{f}}\right), 7.41\left(2 \mathrm{H}, \mathrm{d}, J 2.1 \mathrm{~Hz}, 2 \times \mathrm{H}^{\mathrm{d}}\right)$, $7.53\left(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 2 \times \mathrm{H}^{\mathrm{b}}\right), 7.87\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 8.11$ ($\left.2 \mathrm{H}, \mathrm{dd}, J_{1} 8.6, J_{2} 2.1 \mathrm{~Hz}, 2 \times \mathrm{H}^{\mathrm{e}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)($ normal/DEPT135) $37.12\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right), 55.96\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 108.00(+\mathrm{ve}$, $\mathrm{ArCH}), 111.14$ ($+\mathrm{ve}, \mathrm{ArCH}$), 121.40 ($+\mathrm{ve}, \mathrm{ArCH}$), 123.50 (+ve , $\mathrm{ArCH}), 124.63(\mathrm{ab}, \mathrm{ArC}), 128.71(\mathrm{ab}, \mathrm{ArC}), 129.12(\mathrm{ab}, \mathrm{ArC})$, 130.84 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.01 ($+\mathrm{ve}, \mathrm{ArCH}$), 137.52 ($+\mathrm{ve}, \mathrm{ArCH}$), 154.30 (ab, ArC), 156.93 (absent, ArC), 160.88 (ab, C=O), 193.99 (ab, C=O); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1709(\mathrm{C}=\mathrm{O}), 1666(\mathrm{C}=\mathrm{O})$, 1601 (C=O) (Found: C, 7.16; H, 4.3; N, 8.5. $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.29 ; \mathrm{H}, 4.55 ; \mathrm{N}, 8.31 \%$).

13: $(35 \%)(30 \mathrm{~h}) ; \mathrm{mp}>355^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$); m / z $549\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right) 4.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.28\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{2}\right), 7.15\left(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f}}, \mathrm{H}^{\mathrm{f}}\right)$, $7.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{a}}\right), 7.42\left(1 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{i}}\right), 7.74(1 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}$, $\left.\mathrm{H}^{\mathrm{c}}\right), 7.82\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{\mathrm{d}}, \mathrm{H}^{\mathrm{d}}\right), 7.96-8.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{b}}, \mathrm{H}^{\mathrm{b}^{\prime}}, \mathrm{H}^{\mathrm{e}}\right.$ and $\left.\mathrm{H}^{\mathrm{e}^{\prime}}\right), 8.20\left(1 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{h}}\right), 8.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{s}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$ + TFA) (normal/DEPT-135) 38.40 ($-\mathrm{ve}, \mathrm{NCH}_{2}$), 56.33 (+ve, $\left.\mathrm{OCH}_{3}\right), 106.48(+\mathrm{ve}, \mathrm{ArCH}), 109.72(+\mathrm{ve}, \mathrm{ArCH}), 112.70$ (+ve, ArCH), 120.24 (absent, C), 124.31 (ab, C), 127.25 (+ve, $\mathrm{ArCH}), 128.82$ (ab, C), 129.44 (ab, C), 129.53 (ab, C), 130.75 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.35 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.54 ($+\mathrm{ve}, \mathrm{ArCH}$), 134.28 (ab, C), 138.37 (ab, C), 138.46 (ab, C), 143.50 (ab, C), 162.68 (ab, C), $162.79(\mathrm{ab}, \mathrm{C}), 201.12(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1650$ (C=O), 1726 (C=O) (Found: C, 67.1; H, 4.3; N, 7.5. $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 67.76 ; \mathrm{H}, 4.19 ; \mathrm{N}, 7.65 \%)$.

