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Persistent currents in coupled mesoscopic rings.
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Abstract

We have analysed the nature of persistent currents in open coupled mesoscopic rings.

Our system is comprised of two ideal loops connected to an electron reservoir. We have

obtained analytical expressions for the persistent current densities in two rings in the

presence of a magnetic field. We show that the known even-odd parity effects in isolated

single loops have to be generalised for the case of coupled rings. We also show that when

the two rings have unequal circumferences, it is possible to observe opposite currents

(diamagnetic or paramagnetic) in the two rings for a given Fermi level.
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I. Introduction

It was predicted by Büttiker et. al. [1] that an equilibrium persistent current flows in

an ideal one dimensional mesoscopic ring threaded by a magnetic flux φ. Persistent current

flows in a ring as a response to magnetic field which destroys the time reversal symmetry

and is periodic in magnetic flux , with a period φ0 , φ0 being the elementary flux quanta

(φ0=hc/e). At zero temperature the amplitude of persistent current is given by evf/L , where

vf is the Fermi velocity and L is the circumference of the ring. For spinless electrons persistent

current can be either diamagnetic or paramagnetic depending upon whether the total number

of electrons present is odd or even, respectively [2,3]. This behaviour of persistent current

is also known as parity effect. The existence of persistent currents in mesoscopic rings has

subsequently been confirmed by several experiments [4-6].

Persistent currents occur in both open and isolated closed systems [7-13]. A simple open

system [7] is a metallic ring connected to an electron reservoir, characterized by chemical

potential µ1. Several new effects related to persistent currents can arise in open systems

which have no analog in closed or isolated systems. Recently we have also shown [13-15] that

large circulating currents can arise in open mesoscopic rings in the presence of a transport

current ,in the absence of magnetic field. This is purely a quantum effect and is related to the

property of current magnification in the loop.

So far theoretical treatments of persistent currents deal with single rings(open and closed

systems) threaded by magnetic flux. Studies in a closed ring have been extended to include fi-

nite temperature effects, multichannel rings, disorder, spin-orbit coupling and electron-electron

effects [2,3,16-14]. In our present work we study persistent currents in coupled mesoscopic

rings. Specifically, we consider two normal one dimensional(single channel) coupled rings con-



contact with the left and the right ring at junctions J1 and J2, respectively. This lead, in turn,

is connected to an external electron reservoir characterized by a chemical potential µ, via an

another ideal lead making connection at point X. The circumference of the left and the right

rings are l1 and l2 respectively. The distances J1X ,J2X are l3, l4, respectively. The electron

reservoir acts as a source as well as a sink of electrons, and by definition their is no phase rela-

tionship between the absorbed and the emitted electrons. Electrons emitted by the reservoir

propagate along the lead and are partially reflected by the junction point X and are partially

transmitted along the loop via repeated scatterings at junction points X, J1, and J2. Electrons

in the loops will eventually reach the reservoir after some time delay. This gives rise to finite

life time broadening for the electron states of the coupled rings. Scattering processes in the

coupled rings are elastic. Only the reservoir acts as an inelastic scatterer. There is complete

spatial separation between the sources of elastic and inelastic scattering. Our present analysis

concerns non-interacting spinless electrons. In the presence of an external uniform magnetic

field B, The magnetic flux through the left and the right rings are given by α1 = Bl1
2/4π and

α2 = Bl2
2/4π, respectively; α1 and α2 are not independent quantities as the magnetic flux

in both the rings arise from the same applied uniform magnetic field B. We have obtained

analytical expressions for the persistent current densities in both the rings in the presence

of a magnetic field. We show that persistent currents in the two rings are very sensitive to

the geometric features ( such as lengths l1, l2, l3 and l4) of the system. Even though we have

obtained an analytical expression for the general case, we restrict ourselves to a case where

l3 = l4. When the rings are of the same size the magnitude and sign of the persistent currents

are same in both the rings (due to symmetry). We observe that if the distance between the

rings l = (l3 + l4) is much larger than the circumference of the two identical rings the known



considered rings of unequal circumferences. In such a situation at a given Fermi level it is

possible to observe diamagnetic current in one of the rings and simultaneously paramagnetic

current in the other ring. In sec.II we give a brief account of theoretical treatment and sec.III

is devoted to results and conclusions.

