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Abstract

Residence times of a particle in both the wells of a double-well system, under
the action of zero-mean Gaussian white noise and zero-averaged but tempo-
rally asymmetric periodic forcings, are recorded in a numerical simulation.
The difference between the relative mean residence times in the two wells
shows monotonic variation as a function of asymmetry in the periodic forc-
ing and for a given asymmetry the difference becomes largest at an optimum
value of the noise strength. Moreover, the passages from one well to the other
become less synchronous at small noise strength as the asymmetry parameter
(defined below) differs from zero, but at relatively larger noise strengths the
passages become more synchronous with asymmetry in the field sweep. We
propose that asymmetric periodic forcing (with zero mean) could provide a
simple but sensible physical model for unidirectional motion in a symmetric

periodic system aided by a symmetric Gaussian white noise.
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Several physical models have recently been proposed [IH],[] to understand possible av-
erage asymmetric motion of a Brownian particle in a periodic potential. Living systems
are manifestly nonequilibrium and quite understandably such an asymmetric motion has
been observed recently in biological systems [§]. Though the quest for extracting useful
work out of nonequilibrium systems is not new, the biological experimental observation has
given enough motivation recently to renew effort in that direction. It has resulted in better
understanding of the problem and also it has helped in inventing new devices for practical
use [f]. In the present work we study a symmetric two-well system subjected to zero-mean
Gaussian white noise. We apply an external field that is periodic in time. The external
field is taken to be temporally asymmetric but with mean force zero in a period. We find
that eventhough the mean deterministic force experienced by a particle due to the external
field is zero, the Gaussian white noise (centered at zero) helps it to extract work while mov-
ing on a potential surface. This is reflected in the asymmetric passages between the two
symmetrically connected wells modulated periodically by the external field.

We consider the symmetric two-well potential represented by U(m) = —%m2 + gm‘l and
consider the external field h(t) to be periodic in time and assume an asymmetric saw-tooth
form for it. The asymmetry in the saw-tooth form comes because the positive and negative
slopes are taken to have different magnitude. The mean force in a period (because of the
external field) is assured to be zero by taking the maxima and minima of the saw-tooth to

have values +hy and —hg, respectively. A Brownian particle will thus experience a combined

(time dependent) potential
®(m,t) = U(m) — mh(t). (1)

We consider the time evolution of the particle coordinate m(t) to be governed by the over-

damped Langevin equation
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where f(t) is a randomly fluctuating force and is taken to be Gaussian with statistics
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and

A~

< fW)f(t') >=2Ds(t —t'). (4)

Here < ... > represents average over a large number of realizations of the random forces.

Our calculation involves solving the Langevin equation numerically and to monitor the
time evolution of m(t) for a long time for given noise strength D. The calculation is done for
a fixed subcritical h(t) with amplitude hy < h., where h. is the minimum value of |h(t)| at
which one of the two wells of ®(m) becomes unstable and disappears. Since h(t) < h. always,
the barrier between the two wells never vanishes. Therefore to pass from one well to the
other a particle need necessarily have to surmount a nonzero potential barrier and therefore
has to be noise aided. Along the time axis we record the events of passages between the two
wells. We consider passage to take place from a given well as and when the trajectory m(t),
emerging from the given well, crosses the inflexion point on the other side of the potential
barrier separating the two wells. From the markers recorded on the time axis we obtain the
distribution p;(7) of residence times, 7, in the well 1 and (similarly for the well 2). And
also the distribution pio(h) of field values h(t) at which passages take place from the well
1 to the well 2 (and similarly from the well 2 to the well 1) are calculated from the same
recordings.

The distributions p12(h) and po;(h) determine the evolution of the fraction of population
in a well as the external field h(t) varies. For example, the fraction my(h) of the population
in the well 2 evolves [from (n — 1)th step to nth step] as

ma(n) = ma(n — 1) — ma(n — 1)pa1(hn—1)(hn — hp—1) + ma(n — )pra(hn_1)(hn — hn—1),
(5)

where h,, is the field value at the nth subdivision point in a cycle of h. The interval of
uniform subdivisions (h, — h,_1) are taken to be optimally small for better accuracy. In

our calculation we take (h, — h,_1) = Ah = 0.001h.. So the whole period is divided into
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N = % equal segments. This evolution equation together with the periodicity condition, for

instance, ma(n = 0) = ma(n = %

) gives the closed hysteresis loop m(h) = ma(h) — my(h).
Also, throughout our calculation, we take a = 2.0, and b = 1.0. The hysteresis loop area is a
good measure of degree of synchronization of passages between the two wells. For example,
if the passages take place only when the potential barrier for passage is the least, i.e., at
h = +hy, the distributions pi2(h) and po;(h) will be sharply peaked at h = hg and h = —hy,
respectively. In this case the hysteresis loop will be nearly rectangular and therefore will
have the largest area. On the other hand, if the passages take place all over and randomly
(corresponding to the case of least synchronization) so that pia(h) and po;(h) are uniform
the loop area becomes the least. We explore how the hysteresis loop area A changes as a
function of the asymmetry of the field h(¢) and also as a function of the noise strength D.