14: (45%) (30 h); mp $>355^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$); m/z 594 $\left(\mathrm{M}^{+}\right) ;\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right) 4.14\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 5.30(4 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{NCH}_{2}\right), 7.17(2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.81(1 \mathrm{H}, \mathrm{t}, J 7.8$ $\mathrm{Hz}, \mathrm{ArH}), 7.98-8.10(9 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{ArCH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right)$ (normal/DEPT-135) 36.22 ($-\mathrm{ve}, \mathrm{NCH}_{2}$), 58.31 ($+\mathrm{ve}, \mathrm{OCH}_{3}$), 106.73 (+ve, ARCH), 112.49 (+ve, ArCH), 123.40 (ab, C), 127.48 ($+\mathrm{ve}, \mathrm{ArCH}$), 129.84 (ab, C), 130.85 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.27 ($+\mathrm{ve}, \quad \mathrm{ArCH}$), 134.00 ($+\mathrm{ve}, \quad \mathrm{ArCH}$), 134.40 (+ve, $\mathrm{ArCH}), 138.05(\mathrm{ab}, \mathrm{C}), 139.01(\mathrm{ab}, \mathrm{C}), 155.73$ (ab, C), 161.46 (ab, $\mathrm{C}=\mathrm{O})$, $199.63(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1652(\mathrm{C}=\mathrm{O}), 1725$ (C=O) (Found: C, 62.7; H, 3.5; N, 9.1. $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{9}$ requires C, 62.62; H, 3.70; N, 9.42\%).

15: (12%) (30 h); mp 319-320 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{MeOH}$); $791\left(\mathrm{M}^{+}+1\right) ; m / z(\mathrm{ES}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(6 \mathrm{~h}, \mathrm{t}, J 6.6 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{3}\right), 1.26-1.60\left(20 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{2}\right), 2.03(4 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{2}\right), 4.21\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OCH}_{2}\right), 5.20\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{2}\right)$, $7.06(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 7.75$ $(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.88(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArCH}), 7.95-8.01$ $(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)($ normal/DEPT-135) 14.05 $\left(+\mathrm{ve}, \mathrm{CH}_{3}\right), 22.63\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 26.04\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 29.16(-\mathrm{ve}$, CH_{2}), 29.34 ($-\mathrm{ve}, \mathrm{CH}_{2}$), 31.78 ($-\mathrm{ve}, \mathrm{CH}_{2}$), 37.73 ($-\mathrm{ve}, \mathrm{NCH}_{2}$), $69.53\left(-\mathrm{ve}, \mathrm{OCH}_{2}\right), 105.32$ ($+\mathrm{ve}, \mathrm{ArCH}$), 112.75 ($+\mathrm{ve}, \mathrm{ArCH}$), 123.20 (ab, C), 126.14 ($+\mathrm{ve}, \mathrm{ArCH}$), 130.09 ($+\mathrm{ve}, \mathrm{ArCH}$), 130.85 (ab, C), 130.94 (ab, C), 132.42 (+ve , ArCH), 133.09 $(+\mathrm{ve}, \mathrm{ArCH}), 133.47$ ($+\mathrm{ve}, \mathrm{ArCH}$), 138.68 (ab, C), 138.88
(ab, C), 155.07 (ab, C), 159.67 (ab, C=O), 195.25 (ab, C=O); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1699(\mathrm{C}=\mathrm{O}), 1648(\mathrm{C}=\mathrm{O})$ (Found: C, 68.7; H, 6.3; $\mathrm{N}, 7.5 . \mathrm{C}_{45} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{9}$ requires C, $68.35 ; \mathrm{H}, 6.33 ; \mathrm{N}, 7.09 \%$).

16: $(60 \%)(30 \mathrm{~h}) ; \mathrm{mp} 333-335^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$); m / z $482\left(\mathrm{M}^{+}, 8.4 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right) 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.52\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 5.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right)$, $5.42\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NCH}_{2}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{H}^{\mathrm{g}}\right), 7.09(1 \mathrm{H}$, d, $\left.J 8.4 \mathrm{~Hz}, \mathrm{H}^{\text {fif' }}\right), 7.13\left(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f} / \mathrm{f}}\right), 7.41(2 \mathrm{H}$, br s, $\left.\mathrm{H}^{\mathrm{d}^{\prime}}\right), 7.46\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{a}}\right), 7.59\left(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{H}^{\mathrm{h}}\right), 7.78(1 \mathrm{H}$, $\left.\mathrm{t}, J 6.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 8.01-8.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{b}}, \mathrm{H}^{\mathrm{b}^{\prime}}, \mathrm{H}^{\mathrm{e}}\right.$ and $\left.\mathrm{H}^{\mathrm{e}^{\prime}}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}+\right.$ TFA $)\left(\right.$ normal/DEPT-135) $40.20\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right)$, $48.89\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right), 56.04\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 56.22\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right)$, 101.69 (+ve, UC-5), 112.05 (+ve, ArCH), 112.10 ($+\mathrm{ve}, \mathrm{ArCH}$), 128.48 ($+\mathrm{ve}, \mathrm{ArCH}$), 129.12 ($\mathrm{ab}, \mathrm{ArC}$), 130.84 ($+\mathrm{ve}, \mathrm{ArCH}$), 132.86 ($+\mathrm{ve}, \mathrm{ArCH}$), 133.24 (+ve, ArCH), 134.30 (+ve, $\mathrm{ArCH}), 134.70$ ($+\mathrm{ve}, \mathrm{ArCH}$), 137.63 (ab, ArC), 138.14 (ab, ArC), 145.96 (+ve, UC-6), 151.78 (ab, C=O), 166.45 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), $200.57(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1715(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$ (Found: C, 70.0; H, 4.5, N, 5.4. $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires C, 69.71; H, 4.56; N, 5.81\%).