.II Theoretical treatment

In this section we derive expressions for persistent current in the left and the right rings for

the general case when l3 6=l4. For this we consider a noninteracting electron system. Our system

is considered as a free electron network, i.e., the quantum potential V throughout the network

is assumed to be identically zero. The scattering arises solely due to junctions (or geometric

scattering) at J1, J2 and X. For scattering at the junctions we do not assume any specific

form of scattering matrix , instead the junction scattering matrix follows from principles of

quantum mechanics. We use the Griffiths boundary condition (current conservation) and the

single valuedness of wave function at the junctions [21]. Following exactly the same procedure

as the earlier ones [11-15] one can readily derive analytical expressions for the persistent

current densities (dJ/dk) (i.e. persistent current density in the small wave vector interval k

and k+dk) in the left (dJL/dk) and right (dJR/dk) loops [7] and are given by

dJL/dk = −(ekh̄/2πm)256Sin[α]Sin[kl1] {Sin[k(l2 − l4)]

−3Sin[k(l2 + l4)] − 2Sin[β − kl4] + 2Sin[β + kl4]}
2 /(Ω1

2 + Ω2
2), (1)

dJR/dk = −(ekh̄/2πm)256Sin[β]Sin[kl2] {Sin[k(l1 − l3)]

−3Sin[k(l1 + l3)] − 2Sin[α − kl3] + 2Sin[α + kl3]}
2 /(Ω1

2 + Ω2
2). (2)



Ω1 = 2 {−3Cos(k (l1 − l2 − l3 − l4)) − Cos(k (l1 + l2 − l3 − l4)) + 9Cos(k (l1 − l2 + l3 − l4))

+3Cos(k (l1 + l2 + l3 − l4)) + Cos(k (l1 − l2 − l3 + l4)) + 3Cos(k (l1 + l2 − l3 + l4))

−3Cos(k (l1 − l2 + l3 + l4)) − 9Cos(k (l1 + l2 + l3 + l4))−

4Cos(α − β − kl3 − kl4) − 4Cos(α + β − kl3 − kl4) + 6Cos(β − kl1 − kl3 − kl4)

+2Cos(β + kl1 − kl3 − kl4) + 6Cos(α − kl2 − kl3 − kl4) + 2Cos(α + kl2 − kl3 − kl4)

+4Cos(α − β + kl3 − kl4) + 4Cos(α + β + kl3 − kl4) − 2Cos(β − kl1 + kl3 − kl4)

−6Cos(β + kl1 + kl3 − kl4) − 6Cos(α − kl2 + kl3 − kl4) − 2Cos(α + kl2 + kl3 − kl4)

+4Cos(α − β − kl3 + kl4) + 4Cos(α + β − kl3 + kl4) − 6Cos(β − kl1 − kl3 + kl4)

−2Cos(β + kl1 − kl3 + kl4) − 2Cos(α − kl2 − kl3 + kl4) − 6Cos(α + kl2 − kl3 + kl4)

−4Cos(α − β + kl3 + kl4) − 4Cos(α + β + kl3 + kl4) + 2Cos(β − kl1 + kl3 + kl4)

+6Cos(β + kl1 + kl3 + kl4) + 2Cos(α − kl2 + kl3 + kl4) + 6Cos(α + kl2 + kl3 + kl4)} , (3)

Ω2 = 4 {−3Sin(k (l1 − l2 − l3 − l4)) − Sin(k (l1 + l2 − l3 − l4))+

3Sin(k (l1 − l2 + l3 + l4)) + 9Sin(k (l1 + l2 + l3 + l4))−

4Sin(α − β − kl3 − kl4) − 4Sin(α + β − kl3 − kl4) + 6Sin(β − kl1 − kl3 − kl4)+

2Sin(β + kl1 − kl3 − kl4) + 6Sin(α − kl2 − kl3 − kl4) + 2Sin(α + kl2 − kl3 − kl4)+

