
This article was downloaded by:

On: 17 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597304>

Heterocycles in Organic Synthesis-ii¹ Synthesis of Ethylenedisulphide Derivatives (-S-CH₂-CH₂-S-) from 2,3-Dihydrothiazolo [2, 3-a] Isoquinolinium and Pyridinium Cations

Harjit Singh^a, Subhash C. Malhotra^a

^a Department of Chemistry, Guru Nanak Dev University, Amritsar, India

To cite this Article Singh, Harjit and Malhotra, Subhash C.(1981) 'Heterocycles in Organic Synthesis-ii¹ Synthesis of Ethylenedisulphide Derivatives (-S-CH₂-CH₂-S-) from 2,3-Dihydrothiazolo [2, 3-a] Isoquinolinium and Pyridinium Cations', Synthetic Communications, 11: 6, 443 – 446

To link to this Article: DOI: 10.1080/00397918108061875

URL: <http://dx.doi.org/10.1080/00397918108061875>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

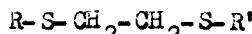
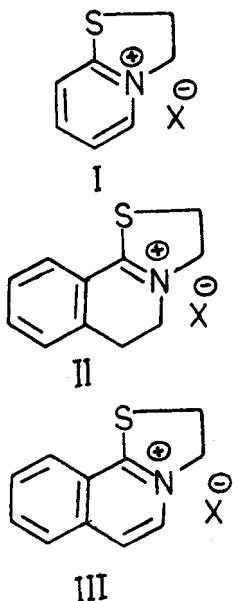
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HETEROCYCLES IN ORGANIC SYNTHESIS-II¹ SYNTHESIS OF
ETHYLENEDISULPHIDE DERIVATIVES (-S-CH₂-CH₂-S-) FROM
2,3-DIHYDROTHIAZOLO [2,3-a] ISOQUINOLINIUM AND
PYRIDINIUM CATIONS

Harjit Singh* and Subhash C. Malhotra,
Department of Chemistry,
Guru Nanak Dev University,
Amritsar-143005, India.

Heterocycles have recently been used advantageously for the synthesis of other categories of compounds.² Here, we report that with thiolate ions, 2,3-dihydrothiazolo [2,3-a] pyridinium³(I); 2,3,5,6-tetrahydrothiazolo [2,3-a] isoquinolinium⁴(II) and 2,3-dihydrothiazolo[2,3-a] isoquinolinium⁵(III) cations, available from the condensations of ethylene dibromide with pyridine-2(¹H)-thione³; 3,4-dihydro-isoquinoline-1(²H)-thione⁴ and isoquinoline-1(²H)-thione⁵, form ethylene disulphide derivatives(I Va-f) possessing one pyridyl/isoquinolyl and second heterocyclic or nonheterocyclic moiety - a novel category of organic compounds, in synthetically useful yields.

2,3-Dihydrothiazolo [2,3-a] pyridinium perchlorate (I, $X = \text{ClO}_4^-$) and pyridyl-2-thiolate ion in anhydrous dimethylformamide solution gave a product (85%), m.p. 118° , M^+ , m/e 248. Its ^1H n.m.r. spectrum showed a singlet at δ 3.92 ($\text{H}_{\text{aliphatic}}$) and a multiplet at δ 6.8-8.35 ($\text{H}_{\text{aromatic}}$) which integrated in the ratio 1:2. The ^{13}C n.m.r. spectrum⁶ showed only six signals, one for sp^3 hybridised carbon at δ 30.26 (t, $-\text{CH}_2-$) and five signals at δ 119.45(d), 122.39(d), 135.91(d), 149.54(d) and 158.79(s) for the pyridyl sp^2 hybridised carbon atoms. These data which depicted a highly symmetrical structure could satisfactorily be explained by the structure-2,2'-(ethylenedithio)dipyridine (IVa). An authentic sample of IVa was obtained by condensing pyridine-2(^1H)-thione with half an equivalent of ethylene dibromide.



Likewise, 2-[2-(ethylthio)ethyl] thio] pyridine (IVb)⁷; 2-[2-(phenylthio) ethyl] thio] pyridine (IVc)⁷; 3,4-dihydro-1-[2-(phenylthio)ethyl] thio] isoquinoline (IVd), m.p. 79° ; 3,4-dihydro-1-[2-(ethylthio)ethyl] thio] isoquinoline (IVe)⁷ and 1-[2-(ethylthio)ethyl] thio] isoquinoline (IVf), m.p. 80° were obtained in 80, 81, 80, 75% and 80% yields from ethylthiolate and I; phenylthiolate and I; phenylthiolate and II; ethylthiolate and II and ethylthiolate and III respectively.

All these compounds gave satisfactory mass and ^1H n.m.r. spectra. In the ^1H n.m.r. spectra of IVb-f, due to their unsymmetrical nature, the ethylene moiety constituted two separate triplets as against a singlet in IVa.

Experimental

Sodium pyridyl-2 or phenyl or ethylthiolate (.01 mole) was added with stirring to a solution of 2,3-dihydro-thiazolo [2,3-a] pyridinium (I) or 2,3,5,6-tetrahydro-thiazolo [2,3-a] isoquinolinium (II) or 2,3-dihydro-thiazolo [2,3-a] isoquinolinium (III) perchlorates (.01 mole) in anhydrous dimethyl formamide (50 ml). The reaction mixture attained a dark brown colour and was stirred for 4 hrs at room temperature to complete the reaction (T.L.C.). The solvent was removed in vac. and the residue was treated with water and was neutralised with dilute acetic acid. It was extracted with dichloromethane (3 x 50 ml). The extract was washed with water (3 x 150 ml) and dried with sodium sulphate. The solvent was removed and the crude residue consisting of one major component (T.L.C.) was purified over a short column filled with alumina using pet. ether or benzene as eluent.

We thank Prof. P.J. Scheuer and Prof. R.L. Khetarpal for mass and ^{13}C n.m.r. spectra and Dr. K. Loening for help in nomenclature.

R

R1

References

1. Part I, H. Singh, C. S. Gandhi and M. S. Bal, Heterocycles, 14, 3 (1980).
2. A. I. Meyers, "Heterocycles in Organic Synthesis", Wiley, New York, 1974.
3. H. Singh and S. C. Malhotra, Indian J. Chem. (in press).
4. H. Singh, K. B. Lal and S. C. Malhotra, Indian J. Chem., 17B, 4 (1979).
5. H. Singh and K. B. Lal, J. Chem. Soc. Perkin Trans. I, 1799 (1972).
6. The multiplicity given in brackets pertains to the off-resonance proton decoupled spectrum.
7. Yellow coloured thick liquids.