17: $\left(40 \%\right.$) (30 h); mp $335{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{CH}_{3} \mathrm{OH}$); m / z $483\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right) 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.69,5.34\left(2 \mathrm{H}, \mathrm{AB}\right.$ quartet, $\left.J 14.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.94$ and $5.49\left(2 \mathrm{H}, \mathrm{AB}\right.$ quartet, $\left.J 14.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.07(1 \mathrm{H}, \mathrm{d}, J 7.8$ $\left.\mathrm{Hz}, \mathrm{H}^{\mathrm{g}}\right), 7.10\left(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{H}^{\text {fff }}\right), 7.12(1 \mathrm{H}, \mathrm{d}, J 7.8$ $\left.\mathrm{Hz}, \mathrm{H}^{\mathrm{r} / \mathrm{ff}}\right), 7.41\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{\mathrm{d/d}}\right), 7.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{\mathrm{d}^{\prime / d}}\right), 7.58(1 \mathrm{H}$, d, $\left.J 7.8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{h}}\right), 8.11-8.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{b}}, \mathrm{H}^{\mathrm{b}^{\prime}}, \mathrm{H}^{\mathrm{e}}, \mathrm{H}^{\mathrm{e}^{\prime}}\right), 8.54(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}^{\mathrm{c}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right)$ (normal/DEPT-135) 33.22 (-ve , $\left.\mathrm{NCH}_{2}\right), 42.27\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right), 55.99\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 56.10(+\mathrm{ve}$, OCH_{3}), 101.17 ($+\mathrm{ve}, \mathrm{UC}-5$), 111.54 ($+\mathrm{ve}, \mathrm{ArCH}$), $123.18(\mathrm{ab}$, $\mathrm{ArC}), 125.14$ (+ve, ArCH), 125.42 ($+\mathrm{ve}, \mathrm{ArCH}$), 127.69 (ab, ArC), 128.45 ($\mathrm{ab}, \mathrm{ArC}$), 130.44 (+ve, ArCH), 130.70 (+ve , ArCH), 131.37 ($+\mathrm{ve}, \mathrm{ArCH}$), 132.00 ($+\mathrm{ve}, \mathrm{ArCH}$), 139.44 (+ve , $\mathrm{ArCH}), 144.40$ ($+\mathrm{ve}, \mathrm{UC}-6$), 151.15 (ab, ArC), 155.30 (ab, ArC), 156.00 (ab, ArC), 161.51 (ab, C), 162.42 (ab, C=O), 164.92 (ab, $\mathrm{C}=\mathrm{O}), 193.92(\mathrm{ab}, \mathrm{C}=\mathrm{O}), 194.10(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1717$ (C=O), 1668 (C=O), 1602 (C=O) (Found: C, 67.2; H, 4.1; N, 8.9. $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $67.08 ; \mathrm{H}, 4.35 ; \mathrm{N}, 8.70 \%$).