4Sin(α − β + kl3 + kl4) + 4Sin(α + β + kl3 + kl4) − 2Sin(β − kl1 + kl3 + kl4)−

6Sin(β + kl1 + kl3 + kl4) − 2Sin(α − kl2 + kl3 + kl4) − 6Sin(α + kl2 + kl3 + kl4)} , (4)

where α = 2πα1/φ0 and β = 2πα2/φ0,φ0 = hc/e the elementary flux quanta. The wavevector



E=h̄2k2/2m. Since we are considering the case wherein the magnetic field B is due to the

same source and consequently the flux (α and β are written in a dimensionless form) piercing

through the two loops are related by the following relation (i.e., α and β are dependent

variables).

α = (
(

l2
2/l1

2) ∗ β
)

. (5)

For the above case from equation (1)-(5) one can readily verify that persistent current

densities are antisymmetric in B or the persistent currents in two loops change sign on the

reversal of magnetic field (B → −B). Henceforth we rescale the current densities in the di-

mensionless form and denote djL = (dJL/dk)(2mπ/h̄ek) and djR = (dJR/dk)(2mπ/h̄ek). We

have also rescaled all the lengths with respect to the length l1 of the left hand loop. The wave

vector is written in the dimensionless form as kl1.

.III Results and Discussions

We would like to point out that our expression for the persistent current densities obtained

in equation (1) and (2) are quite general and valid even for the case, where, the flux enclosed

by two rings α1 and α2 are independent variables. This case corresponds to a situation in

which the enclosed magnetic flux in the left and right rings may arise respectively from two

independent magnetic field sources. However, in our present detailed analysis we have not

considered this case. If the two rings are identical (l1 = l2) we notice that the magnitude

of the persistent current densities in the left and the right rings are unequal. This follows

from the fact that there is a asymmetry in the system. This asymmetry arises because of the

junction scattering point X, which is not placed at a symmetrical position with respect to the

position of the two rings (l3 6= l4). Henceforth we restrict our discussion further to the case

l3 = l4 (symmetrical situation). For this special case, when l1 = l2, the magnitude and the



direction of the persistent current are same in both the rings.

In fig.2 we have plotted persistent current density djL as a function of dimensionless wave

vector kl1 for a fixed value of l2/l1=1, l3/l1=l4/l1=0.5 , and α=0.5. Since in this particular

case the system is symmetric about the junction X , we expect that current in the left or the

right ring will be same. As one varies kl1 the persistent currents oscillate between diamagnetic

and paramagnetic behaviour. In our problem the coupled rings are connected to a reservoir,

which, in turn, leads to finite life time broadening of the electron states in the system and as

a consequence the persistent current shows a broadened feature as a function of kl1 compared

to an isolated system. The amplitude extrema in persistent current occur approximately at

the values of kl1=2π(n + α1/φ0) , where n=0,±1,±2,...etc., which correspond to the allowed

states in a single isolated loop of length l1. The observed small deviation from values of kl1 for

isolated ring follows from the fact that there is a coupling between the rings and additional

scatterings at J1, J2 and X.

In fig.(3) we have plotted persistent current as a function of α for a fixed value of kl1 = 6.0.

Other parameters being the same as used for fig.(2). We notice that results obtained in fig.2

and fig.3. are qualitatively same as one observes in a single loop of length l1 connected to

an electron reservoir [7]. It is also to be noted that the simple periodicity observed in fig.(2)

and fig.(3) is due to the fact that all lengths (l1, l2, l3, and l4) are simple rational multiples

of each other, otherwise we would have obtained a complicated structure in the behaviour of

persistent current as a function of kl1 as well as α.