The asymmetry of field sweep, A, is defined as A = —z2-, where T} is the time for the field
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to change from hy to —hg and Ty is the period of oscillation of A(t). Fig. 1 shows a typical
hysteresis loop with A # 0 as compared to one with A = 0. Notice that the hysteresis loops
do not saturate for the field amplitude hy = .7h, considered here.

Figure 2 shows the variation of hysteresis loop area A as a function of the asymmetry
parameter A for fixed values of hgy, Ty, and various values of D. The area is the largest at
A = 0 for small D but is the lowest for relatively larger D. In both the cases, however,
A(—A) = A(A). This result is to be compared with our earlier work on two-well systems
[0 where first-passage times instead of residence times were calculated. In that work the
upper half of the hysteresis loop, corresponging to passages from well 2 to well 1, was
obtained from the first-passage-time distribution p(h) that spread between hy and —hq (and
not over the whole period) and the other half was obtained by symmetry. Consequently
the hysteresis loops, by construction, saturated to m(hg) = 1.0k, and m(—hy) = —1.0h,,
and were symmetric for all hy including hy = .7h.. The variation of hysteresis loop area,
however, showed asymmetry and attained a peak (usually not at A = 0) as a function of A.

In Fig. 3, we show how, in the present work, area changes as a function of D for fixed A,



Ty, and hy. However, before discussing the physical significance of these results we consider
the mean residence times 7; and 7» in the two wells as a function of A.

From the distributions p;(7) and p(7) of the residence times we calculate the mean
residence times in each of the two wells. We, then, calculate the fraction of times, f; and
f2, the particle spends, on the average, in the two wells. The difference, M = fy — f, gives
a quantity analogous to magnetization (normalized) in magnetic systems. In Fig. 4 we plot
M as a function of A. From the figure it is clear that M(A) = —M(—A) (upto the order
of accuracy of our numerical calculation) and vary roughly monotonically. This indicates
that the particles will tend to accumulate in the well 2 if A > 0 and in the well 1 if A < 0.
This conclusion is plausible because in the situation under consideration the mean residence
times 71 and 7, add up to 7 = 71 + T» which is larger than Ty, the period of oscilation of h(t).
This simply indicates that passages do not take place in every cycle of h(t). For A > 0,
for instance, there will be larger number of passages from well 1 to 2 than from 2 to 1 per
cycle of h(t), in an ensemble. This results in a net accumulation of particles in the well
2, asymptotically. This asymmetry in passages is also reflected indirectly in the hysteretic
property of the system. For A # 0 the hysteresis loops are asymmetric. Also, as A deviates
from zero the hysteresis loop area decreases for small D (but increases for relatively larger
D) [Fig. 2|, which indicates that now the passages are less(more) synchronous with the input
signal h(t). This effect indicates as if a net average constant field is applied in a direction
determined by A.

The net accumulation M in a two-well system for given A changes with the noise strength
D. Fig. 5shows that M increases initially, reaches a maximum, and then decreases gradually
as D is increased. We, thus, have an optimum value of D at which the accumulation in the
well 2 (when A > 0) is the largest after a large number of cycles of h(t). All the results
obtained in the present work are susceptible to experimental verification by the recently
developed optical interferometric techniques [[[Q].

All the calculated results discussed so far are valid for a double-well potential. However,

it is not difficult to envisage the situation in case of a periodic potential. In a two-well



potential, for A > 0, as mentioned earlier, the number of passages taking place from well
1 to well 2 per cycle of field sweep is larger than the number of passages from well 2 to
well 1. One may justifiably extrapolate this result to state that in a periodic potential (that
may even be symmetric), in a given number of cycles of h(t) there will be more 1 — 2
passages than 2 — 1 passages, and hence there will be a net current of particles in the right
direction (1 — 2) when A > 0 and in the reverse direction when A < 0. This current will
increase with the magnitude of A. However, for a given A we can find an optimum value
of the Gaussian white noise strength D at which the current will be maximum. This is an
important observation because here we have a physical model for unidirectional motion of
a particle in a nonratchetlike symmetric periodic potential aided by symmetric Gaussian

white noise (fluctuating forces).
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FIG. 1. Hysteresis loops m(h), for hg = 0.7h., D = 0.15, and Ty = 28.0, are plotted for (a)

A =0 (solid line) and (b) A = 0.5 (dotted line).
FIG. 2. Plots of hysteresis loop area A versus A for (a) D = 0.1(o), (b) D = 0.15(0), and (c)
D =0.2(¢), (d) D =0.5(4A), and (e) D = 0.7(v).
FIG. 3. Plot of hysteresis area as a function of D for (a) A = 0.5(c), and (b) A = %(D).
FIG. 4. Shows the variation of accumulation M in a well as a function of A for (a) D = 0.15(0),

(b) D = 0.2(), (¢) D = 0.5(2), and (d) D = 0.7(7).

FIG. 5. Plot of M versus D for (a) A = 0.5(0), and (b) A = 13(D0).