18: $(65 \%)(30 \mathrm{~h})$; mp $337-339^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{CH}_{3} \mathrm{OH}$); $\mathrm{m} / \mathrm{z} 532\left(\mathrm{M}^{+}, 15.8 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right) 4.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.00$ and $5.85(2 \mathrm{H}, \mathrm{AB}$ quartet, $J 1.82 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}\right), 5.26$ and $5.55\left(2 \mathrm{H}, \mathrm{AB}\right.$ quartet, $\left.J 18.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.93$ $\left(1 \mathrm{H}, \mathrm{d}, J 1.3 \mathrm{~Hz}, \mathrm{H}^{\mathrm{dd}} \mathrm{d}^{\prime}\right), 7.01\left(1 \mathrm{H}, \mathrm{d}, J 1.3 \mathrm{~Hz}, \mathrm{H}^{\mathrm{d} / \mathrm{d}^{\prime}}\right), 7.12-7.22$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{f}}, \mathrm{H}^{\mathrm{f}^{\mathrm{i}}}\right.$ and $\left.\mathrm{H}^{\mathrm{j}}\right), 7.40\left(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{i}}\right), 7.49(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}^{\mathrm{a}}\right), 7.58\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 7.74\left(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{h}}\right), 7.83-$ $7.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{b}}\right.$ and $\left.\mathrm{H}^{\mathrm{b}}\right), 8.11-8.24\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{e}}, \mathrm{H}^{\mathrm{e}^{\mathrm{e}}}\right.$ and $\left.\mathrm{H}^{\mathrm{g}}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right)\left(\right.$ normal/DEPT-135) $40.79\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right)$, $43.56\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right), 56.17\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 56.76\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right)$, 111.89 ($+\mathrm{ve}, \mathrm{CH}$), 111.98 ($+\mathrm{ve}, \mathrm{CH}$), 114.48 (ab, C), 114.75 ($+\mathrm{ve}, \mathrm{CH}$), $122.29(\mathrm{ab}, \mathrm{C}), 123.60(\mathrm{ab}, \mathrm{C}), 125.50(+\mathrm{ve}, \mathrm{CH})$, $127.54(+\mathrm{ve}, \mathrm{CH}), 127.68(+\mathrm{ve}, \mathrm{CH}), 127.94$ ($+\mathrm{ve}, \mathrm{CH}$), 128.30 (ab, C), 128.43 (ab, C), 129.63 (+ve, CH), $130.45(+\mathrm{ve}, \mathrm{CH})$, 132.41 ($+\mathrm{ve}, \mathrm{CH}$), 132.96 ($+\mathrm{ve}, \mathrm{CH}$), 133.61 ($+\mathrm{ve}, \mathrm{CH}$), 133.87 $(+\mathrm{ve}, \mathrm{CH}), 137.11(\mathrm{ab}, \mathrm{C}), 137.65(+\mathrm{ve}, \mathrm{CH}), 138.10(\mathrm{ab}, \mathrm{C})$, 139.72 (ab, C), $151.15(\mathrm{ab}, \mathrm{C}), 162.63(\mathrm{ab}, \mathrm{C}), 162.83(\mathrm{ab}, \mathrm{C})$, $164.10(\mathrm{ab}, \mathrm{C}), 199.50(\mathrm{ab}, \mathrm{C}=\mathrm{O}), 200.28(\mathrm{ab}, \mathrm{C}=\mathrm{O})$) $v_{\max }(\mathrm{KBr} /$ $\mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{O})$ (Found: C, 72.1; H, 4.1. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires C, $72.18 ; \mathrm{H}, 4.51 \%$).

19: (45%); mp $320^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}+\mathrm{CH}_{3} \mathrm{OH}$); m/z 533 $\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right) 4.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.02$ and $5.77\left(2 \mathrm{H}, \mathrm{AB}\right.$ quartet, $\left.J 18.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 5.19$ and $5.56\left(2 \mathrm{H}, \mathrm{AB}\right.$ quartet, $\left.J 16.6 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.88(2 \mathrm{H}, \mathrm{d}$, $J 10.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.08-7.24(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{t}$, $J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.71(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.88(2 \mathrm{H}, \mathrm{d}, J 7.8$ $\mathrm{Hz}, 2 \times \mathrm{ArH}), 8.15-8.32(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}\right)$ (normal/DEPT-135) $40.31\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right), 42.60\left(-\mathrm{ve}, \mathrm{NCH}_{2}\right)$, $56.15\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 111.71(+\mathrm{ve}, \mathrm{CH}), 114.37(\mathrm{ab}, \mathrm{C}), 114.53$ $(+\mathrm{ve}, \mathrm{CH}), 122.25(\mathrm{ab}, \mathrm{C}), 123.72(\mathrm{ab}, \mathrm{C}), 124.37(+\mathrm{ve}, \mathrm{CH})$, 124.94 ($+\mathrm{ve}, \mathrm{CH}$), $125.00(\mathrm{ab}, \mathrm{C}), 127.16(\mathrm{ab}, \mathrm{C}), 127.55(\mathrm{ab}, \mathrm{C})$, $128.08(+\mathrm{ve}, \mathrm{CH}), 128.79(+\mathrm{ve}, \mathrm{CH}), 129.15(+\mathrm{ve}, \mathrm{CH}), 131.16$
(+ve, CH), 131.77 (+ve, CH), $136.56(+\mathrm{ve}, \mathrm{CH}), 139.26(\mathrm{ab}$, C), $140.02(+\mathrm{ve}, \mathrm{CH}), 150.55(\mathrm{ab}, \mathrm{C}), 154.44(\mathrm{ab}, \mathrm{C}), 155.14(\mathrm{ab}$, C), 162.31 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), 162.68 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), 192.82 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), 193.40 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1707(\mathrm{C}=\mathrm{O}), 1665(\mathrm{C}=\mathrm{O})$, 1601 (C=O) (Found: C, 69.9; H, 3.8; N, 7.5. $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $69.79 ; \mathrm{H}, 4.32 ; \mathrm{N}, 7.88 \%)$.