From now on we discuss the case when the length of the connecting lead (l3 + l4) is

much larger than the circumference l1 of the loops. We have taken both the loops to be of

equal circumference. We show that in this simple case the even-odd parity effect known for



ratio (l3 + l4)/l1. In the absence of magnetic field, an isolated single loop has eigenstates

corresponding to wave vector k =2πn/l1, whereas isolated connecting wire of length l3 + l4 has

eigen states with k = nπ/(l3 + l4) (n=0,±1,±2,...etc.). Therefore for the length (l3 + l4) > l1

energy levels in the isolated lead are closely spaced than the energy levels in the loop. These

closely spaced energy levels, leak into the loops (hybridized with the states within the loop)

in a connected ring system and consequently additional quasi bound states arise which have

energies lying between the states of the isolated ring. Naturally the energies of these new

states of the coupled system will be shifted from either of those of the separate lead and the

ring due to the coupling(perturbation). In the presence of magnetic field such an additional

state contributes to the persistent current diamagnetically or paramagnetically depending on

whether it is near respectively to a diamagnetic or paramagnetic state of the isolated loop (in

the presence of a magnetic field). These states basically owe their existence to the resonant

states in the isolated lead and their contribution to the magnitude of persistent current is small

compared to the contribution of persistent current from the states near the resonant states of

the isolated loops. Thus a situation can arise a system of coupled loops (with (l3 + l4) >> l1)

such that first N1 states are diamagnetic and the next N1 states will be paramagnetic (2N1

is the number of resonant states, of the lead, lying between the two successive levels of the

isolated ring) and process repeats as we go to higher states. In a single isolated loop, for

spinless electrons, it is well known[2,3] that current in a loop is diamagnetic or paramgnetic

depending on whether the number of particles is odd or even, respectively(even-odd parity

effect). Now for coupled mesoscopic rings this simple even-odd parity effect gets altered and

instead we have first N1 levels contributing to a diamagnetic current but the next N1 levels

contribute a paramagnetic current, where N1 depends on the ratio (l3 + l4)/l1. This is true



identical loops). For this case the underlying concepts will become a little complicated as

we have to discuss parity effects in the left and right loops separately as they carry different

currents for any given state, which will be discussed below. In fig.(4) we have plotted the

persistent current dj as a function of kl1, for the case when (l3 + l4)/l1=2,l2/l1=1 and for a

fixed value of α = 1.2. For this situation we have two additional states of the connecting

lead (lying between eigen states of the isolated loops), which leak into the loops. We clearly

observe from fig.(4) that as we vary kl1 we get the first two peaks which are diamagnetic and

the later two peaks are paramagnetic and the sequence repeats.

In our problem we basically solve a scattering problem wherein electrons are injected in the

system from the reservoir which get reflected back to the reservoir. From a scattering matrix

structure one can get the information about quasi bound states. This can be achieved by

looking at the poles in a complex kl1 plane of the complex reflection amplitude. The real part

of the poles (R) gives the wave vector values of the resonant states, whereas the imaginary

part gives the information about the lifetime of these states. In fig.(5) we have plotted the real

part R of these complex poles as a function of α. All the parameters used here are the same

as in fig.(4). We clearly observe that additional states (in the present case 2) appears within

the intervals of kl1 values of isolated loops. Moreover, one can readily notice that the first two

resonant states carry diamagnetic current (as their slopes with respect to the magnetic flux

are positive [2,3]) and the next two carry paramagnetic currents and so on. As expected on

the general grounds values of R are periodic in flux α1 with a period φ0. In fig.(6) we have

plotted dj versus kl1 for the case (l3 + l4)/l1 = 10.0 and for a fixed value of α = 1.2 while

l2/l1 = 1.0. It is clear from this figure that the first six states carry diamagnetic current, next

six states carry paramagnetic current and so on. The fig.(4) and fig.(6) clearly indicate that



rings and moreover the emergence of new parity effect as discussed above is sensitive to the

length ratio (l3 + l4)/l1.

We further consider the case for which the loops are not identical, in that their circum-

ferences are different. In such a situation one has to discuss the persistent currents in the

right and the left loops separately. Consider a situation where l2 > l1. Naturally resonant

states in the right loop are more closely spaced than those in the left loop. There will be

mixing between these states due to the coupling. However, it is possible that as one varies

wave vector kl1 persistent current in the right loop oscillates between diamagnetic and para-

magnetic behaviour much more rapidly than the persistent current in the left hand loop, i.e.,

in a given interval of kl1, persistent current does not change sign for the case of left hand loop

whereas in the same interval persistent current in the right hand loop changes sign several

times. We can have a situation where for a given state (kl1) current in the left and right

loops have either the same sign or different (i.e., current in left loop are diamagnetic where as

current in the right loop is paramagnetic). This is illustrated in fig.(7), where .... lines and

—— lines indicate persistent current in the right(djR) and the left (djL) loop, respectively.