24: (33%); mp $240{ }^{\circ} \mathrm{C}$ (from AcOH); m/z $504\left(\mathrm{M}^{+}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{TFA}+\mathrm{CDCl}_{3}\right) 3.75\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 5.06(4 \mathrm{H}$, br s, $\left.2 \times \mathrm{CH}_{2}\right), 6.94\left(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f}}\right), 7.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{d}}\right), 7.27-7.30$ $\left(4 \mathrm{H}, \mathrm{m}\right.$, benzimid.-H), $7.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{a}}\right), 7.57(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, $\left.\mathrm{H}^{\mathrm{e}}\right), 7.73\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right), 8.32\left(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{TFA}+\mathrm{CDCl}_{3}\right)$ (normal/DEPT-135) 44.71 (-ve, $\left.\mathrm{CH}_{2}\right)$, $55.58\left(+\mathrm{ve}, \mathrm{OCH}_{3}\right), 109.79(+\mathrm{ve}, \mathrm{CH}), 112.07(+\mathrm{ve}, \mathrm{CH})$, 112.62 ($+\mathrm{ve}, \mathrm{CH}$), 124.55 ($+\mathrm{ve}, \mathrm{CH}$), 126.79 (ab, C), 128.16 $(+\mathrm{ve}, \mathrm{ArCH}), 129.09(\mathrm{ab}, \mathrm{C}), 129.49(\mathrm{ab}, \mathrm{C}), 132.56(\mathrm{ab}, \mathrm{C})$, 134.62 ($+\mathrm{ve}, \mathrm{ArCH}$), 135.36 ($+\mathrm{ve}, \mathrm{CH}$), 136.55 ($+\mathrm{ve}, \mathrm{CH}$), 137.37 (ab, C), $159.57(\mathrm{ab}, \mathrm{C}), 208.92(\mathrm{ab}, \mathrm{C}=\mathrm{O}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1700 (C=O), 1665 (C=O) (Found: C, 73.5; H, 4.5; N, 5.3. $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, $\left.73.81 ; \mathrm{H}, 4.76 ; \mathrm{N}, 5.56 \%\right)$.
25: (10%); mp $280^{\circ} \mathrm{C}$ (from chloroform + ethanol); $m / z 482$ $\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.75\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right)$, $4.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 5.80(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{U} 5-\mathrm{H}), 6.86(1 \mathrm{H}, \mathrm{d}$, $\left.J 8.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{fff}}\right), 6.89\left(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{f} / \mathrm{f}}\right)$, $7.26(1 \mathrm{H}, \mathrm{d}, J 8.2$ $\left.\mathrm{Hz}, \mathrm{H}^{\mathrm{e}^{\mathrm{z}} / \mathrm{e}}\right), 7.35(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{U} 6-\mathrm{H}), 7.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{d}}\right.$, $\left.\mathrm{H}^{\mathrm{d}^{\prime}}\right), 7.69\left(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{ele}}\right), 7.74\left(1 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right)$, $8.42\left(2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b} / b^{\prime}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (normal/DEPT-135) $42.80\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 53.62\left(-\mathrm{ve}, \mathrm{CH}_{2}\right), 101.67$ (+ve, UC-5), $111.90(+\mathrm{ve}, \mathrm{ArH}), 112.06$ (ab, ArC), 126.34 (ab, ArC), 127.04 (ab, ArC), 127.97 (ab, ArC), 128.16 (ab, ArC), 129.45 (ab, ArC), 130.37 (+ve, ArCH), 130.80 (+ve, ArCH), 131.80 (+ve, $\mathrm{ArCH}), 133.91(+\mathrm{ve}, \mathrm{ArCH}), 134.61(+\mathrm{ve}, \mathrm{ArCH}), 134.64$ $(+\mathrm{ve}, \mathrm{ArCH}), 137.34(\mathrm{ab}, \mathrm{ArC}), 137.83(\mathrm{ab}, \mathrm{ArC}), 141.95(+\mathrm{ve}$, UC-6), 150.27 (ab, ArC), 157.61 (ab, ArC), 162.74 (ab, ArC), 175.92 (ab, C=O), 194.06 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), 205.35 ($\mathrm{ab}, \mathrm{C}=\mathrm{O}$), 216.80 (ab, C=O); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1675,1660,1708(\mathrm{C}=\mathrm{O})$ (Found: C, 70.1; H, 4.4; $\mathrm{N}, 5.7 . \mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires C, $69.71 ; \mathrm{H}, 4.56$; N , 5.81%).

X-Ray structure analysis of 11-benzene complex \dagger

Crystals of 11-benzene were obtained by slow evaporation from chloroform-benzene ($1: 1 \mathrm{v} / \mathrm{v}$) mixture. All intensity-data measurements were carried out at room temperature on a Siemens P4 four-circle diffractometer with graphite-monochromatized $\mathrm{MoK} \alpha$ radiation $(\lambda=0.7169 \AA$). The crystals with molecular formula $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ and relative molecular mass 582.63 belonged to the monoclinic septum, $C 2 / c$ space group with $a=35.636(4), b=9.226(1), c=17.779(2) \AA, V=5839.1(11) \AA^{3}$ $Z=8$. A total of 3885 reflections were collected, out of which 3814 were independent ($R_{\text {int }}=0.0239$) and 2245 were observed [$I>2 \sigma(I)$]. The data were corrected for Lorentz and polarization effects. No absorption correction was applied.
The structure was solved by direct methods using SHELXTL-PC. ${ }^{10} \mathrm{~A}$ full matrix least-squares refinement on F^{2}, with anisotropic thermal parameters for all the non-hydrogen atoms, showed disorder in the benzene molecule, as inferred from the short $\mathrm{C}-\mathrm{C}$ distances and high thermal parameters of three carbons [$\mathrm{C}(35)$ to $\mathrm{C}(37)$]. In the initial stages of refinement the benzene molecule $[\mathrm{C}(32)-\mathrm{C}(37)]$ was refined as a rigid group. At final stages of the refinement it was made free but $\mathrm{C}-\mathrm{C}$ distances were fixed at 1.390 (3) \AA. No attempt was made to resolve the disordered atoms. All the hydrogens were fixed geometrically and made to ride on their respective atoms.

[^0]The weighting scheme used was

$$
w=\frac{1}{\left[\sigma^{2} F_{\mathrm{o}}^{2}+(0.1414 P)^{2}+4.63 P\right]}
$$

where $P=\left[F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right] / 3$
A final refinement ${ }^{11}$ of 397 parameters with six restraints gave $R=0.0717, w R=0.1967$ for observed reflections and $R=0.1286, w R=0.2484$ for all reflections.

Acknowledgements

We thank UGC and DST, New Delhi for financial assistance.