For the above case we have taken l2/l1 = 4 and (l3 + l4)/l1 = 1. In fig.(8) and fig.(9) we

have plotted persistent currents as a function of α for a fixed value of kl1 = 2.2 for the right

and the left loop respectively. The other parameters are same as those used in fig.(7). From

fig.(8) and fig.(9) we notice that djL and djR are periodic in α1 with a period φ0. We would

like to mention that this is so because for our case we have considered a commensurate ratio

l2/l1 = 4. In general if we choose the ratio to be incommensurate (or irrational) djL or djR

will have much larger value of the period with respect to α. It should be kept in mind that

as one varies α1 (the flux through the left ring) by φ0, the flux through the right ring (α2)



to 2π the persistent current density in the left loop changes sign once while the persistent

current density in the right loop changes the sign 16 times.

It is well known that for a simple case of isolated single loop (or a single hole in the sample)

the persistent current carried by the nth state of energy En is given by In = −(1/c)∂ǫn/∂φ,

where φ is the flux piercing through the loop (or hole). In the present case of multiply

connected nonidentical rings one cannot infer the values of persistent current in the individual

rings from the above definition. To calculate persistent current in the presence of magnetic

field in each loop of the system of coupled rings one has to calculate quantum mechanical

wave function in each ring explicitly and from that one can calculate the currents.

In our analysis throughout we have discussed the persistent current densities dj in the

small wave vector interval k and k+dk. However, experimentally it is the total persistent

current generated by all the conducting electrons in the system that can be observed. This

can be calculated by integrating the persistent current densities up to the Fermi wave vector

kf using eqns.(1) and (2). In conclusion , we have studied the nature of persistent currents

in open mesoscopic coupled ring system in presence of magnetic field. Throughout we have

considered simple commensurate ratios of l1/l2 and (l3 + l4)/l1. For coupled identical rings

one observes different parity effects. The parity effect depends on the ratio (l3 + l4)/l1 of the

connecting lead length to the circumference of the rings. In the case of non identical loops,

for a given state, it is possible that persistent current in one loop is diamagnetic whereas in

the other it may be paramagnetic or diamagnetic. Moreover all these effects are very sensitive

to the length ratio involved in the system as the problem is inherently quantum mechanical

in nature, where interference effects dominate.
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Figure captions

Fig. 1. Two metal loops connected to an electron reservoir with chemical potential µ1.

Fig. 2. Plot of circulating current versus kl1 for a fixed value of α=0.2. For this case

l2/l1 = 1.0, l3/l1=l4/l1=0.5.

Fig. 3. Plot of circulating current versus α for a fixed value of kl1 = 6.0. For this case

l2/l1 = 1.0, l3/l1=l4/l1=0.5.

Fig. 4. Plot of circulating current versus kl1 for a fixed value of α=1.2. For this case

l2/l1 = 1.0, l3/l1=l4/l1=1.0.

Fig. 5. The plot of real part R of the complex poles in the kl1 plane of the reflection

amplitude as a function of α for l2/l1 = 1.0, l3/l1=l4/l1=1.0.

Fig. 6. Plot of circulating current versus kl1 for a fixed value of α=1.2. For this case

l2/l1 = 1.0, l3/l1=l4/l1=5.0.

Fig. 7. The persistent current as a function of kl1 in the left loop (solid line) and the right

loop (dashed lines) for a fixed value of α = 1.2. For this case l2/l1 = 4 and l3/l1 = l4/l1=0.5.

Fig. 8. Plot of persistent current in the left loop as a function of α for a fixed value of

kl1 = 2.2. For this case l2/l1 = 4 and l3/l1 = l4/l1=0.5.

Fig. 9. Plot of persistent current in the right loop as a function of α for a fixed value of

kl1 = 2.2. For this case l2/l1 = 4 and l3/l1 = l4/l1=0.5.