References

1 Heterocalixarenes Parts 1 and 2, see (a) S. Kumar, G. Hundal, D. Paul, M. S. Hundal and H. Singh, J. Org. Chem., 1999, 64, 7717; (b) S. Kumar, D. Paul and H. Singh, J. Inclusion Phenom. Mol. Recognit., 1999, in press.
2 (a) C. D. Gutsche, Calixarenes, Monographs in Supramolecular Chemistry, ed. J. F. Stoddard, Royal Society Chemistry, Cambridge, 1989, vol. 1; (b) V. Bohmer and J. Vicen, Calixarenes: A Versatile Class of Macrocyclic Compounds, ed. V. Bohmer and J. Vicen, Kluwer Academic, The Netherlands, 1991; (c) V. Bohmer, Angew. Chem., Int. Ed. Engl., 1995, 34, 713; (d) A. Ikeda and S. Shinkai, Chem. Rev., 1997, 97, 1713.
3 (a) P. A. Gale, J. K. Sessler and V. Kral, Chem. Commun., 1998, 1; (b) B. Turner, M. Botoshansky and Y. Eichen, Angew. Chem., Int. Ed., 1998, 37, 2475; (c) G. R. Newkome, Y. J. Joo and F. R. Fronczek, J. Chem. Soc., Chem. Commun., 1987, 857; (d) J. A. E. Pratt and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1988, 13; (e) P. R. Dave and G. Doyle, J. Org. Chem., 1995, 60, 6946; (f) P. R. Dave, G. Doyle, T. Axenrod, H. Yazdekhaski and H. L. Ammon, Tetrahedron Lett., 1992, 33, 1021; (g) E. Weber, J. Trepte, K. Gloe, M. Piel, M. Kzugler, V. C. Kravtsov, Y. A. Simonov, J. Lipkovski and E. V. Ganin, J. Chem. Soc., Perkin Trans. 2, 1996, 2359; (h) J. Trepte, M. Kzugler, K. Gloe and E. Weber, Chem. Commun., 1997, 1461; (i) S. Shinoda, M. Tadokoro, H. Tsukube and R. Arakawa, Chem. Commun., 1998, 181; (j) V. Kral, P. A. Gale, P. Anzenbacher Jr., K. Jursikova, V. Lynch and J. L. Sessler, Chem. Соттип., 1998, 8.
4 (a) G. Satori, R. Maggi, F. Bigi, A. Arduini, A. Pastorio and C. Porta, J. Chem. Soc., Perkin Trans. 1, 1994, 1657; (b) S. E. Biali, V. Bohmer, S. Cohen, G. Ferguson, C. Gruttner, F. Grynszpan, E. F. Paulus, I. Thonderf and W. Vogt, J. Am. Chem. Soc., 1996, 118, 12938; (c) M. Bergamaschi, F. Bigi, M. Lanfranchi, R. Maggi, A. Postorio, M. A. Pellinghelli, F. Peri, C. Porta and G. Sartori, Tetrahedron, 1997, 53, 13037; (d) K. Ro, S. Izawa, T. Ohba, Y. Ohba and T. Sone, Tetrahedron Lett., 1996, 37, 5959.
5 (a) A. A. Moshfegh, R. Badri, M. Hojjatie, M. Kaviani, B. Naderi, A. H. Nazmi, M. Ramezanian, B. Roozpeikar and G. H. Hakimelahi, Helv. Chim. Acta, 1982, 65, 1221; (b) A. A. Moshfegh, F. Beladi, A. S. Hasseini, S. Tofigh and G. H. Hakimelahi, Helv. Chim. Acta, 1982, 65, 1264; (c) A. Ninagawa, K. Cho and H. Matsuda, Makromol. Chem., 1985, 186, 1397; (d) G. Gormer, K. Seiffarth and M. Schylz, Makromol. Chem., 1990, 191, 81.

6 (a) P. Timmermman, S. Harkema, G. J. V. Hummel, W. Verboom and D. N. Reinhoudt, J. Inclusion Phenom. Mol. Recognit., 1993, 16, 189; (b) F. Ugozzoli and G. D. Andreetti, J. Inclusion Phenom. Mol. Recognit., 1992, 13, 337.
7 The energy-minimization studies have been performed by using PCMODEL, provided by Serena Software.
8 S. Kumar, M. S. Hundal, G. Hundal, P. Singh, V. Bhalla and H. Singh, J. Chem. Soc., Perkin Trans. 2, 1998, 925.

9 L. S. Efros and A. V. El'tsov, Zh. Obsch. Khim., 1957, 27, 127 (Chem. Abstr., 1957, 51, 12882h).
10 G. M. Sheldrick, SHELXTL-PC Version 5.03, Siemens Analytical Instruments Inc., Madison, WI, 1995.
11 XSCAN: Siemens X-ray Single Crystal Analysis System Software Package, version 2.1, Siemens Analytical Instruments Inc., Madison, WI.

Paper a906883j

[^0]: \dagger CCDC reference number 207/395. See http://www.rsc.org/suppdata/ p1/a9/a906883/ for crystallographic files in .cif format.

